Evaluation of GNSS-TEC Data-Driven IRI-2016 Model for Electron Density
Abstract
:1. Introduction
2. Data and Methodology
2.1. Experimental Data
2.1.1. The IRI-2016 Model
2.1.2. Ionosonde Data
2.1.3. COSMIC Data
2.2. Experimental and Evaluation Methods
3. Results
3.1. Accuracy Analysis of Electron Density Profile
3.1.1. Comparison with Ionosonde Data
3.1.2. Comparison with COSMIC Data
3.2. Accuracy Analysis of NmF2
3.2.1. Comparison with Ionosonde Data
3.2.2. Comparison with COSMIC Data
4. Discussion and Conclusions
- (1)
- It can be seen from both ionosonde data and COSMIC inversion electron density profiles that ionospheric electron densities, especially the peak electron density in the F2 layer, are larger in the years of high solar activity than in the years of low solar activity, which is in accordance with the law of the influence of solar activity on electron density. The trends in the variation of electron density with altitude of the IRI-2016 and upda-IRI-2016 outputs driven by IG12 and IG-up, respectively, are both consistent with the COSMIC electron density profiles from the COSMIC inversion.
- (2)
- The results of using ionosonde data as a reference and COSMIC data as a reference show that both the electron density and NmF2 output of upda-IRI-2016 driven by IG-up compared to IRI-2016 model driven by IG12 are greatly improved in both high and low solar activity years.
- (3)
- In terms of electron density, compared with IRI-2016 driven by IG12, the optimization effect of upda-IRI-2016 is more significant at low-latitude stations than at high-latitude stations. Compared to ionosonde, in January 2015, the PIs of MAE and RMSE are 32.5% and 32.6% for the Wuhan stations, respectively. The PIs are 31.2% and 31.4% for the Beijing stations, respectively. In January 2019, the PIs are 44.1% and 42.1% for the Wuhan stations and 16.5% and 16.0% for the Beijing stations, respectively. Compared to COSMIC, the PI for both MAE and RMSE exceeded 20.8% in 2015.
- (4)
- In terms of NmF2, the optimization effects of both low solar activity years and low-latitude stations are more significant than those of high solar activity years and high-latitude stations. Compared to ionosonde, in January 2015, the PIs of MAE and RMSE are 45.3% and 41.2% for the Wuhan stations, respectively. The PIs are 15.8% and 11.8% for the Beijing stations, respectively. In January 2019, the PIs are 49.0% and 45.6% for the Wuhan stations and 29.0% and 22.0% for the Beijing stations, respectively. Compared to COSMIC, the PI was over 17.2% for the whole year of 2015 and over 29.5% for January 2019.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Georgiadou, Y.; Kleusberg, A. On the Effect of Ionospheric Delay on Geodetic Relative GPS Positioning. Manuscripta Geod. 1988, 13, 1–8. [Google Scholar]
- Yuan, Y. Study on Theories and Methods of Correcting Ionospheric Delay and Monitoring Ionosphere Based on GPS. Ph.D. Dissertation, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan, China, 2002. (In Chinese). [Google Scholar]
- Yuan, Y.; Wang, N.; Li, Z.; Huo, X. The BeiDou global broadcast ionospheric delay correction model (BDGIM) and its preliminary performance evaluation results. Navigation 2019, 66, 55–69. [Google Scholar] [CrossRef]
- Xu, H.; Chen, X.; Ou, J.; Yuan, Y. Crowdsourcing RTK: A new GNSS positioning framework for building spatial high-resolution atmospheric maps based on massive vehicle GNSS data. Satell. Navig. 2024, 5, 13. [Google Scholar] [CrossRef]
- Gu, S.; Gan, C.; He, C.; Lyu, H.; Hernandez-Pajares, M.; Lou, Y.; Geng, J.; Zhao, Q. Quasi-4-dimension ionospheric modeling and its application in PPP. Satell. Navig. 2022, 3, 24. [Google Scholar] [CrossRef]
- Bilitza, D.; Altadill, D.; Truhlik, V.; Shubin, V.; Galkin, I.; Reinisch, B.; Huang, X. International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather 2017, 15, 418–429. [Google Scholar] [CrossRef]
- He, R.; Li, M.; Zhang, Q.; Zhao, Q. A Comparison of a GNSS-GIM and the IRI-2020 Model over China Under Different Ionospheric Conditions. Space Weather 2023, 21, e2023SW003646. [Google Scholar] [CrossRef]
- Wang, C. Comparison of ionospheric characteristic parameters obtained by GPS and ionosonde with IRI model over China. J. Earth Syst. Sci. 2016, 125, 745–759. [Google Scholar] [CrossRef]
- Li, S.; Li, L.; Peng, J. Variability of Ionospheric TEC and the Performance of the IRI-2012 Model at the BJFS Station, China. Acta Geophys. 2016, 64, 1970–1987. [Google Scholar] [CrossRef]
- Wan, Q.; Ma, G.; Li, J.; Wang, X.; Lu, W.; Maruyama, T.; Fan, J.; Zhang, J. Performance evaluation of IRI-2016 with GPS-derived TEC at the meridian of 110oE in China of 2014. J. Atmos. Sol.-Terr. Phys. 2020, 201, 105206. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Z.; Shen, Y.; Li, W.; Xu, F.; Li, X. Evaluation of foF2 and hmF2 Parameters of IRI-2016 Model in Different Latitudes over China under High and Low Solar Activity Years. Remote Sens. 2022, 14, 860. [Google Scholar] [CrossRef]
- Luo, W.; Liu, Z.; Li, M. A preliminary evaluation of the performance of multiple ionospheric models in low- and mid-latitude regions of China in 2010–2011. GPS Solut. 2014, 18, 297–308. [Google Scholar] [CrossRef]
- Wan, Q.; Ma, G.; Li, J.; Wang, X.; Fan, J.; Li, Q.; Lu, W. A comparison of GPS-TEC with IRI-TEC at low latitudes in China in 2006. Adv. Space Res. 2017, 60, 250–256. [Google Scholar] [CrossRef]
- Xiang, Y.; Yuan, Y.; Wang, N. Comparison of IRI-2012 and Rapid GIMs with GNSS-Derived TEC over China. In Proceedings of the China Satellite Navigation Conference (CSNC) 2014 Proceedings: Volume II, Nanjing, China, 21–23 May 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 465–476. [Google Scholar]
- Wang, J.; Yu, Q.; Shi, Y. Comparison of observed hmF2 and the IRI-2020 model for six stations in East Asia during the declining phase of the solar cycle 24. Adv. Space Res. 2024, 73, 2418–2432. [Google Scholar] [CrossRef]
- Zhu, P.; Xie, C.; Jiang, C.; Yang, G.; Liu, J.; Li, Z.; Zhao, Z. Ionospheric Behavior of foF2 over Chinese EIA Region and Its Comparison with IRI-2016. Universe 2020, 6, 122. [Google Scholar] [CrossRef]
- Chen, M.; Liu, L.; Xu, C.; Wang, Y. Improved IRI-2016 model based on BeiDou GEO TEC ingestion across China. GPS Solut. 2019, 24, 20. [Google Scholar] [CrossRef]
- Komjathy, A.; Langley, R.B.; Bilitza, D. Ingesting GPS-derived TEC data into the International Reference Ionosphere for single frequency radar altimeter ionospheric delay corrections. Adv. Space Res. 1998, 22, 793–801. [Google Scholar] [CrossRef]
- Habarulema, J.B.; Ssessanga, N. Adapting a climatology model to improve estimation of ionosphere parameters and subsequent validation with radio occultation and ionosonde data. Space Weather 2017, 15, 84–98. [Google Scholar] [CrossRef]
- Liu, L.; Yao, Y.; Zou, S.; Kong, J.; Shan, L.; Zhai, C.; Zhao, C.; Wang, Y. Ingestion of GIM-derived TEC data for updating IRI-2016 driven by effective IG indices over the European region. J. Geod. 2019, 93, 1911–1930. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, X.; Kong, J.; Zhou, C.; Liu, L.; Shan, L.; Guo, Z. An Updated Experimental Model of IG12 Indices over the Antarctic Region via the Assimilation of IRI2016 with GNSS TEC. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1700–1717. [Google Scholar] [CrossRef]
- Liu, R.Y.; Smith, P.A.; King, J.W. A new solar index which leads to improved foF2 predictions using the CCIR Atlas. ITU Telecommun. J. 1983, 50, 408–414. [Google Scholar]
- Bilitza, D.; Pezzopane, M.; Truhlik, V.; Altadill, D.; Reinisch, B.W.; Pignalberi, A. The International Reference Ionosphere Model: A Review and Description of an Ionospheric Benchmark. Rev. Geophys. 2022, 60, e2022RG000792. [Google Scholar] [CrossRef]
- Okoh, D.; Mckinnell, L.; Cilliers, P.; Okeke, P. Using GPS-TEC data to calibrate VTEC computed with the IRI model over Nigeria. Adv. Space Res. 2013, 52, 1791–1797. [Google Scholar] [CrossRef]
- Ssessanga, N.; Kim, Y.; Kim, E.; Kim, J. Regional optimization of the IRI-2012 output (TEC, foF2) by using derived GPS-TEC. J. Korean Phys. Soc. 2015, 66, 1599–1610. [Google Scholar] [CrossRef]
- Zhang, W.; Huo, X.; Yuan, Y.; Li, Z.; Wang, N. Algorithm Research Using GNSS-TEC Data to Calibrate TEC Calculated by the IRI-2016 Model over China. Remote Sens. 2021, 13, 4002. [Google Scholar] [CrossRef]
- Zhao, X.; Ning, B.; Zhang, M.-L.; Hu, L. Comparison of the ionospheric F2 peak height between ionosonde measurements and IRI2016 predictions over China. Adv. Space Res. 2017, 60, 1524–1531. [Google Scholar] [CrossRef]
- Potula, B.S.; Chu, Y.-H.; Uma, G.; Hsia, H.-P.; Wu, K.-H. A global comparative study on the ionospheric measurements between COSMIC radio occultation technique and IRI model. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef]
- Yang, K.F.; Chu, Y.H.; Su, C.L.; Ko, H.T.; Wang, C.Y. An Examination of FORMOSAT-3/COSMIC Ionospheric Electron Density Profile: Data Quality Criteria and Comparisons with the IRI Model. Terr. Atmos. Ocean. Sci. 2009, 20, 193–206. [Google Scholar] [CrossRef]
Year | Station | MAE (1012 el/m3) | PI | RMSE (1012 el/m3) | PI | ||
---|---|---|---|---|---|---|---|
IRI-2016 | Upda-IRI-2016 | IRI-2016 | Upda-IRI-2016 | ||||
2015 | Beijing | 0.1030 | 0.0709 | 31.2% | 0.1436 | 0.0986 | 31.4% |
Wuhan | 0.1672 | 0.1128 | 32.5% | 0.2302 | 0.1551 | 32.6% | |
2019 | Beijing | 0.0324 | 0.0270 | 16.5% | 0.0455 | 0.0382 | 16.0% |
Wuhan | 0.0633 | 0.0354 | 44.1% | 0.0805 | 0.0466 | 42.1% |
Year | MAE (1012 el/m3) | PI | RMSE (1012 el/m3) | PI | ||
---|---|---|---|---|---|---|
IRI-2016 | Upda-IRI-2016 | IRI-2016 | Upda-IRI-2016 | |||
2015 | 0.1412 | 0.1042 | 26.2% | 0.1636 | 0.1254 | 23.3% |
2019 | 0.0645 | 0.0516 | 19.9% | 0.0750 | 0.0610 | 18.6% |
Year | MAE (1012 el/m3) | PI | RMSE (1012 el/m3) | PI | ||
---|---|---|---|---|---|---|
IRI-2016 | Upda-IRI-2016 | IRI-2016 | Upda-IRI-2016 | |||
2015 | 0.1661 | 0.1307 | 21.3% | 0.1913 | 0.1515 | 20.8% |
Year | Stations | MAE | PI | RMSE | PI | ||
---|---|---|---|---|---|---|---|
IRI-2016 | Upda-IRI-2016 | IRI-2016 | Upda-IRI-2016 | ||||
2015 | Beijing | 0.1605 | 0.1350 | 15.8% | 0.2064 | 0.1820 | 11.8% |
Wuhan | 0.2974 | 0.1626 | 45.3% | 0.3605 | 0.2121 | 41.2% | |
2019 | Beijing | 0.0617 | 0.0438 | 29.0% | 0.0855 | 0.0438 | 22.0% |
Wuhan | 0.0970 | 0.0487 | 49.0% | 0.1198 | 0.0652 | 45.6% |
Year | MAE (1012 el/m3) | PI | RMSE (1012 el/m3) | PI | ||
---|---|---|---|---|---|---|
IRI-2016 | Upda-IRI-2016 | IRI-2016 | Upda-IRI-2016 | |||
2015 | 0.1458 | 0.1223 | 15.6% | 0.1649 | 0.1426 | 13.5% |
2019 | 0.0854 | 0.0599 | 29.9% | 0.0932 | 0.0657 | 29.5% |
Year | MAE (1012 el/m3) | PI | RMSE (1012 el/m3) | PI | ||
---|---|---|---|---|---|---|
IRI-2016 | Upda-IRI-2016 | IRI-2016 | Upda-IRI-2016 | |||
2015 | 0.1973 | 0.1462 | 25.9% | 0.2936 | 0.2430 | 17.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, J.; Yuan, Y.; Liu, Y.; Zhang, H.; Zhang, T.; Wang, Y.; Dai, Z. Evaluation of GNSS-TEC Data-Driven IRI-2016 Model for Electron Density. Atmosphere 2024, 15, 958. https://doi.org/10.3390/atmos15080958
Peng J, Yuan Y, Liu Y, Zhang H, Zhang T, Wang Y, Dai Z. Evaluation of GNSS-TEC Data-Driven IRI-2016 Model for Electron Density. Atmosphere. 2024; 15(8):958. https://doi.org/10.3390/atmos15080958
Chicago/Turabian StylePeng, Jing, Yunbin Yuan, Yanwen Liu, Hongxing Zhang, Ting Zhang, Yifan Wang, and Zelin Dai. 2024. "Evaluation of GNSS-TEC Data-Driven IRI-2016 Model for Electron Density" Atmosphere 15, no. 8: 958. https://doi.org/10.3390/atmos15080958
APA StylePeng, J., Yuan, Y., Liu, Y., Zhang, H., Zhang, T., Wang, Y., & Dai, Z. (2024). Evaluation of GNSS-TEC Data-Driven IRI-2016 Model for Electron Density. Atmosphere, 15(8), 958. https://doi.org/10.3390/atmos15080958