Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = COP9 signalosome (CSN)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3159 KiB  
Article
Csn5 Depletion Reverses Mitochondrial Defects in GCN5-Null Saccharomyces cerevisiae
by Angela Cirigliano, Emily Schifano, Alessandra Ricelli, Michele M. Bianchi, Elah Pick, Teresa Rinaldi and Arianna Montanari
Int. J. Mol. Sci. 2025, 26(14), 6916; https://doi.org/10.3390/ijms26146916 - 18 Jul 2025
Viewed by 229
Abstract
In this study, we investigated the mitochondrial defects resulting from the deletion of GCN5, a lysine-acetyltransferase, in the yeast Saccharomyces cerevisiae. Gcn5 serves as the catalytic subunit of the SAGA acetylation complex and functions as an epigenetic regulator, primarily acetylating N-terminal [...] Read more.
In this study, we investigated the mitochondrial defects resulting from the deletion of GCN5, a lysine-acetyltransferase, in the yeast Saccharomyces cerevisiae. Gcn5 serves as the catalytic subunit of the SAGA acetylation complex and functions as an epigenetic regulator, primarily acetylating N-terminal lysine residues on histones H2B and H3 to modulate gene expression. The loss of GCN5 leads to mitochondrial abnormalities, including defects in mitochondrial morphology, a reduced mitochondrial DNA copy number, and defective mitochondrial inheritance due to the depolarization of actin filaments. These defects collectively trigger the activation of the mitophagy pathway. Interestingly, deleting CSN5, which encodes to Csn5/Rri1 (Csn5), the catalytic subunit of the COP9 signalosome complex, rescues the mitochondrial phenotypes observed in the gcn5Δ strain. Furthermore, these defects are suppressed by exogenous ergosterol supplementation, suggesting a link between the rescue effect mediated by CSN5 deletion and the regulatory role of Csn5 in the ergosterol biosynthetic pathway. Full article
(This article belongs to the Special Issue Research on Mitochondrial Genetics and Epigenetics)
Show Figures

Figure 1

14 pages, 2648 KiB  
Review
CSN-CRL Complexes: New Regulators of Adipogenesis
by Dawadschargal Dubiel, Michael Naumann and Wolfgang Dubiel
Biomolecules 2025, 15(3), 372; https://doi.org/10.3390/biom15030372 - 5 Mar 2025
Viewed by 957
Abstract
Recent discoveries revealed mechanistic insights into the control of adipogenesis by the Constitutive Photomorphogenesis 9 Signalosome (CSN) and its variants, CSNCSN7A and CSNCSN7B, which differ in the paralog subunits, CSN7A and CSN7B. CSNCSN7A and CSNCSN7B variants form permanent [...] Read more.
Recent discoveries revealed mechanistic insights into the control of adipogenesis by the Constitutive Photomorphogenesis 9 Signalosome (CSN) and its variants, CSNCSN7A and CSNCSN7B, which differ in the paralog subunits, CSN7A and CSN7B. CSNCSN7A and CSNCSN7B variants form permanent complexes with cullin-RING-ubiquitin ligases 3 and 4A (CRL3 and CRL4A), respectively. These complexes can be found in most eukaryotic cells and represent a critical reservoir for cellular functions. In an early stage of adipogenesis, mitotic clonal expansion (MCE), CSN-CRL1, and CSNCSN7B-CRL4A are blocked to ubiquitinate the cell cycle inhibitor p27KIP, leading to cell cycle arrest. In addition, in MCE CSN-CRL complexes rearrange the cytoskeleton for adipogenic differentiation and CRL3KEAP1 ubiquitylates the inhibitor of adipogenesis C/EBP homologous protein (CHOP) for degradation by the 26S proteasome, an adipogenesis-specific proteolysis. During terminal adipocyte differentiation, the CSNCSN7A-CRL3 complex is recruited to a lipid droplet (LD) membrane by RAB18. Currently, the configuration of the substrate receptors of CSNCSN7A-CRL3 on LDs is unclear. CSNCSN7A-CRL3 is activated by neddylation on the LD membrane, an essential adipogenic step. Damage to CSN/CUL3/CUL4A genes is associated with diverse diseases, including obesity. Due to the tremendous impact of CSN-CRLs on adipogenesis, we need strategies for adequate treatment in the event of malfunctions. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 5623 KiB  
Article
The Silencing of the StPAM16-1 Gene Enhanced the Resistance of Potato Plants to the Phytotoxin Thaxtomin A
by Lu Liu, Shuangwei Song, Ning Liu, Zhiqin Wang, Yonglong Zhao, Naiqin Zhong, Pan Zhao and Haiyun Wang
Int. J. Mol. Sci. 2025, 26(3), 1361; https://doi.org/10.3390/ijms26031361 - 6 Feb 2025
Viewed by 2705
Abstract
Potato common scab (CS) caused by Streptomyces scabiei is a severe disease that threatens tuber quality and its market value. To date, little is known about the mechanism regulating the resistance of potato to CS. In this study, we identified a presequence translocase-associated [...] Read more.
Potato common scab (CS) caused by Streptomyces scabiei is a severe disease that threatens tuber quality and its market value. To date, little is known about the mechanism regulating the resistance of potato to CS. In this study, we identified a presequence translocase-associated motor 16 gene from potato (designated StPAM16-1) that is involved in the response to the phytotoxin thaxtomin A (TA) secreted by S. scabiei. The StPAM16-1 protein was localized in the mitochondria, and the expression of the gene was upregulated in potato leaves treated with TA. The suppression of StPAM16-1 in potato led to enhanced resistance to TA and S. scabiei. Protein interaction analyses revealed that StPAM16-1 interacted with the subunit 5b of the COP9 signalosome complex (StCSN5). Similar to that of StPAM16-1, the expression levels of StCSN5 significantly increased in potato leaves treated with TA. These results indicated that StPAM16-1 acted as a negative regulator and was functionally associated with StCSN5 in the immune response of potato plants against CS. Our study sheds light on the molecular mechanism by which PAM16 participates in the plant immune response. Furthermore, both StPAM16-1 and StCSN5 could be potential target genes in the molecular breeding of potato cultivars with increased resistance to CS. Full article
(This article belongs to the Special Issue Genetic Regulation of Plant Growth and Protection)
Show Figures

Figure 1

17 pages, 2649 KiB  
Article
Functional Characterization of OsCSN1 in the Agronomic Trait Control of Rice Seedlings Under Far-Red Light
by Yanxi Liu, Hua Zeng, Yuqing Shang, Hexin Zhang, Tongtong Jiao, Le Yin, Jinyuan Yang, Miao Xu, Jingmei Lu, Ming Wu and Liquan Guo
Int. J. Mol. Sci. 2025, 26(2), 522; https://doi.org/10.3390/ijms26020522 - 9 Jan 2025
Viewed by 888
Abstract
The COP9 signalosome (CSN) is a highly conserved multi-subunit protein complex, with CSN1 being its largest and most conserved subunit. The N-terminal function of CSN1 plays a pivotal and intricate role in plant photomorphogenesis and seedling development. Moreover, CSN is essential for far-red [...] Read more.
The COP9 signalosome (CSN) is a highly conserved multi-subunit protein complex, with CSN1 being its largest and most conserved subunit. The N-terminal function of CSN1 plays a pivotal and intricate role in plant photomorphogenesis and seedling development. Moreover, CSN is essential for far-red light-mediated photomorphogenesis in seedlings, but the function of OsCSN1 in seedling growth and development under far-red light conditions has not been determined. This study investigates the function of OsCSN1 under far-red light through phenotypic analysis of wild type and OsCSN1 mutant seedlings. Additionally, the effect of the N-terminal region of OsCSN1 on rice seedling growth and development was examined. The addition of exogenous hormone gibberellin (GA3) and gibberellin synthesis inhibitor paclobutrazol (PAC) resulted in notable changes in phenotypes and the expression of key proteins, including CUL4 and SLR1. The findings indicate that OsCSN1 functions as a positive regulator of plant height under far-red light and inhibits root elongation. Under far-red light, OsCSN1 integrates into the COP9 complex and regulates the nuclear localization of COP1. Through its interaction with CUL4 in the CULLIN-RING family, OsCSN1 facilitates the ubiquitin-mediated degradation of SLR1, thereby influencing the growth of rice seedlings. The regulatory function of OsCSN1 in seedling growth and development under far-red light predominantly relies on the 32 amino acids of its N-terminal region. The results of this study can provide new ideas for rice breeding and genetic improvement. Based on the study of key regulatory factors such as OsCSN1, new varieties that can make better use of far-red light signals can be cultivated to enhance crop adaptability and productivity. Full article
(This article belongs to the Special Issue Plant Resilience: Insights into Abiotic and Biotic Stress Adaptations)
Show Figures

Figure 1

21 pages, 8893 KiB  
Article
A Characterization of the Functions of OsCSN1 in the Control of Sheath Elongation and Height in Rice Plants under Red Light
by Shining Han, Yanxi Liu, Anor Bao, Tongtong Jiao, Hua Zeng, Weijie Yue, Le Yin, Miao Xu, Jingmei Lu, Ming Wu and Liquan Guo
Agronomy 2024, 14(3), 572; https://doi.org/10.3390/agronomy14030572 - 13 Mar 2024
Cited by 2 | Viewed by 1386
Abstract
The COP9 signalosome (CSN) is a conserved protein complex, with CSN1 being one of the largest and most important subunits in the COP9 complex. To investigate the N-terminus function of OsCSN1, we edited the N-terminus of OsCSN1 and found that the mutant of [...] Read more.
The COP9 signalosome (CSN) is a conserved protein complex, with CSN1 being one of the largest and most important subunits in the COP9 complex. To investigate the N-terminus function of OsCSN1, we edited the N-terminus of OsCSN1 and found that the mutant of OsCSN1 with 102 amino acids missing at the N-terminus showed insensitivity to red light in terms of the embryonic sheath, stem elongation, and main-root elongation. Moreover, the mutant was able to produce, develop, and bear fruit normally. The research results indicate that OsCSN1 is a negative regulator of stem elongation in rice seedlings regulated by red light. Under red-light treatment, OsCSN1 assembles into CSN, which degrades SLR1 through de NEDDylation, affecting PIL11 activity and ultimately inhibiting stem elongation. OsCSN1 also plays an important regulatory role in the inhibition of rice embryonic sheath elongation under red light. By regulating the degradation of SLR1 and PIL14 through the ubiquitin/26S protease pathway, the elongation of the embryonic sheath is ultimately inhibited. OsCSN1 forms a COP9 complex and is modified with RUB/NEDD8 of the E3 ligase of CUL1 to promote the degradation of SLR1 and PIL14, ultimately affecting the elongation of the embryonic sheath. The regulatory domain is located at the N-terminus of CSN1. Full article
(This article belongs to the Special Issue Effects of Spectrum and Light Intensity on Plant Growth Metabolism)
Show Figures

Figure 1

25 pages, 4112 KiB  
Article
SMC5/6 Promotes Replication Fork Stability via Negative Regulation of the COP9 Signalosome
by Michelle J. Xu and Philip W. Jordan
Int. J. Mol. Sci. 2024, 25(2), 952; https://doi.org/10.3390/ijms25020952 - 12 Jan 2024
Cited by 3 | Viewed by 2356
Abstract
It is widely accepted that DNA replication fork stalling is a common occurrence during cell proliferation, but there are robust mechanisms to alleviate this and ensure DNA replication is completed prior to chromosome segregation. The SMC5/6 complex has consistently been implicated in the [...] Read more.
It is widely accepted that DNA replication fork stalling is a common occurrence during cell proliferation, but there are robust mechanisms to alleviate this and ensure DNA replication is completed prior to chromosome segregation. The SMC5/6 complex has consistently been implicated in the maintenance of replication fork integrity. However, the essential role of the SMC5/6 complex during DNA replication in mammalian cells has not been elucidated. In this study, we investigate the molecular consequences of SMC5/6 loss at the replication fork in mouse embryonic stem cells (mESCs), employing the auxin-inducible degron (AID) system to deplete SMC5 acutely and reversibly in the defined cellular contexts of replication fork stall and restart. In SMC5-depleted cells, we identify a defect in the restart of stalled replication forks, underpinned by excess MRE11-mediated fork resection and a perturbed localization of fork protection factors to the stalled fork. Previously, we demonstrated a physical and functional interaction of SMC5/6 with the COP9 signalosome (CSN), a cullin deneddylase that enzymatically regulates cullin ring ligase (CRL) activity. Employing a combination of DNA fiber techniques, the AID system, small-molecule inhibition assays, and immunofluorescence microscopy analyses, we show that SMC5/6 promotes the localization of fork protection factors to stalled replication forks by negatively modulating the COP9 signalosome (CSN). We propose that the SMC5/6-mediated modulation of the CSN ensures that CRL activity and their roles in DNA replication fork stabilization are maintained to allow for efficient replication fork restart when a replication fork stall is alleviated. Full article
(This article belongs to the Special Issue Molecular Mechanism of DNA Replication and Repair, 2nd Edition )
Show Figures

Figure 1

18 pages, 3225 KiB  
Article
Transcriptomic and Bioinformatic Analyses Identifying a Central Mif-Cop9-Nf-kB Signaling Network in Innate Immunity Response of Ciona robusta
by Laura La Paglia, Mirella Vazzana, Manuela Mauro, Francesca Dumas, Antonino Fiannaca, Alfonso Urso, Vincenzo Arizza and Aiti Vizzini
Int. J. Mol. Sci. 2023, 24(4), 4112; https://doi.org/10.3390/ijms24044112 - 18 Feb 2023
Cited by 3 | Viewed by 2290
Abstract
The Ascidian C. robusta is a powerful model for studying innate immunity. LPS induction activates inflammatory-like reactions in the pharynx and the expression of several innate immune genes in granulocyte hemocytes such as cytokines, for instance, macrophage migration inhibitory factors (CrMifs). This leads [...] Read more.
The Ascidian C. robusta is a powerful model for studying innate immunity. LPS induction activates inflammatory-like reactions in the pharynx and the expression of several innate immune genes in granulocyte hemocytes such as cytokines, for instance, macrophage migration inhibitory factors (CrMifs). This leads to intracellular signaling involving the Nf-kB signaling cascade that triggers downstream pro-inflammatory gene expression. In mammals, the COP9 (Constitutive photomorphogenesis 9) signalosome (CSN) complex also results in the activation of the NF-kB pathway. It is a highly conserved complex in vertebrates, mainly engaged in proteasome degradation which is essential for maintaining processes such as cell cycle, DNA repair, and differentiation. In the present study, we used bioinformatics and in-silico analyses combined with an in-vivo LPS exposure strategy, next-generation sequencing (NGS), and qRT-PCR to elucidate molecules and the temporal dynamics of Mif cytokines, Csn signaling components, and the Nf-κB signaling pathway in C. robusta. A qRT-PCR analysis of immune genes selected from transcriptome data revealed a biphasic activation of the inflammatory response. A phylogenetic and STRING analysis indicated an evolutionarily conserved functional link between the Mif-Csn-Nf-kB axis in ascidian C. robusta during LPS-mediated inflammation response, finely regulated by non-coding molecules such as microRNAs (miRNAs). Full article
(This article belongs to the Special Issue Transcriptomic and Genomic Insights into Invertebrates)
Show Figures

Figure 1

14 pages, 3426 KiB  
Article
OsCSN1 Regulates the Growth and Development of Rice Seedlings through the Degradation of SLR1 in the GA Signaling Pathway
by Elshan Musazade, Yanxi Liu, Yixuan Ren, Ming Wu, Hua Zeng, Shining Han, Xiaowei Gao, Shuhua Chen and Liquan Guo
Agronomy 2022, 12(12), 2946; https://doi.org/10.3390/agronomy12122946 - 24 Nov 2022
Cited by 5 | Viewed by 1901
Abstract
The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) is involved in various regulations during plant development. The CSN is a highly conserved protein complex with nine subunits, and CSN1 acts in a network of signaling pathways critical for plant development. Although CSN1 has been [...] Read more.
The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) is involved in various regulations during plant development. The CSN is a highly conserved protein complex with nine subunits, and CSN1 acts in a network of signaling pathways critical for plant development. Although CSN1 has been widely studied in Arabidopsis thaliana, there have been few investigations on CSN1 in rice. In this paper, using the CRISPR/Cas9 system, CSN1 was edited from Oryza sativa subsp. japonica (rice). After screening out the OsCSN1 knockout mutant and OsCSN1 reduce mutant, the phenotype and protein expression were identified under different light conditions. Experiments showed that in OsCSN1 knockout mutant and OsCSN1 reduce mutant, the SLR1 protein was rapidly degraded at the rice seedling. In this study, the OsCSN1 acted as a negative regulator to affect seedling growth and development through CUL4-based E3 ligase, which is involved in the degradation of SLR1 in the GA signaling pathway. However, its direct target and mechanism of action are not clear. Full article
Show Figures

Figure 1

16 pages, 4921 KiB  
Article
FgCsn12 Is Involved in the Regulation of Ascosporogenesis in the Wheat Scab Fungus Fusarium graminearum
by Hang Jiang, Yuhan Zhang, Wanshan Wang, Xinyu Cao, Huaijian Xu, Huiquan Liu, Junshan Qi, Cong Jiang and Chenfang Wang
Int. J. Mol. Sci. 2022, 23(18), 10445; https://doi.org/10.3390/ijms231810445 - 9 Sep 2022
Cited by 5 | Viewed by 2476
Abstract
Fusarium head blight (FHB), caused by the fungal pathogen Fusarium graminearum, is a destructive disease worldwide. Ascospores are the primary inoculum of F. graminearum, and sexual reproduction is a critical step in its infection cycle. In this study, we characterized the [...] Read more.
Fusarium head blight (FHB), caused by the fungal pathogen Fusarium graminearum, is a destructive disease worldwide. Ascospores are the primary inoculum of F. graminearum, and sexual reproduction is a critical step in its infection cycle. In this study, we characterized the functions of FgCsn12. Although the ortholog of FgCsn12 in budding yeast was reported to have a direct interaction with Csn5, which served as the core subunit of the COP9 signalosome, the interaction between FgCsn12 and FgCsn5 was not detected through the yeast two-hybrid assay. The deletion of FgCSN12 resulted in slight defects in the growth rate, conidial morphology, and pathogenicity. Instead of forming four-celled, uninucleate ascospores, the Fgcsn12 deletion mutant produced oval ascospores with only one or two cells and was significantly defective in ascospore discharge. The 3′UTR of FgCsn12 was dispensable for vegetative growth but essential for sexual reproductive functions. Compared with those of the wild type, 1204 genes and 2240 genes were up- and downregulated over twofold, respectively, in the Fgcsn12 mutant. Taken together, FgCsn12 demonstrated an important function in the regulation of ascosporogenesis in F. graminearum. Full article
(This article belongs to the Special Issue Fungal Diseases in Crops)
Show Figures

Figure 1

13 pages, 2297 KiB  
Article
Phosphate (Pi) Starvation Up-Regulated GmCSN5A/B Participates in Anthocyanin Synthesis in Soybean (Glycine max) Dependent on Pi Availability
by Xiaohui Mo, Mengke Zhang, Zeyu Zhang, Xing Lu, Cuiyue Liang and Jiang Tian
Int. J. Mol. Sci. 2021, 22(22), 12348; https://doi.org/10.3390/ijms222212348 - 16 Nov 2021
Cited by 15 | Viewed by 3061
Abstract
Phosphorus (P) is an essential macronutrient for plant growth and development. Among adaptive strategies of plants to P deficiency, increased anthocyanin accumulation is widely observed in plants, which is tightly regulated by a set of genes at transcription levels. However, it remains unclear [...] Read more.
Phosphorus (P) is an essential macronutrient for plant growth and development. Among adaptive strategies of plants to P deficiency, increased anthocyanin accumulation is widely observed in plants, which is tightly regulated by a set of genes at transcription levels. However, it remains unclear whether other key regulators might control anthocyanin synthesis through protein modification under P-deficient conditions. In the study, phosphate (Pi) starvation led to anthocyanin accumulations in soybean (Glycine max) leaves, accompanied with increased transcripts of a group of genes involved in anthocyanin synthesis. Meanwhile, transcripts of GmCSN5A/B, two members of the COP9 signalosome subunit 5 (CSN5) family, were up-regulated in both young and old soybean leaves by Pi starvation. Furthermore, overexpressing GmCSN5A and GmCSN5B in Arabidopsis thaliana significantly resulted in anthocyanin accumulations in shoots, accompanied with increased transcripts of gene functions in anthocyanin synthesis including AtPAL, AtCHS, AtF3H, AtF3H, AtDFR, AtANS, and AtUF3GT only under P-deficient conditions. Taken together, these results strongly suggest that P deficiency leads to increased anthocyanin synthesis through enhancing expression levels of genes involved in anthocyanin synthesis, which could be regulated by GmCSN5A and GmCSN5B. Full article
(This article belongs to the Special Issue Advanced Research in Plant Responses to Environmental Stresses)
Show Figures

Figure 1

16 pages, 2280 KiB  
Article
Essential Role of COP9 Signalosome Subunit 5 (Csn5) in Insect Pathogenicity and Asexual Development of Beauveria bassiana
by Ya-Ni Mou, Kang Ren, Sen-Miao Tong, Sheng-Hua Ying and Ming-Guang Feng
J. Fungi 2021, 7(8), 642; https://doi.org/10.3390/jof7080642 - 7 Aug 2021
Cited by 9 | Viewed by 2862
Abstract
Csn5 is a subunit ofthe COP9/signalosome complex in model fungi. Here, we report heavier accumulation of orthologous Csn5 in the nucleus than in the cytoplasm and its indispensability to insect pathogenicity and virulence-related cellular events of Beauveria bassiana. Deletion of csn5 led [...] Read more.
Csn5 is a subunit ofthe COP9/signalosome complex in model fungi. Here, we report heavier accumulation of orthologous Csn5 in the nucleus than in the cytoplasm and its indispensability to insect pathogenicity and virulence-related cellular events of Beauveria bassiana. Deletion of csn5 led to a 68% increase in intracellular ubiquitin accumulation and the dysregulation of 18 genes encoding ubiquitin-activating (E1), -conjugating (E2), and -ligating (E3) enzymes and ubiquitin-specific proteases, suggesting the role of Csn5 in balanced ubiquitination/deubiquitination. Consequently, the deletion mutant displayed abolished insect pathogenicity, marked reductions in conidial hydrophobicity and adherence to the insect cuticle, the abolished secretion of cuticle penetration-required enzymes, blocked haemocoel colonisation, and reduced conidiation capacity despite unaffected biomass accumulation. These phenotypes correlated well with sharply repressed or abolished expressions of key hydrophobin genes required for hydrophobin biosynthesis/assembly and of developmental activator genes essential for aerial conidiation and submerged blastospore production. In the mutant, increased sensitivities to heat shock and oxidative stress also correlated with reduced expression levels of several heat-responsive genes and decreased activities of antioxidant enzymes. Altogether, Csn5-reliant ubiquitination/deubiquitination balance coordinates the expression of those crucial genes and the quality control of functionally important enzymes, which are collectively essential for fungal pathogenicity, virulence-related cellular events, and asexual development. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

16 pages, 3787 KiB  
Article
The COP9 Signalosome Variant CSNCSN7A Stabilizes the Deubiquitylating Enzyme CYLD Impeding Hepatic Steatosis
by Xiaohua Huang, Dawadschargal Dubiel and Wolfgang Dubiel
Livers 2021, 1(3), 116-131; https://doi.org/10.3390/livers1030011 - 27 Jul 2021
Cited by 4 | Viewed by 3282
Abstract
Hepatic steatosis is a consequence of distorted lipid storage and plays a vital role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). This study aimed to explore the role of the COP9 signalosome (CSN) in the development of hepatic steatosis and its [...] Read more.
Hepatic steatosis is a consequence of distorted lipid storage and plays a vital role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). This study aimed to explore the role of the COP9 signalosome (CSN) in the development of hepatic steatosis and its interplay with the deubiquitylating enzyme (DUB) cylindromatosis (CYLD). CSN occurs as CSNCSN7A and CSNCSN7B variants regulating the ubiquitin proteasome system. It is a deneddylating complex and associates with other DUBs. CYLD cleaves Lys63-ubiquitin chains, regulating a signal cascade that mitigates hepatic steatosis. CSN subunits CSN1 and CSN7B, as well as CYLD, were downregulated with specific siRNA in HepG2 cells and human primary hepatocytes. The same cells were transfected with Flag-CSN7A or Flag-CSN7B for pulldowns. Hepatic steatosis in cell culture was induced by palmitic acid (PA). Downregulation of CSN subunits led to reduced PPAR-γ expression. Flag-pulldowns in both LiSa-2 and HepG2 cells and human primary hepatocytes revealed binding of CYLD preferentially to CSNCSN7A. This was influenced by PA treatment. Silencing of CSNCSN7B blocked lipid droplet formation caused a compensatory increase of CSNCSN7A stabilizing CYLD. Our results demonstrate that CSNCSN7A-mediated CYLD stabilization impedes hepatic steatosis. Therefore, stabilizing CSNCSN7A-CYLD interaction might be a strategy to retard hepatic steatosis. Full article
Show Figures

Figure 1

11 pages, 1207 KiB  
Brief Report
CSN5A Subunit of COP9 Signalosome Is Required for Resetting Transcriptional Stress Memory after Recurrent Heat Stress in Arabidopsis
by Amit Kumar Singh, Shanmuhapreya Dhanapal, Alin Finkelshtein and Daniel A. Chamovitz
Biomolecules 2021, 11(5), 668; https://doi.org/10.3390/biom11050668 - 30 Apr 2021
Cited by 16 | Viewed by 3925
Abstract
In nature, plants are exposed to several environmental stresses that can be continuous or recurring. Continuous stress can be lethal, but stress after priming can increase the tolerance of a plant to better prepare for future stresses. Reports have suggested that transcription factors [...] Read more.
In nature, plants are exposed to several environmental stresses that can be continuous or recurring. Continuous stress can be lethal, but stress after priming can increase the tolerance of a plant to better prepare for future stresses. Reports have suggested that transcription factors are involved in stress memory after recurrent stress; however, less is known about the factors that regulate the resetting of stress memory. Here, we uncovered a role for Constitutive Photomorphogenesis 5A (CSN5A) in the regulation of stress memory for resetting transcriptional memory genes (APX2 and HSP22) and H3K4me3 following recurrent heat stress. Furthermore, CSN5A is also required for the deposition of H3K4me3 following recurrent heat stress. Thus, CSN5A plays an important role in the regulation of histone methylation and transcriptional stress memory after recurrent heat stress. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 5518 KiB  
Article
Saccharomyces cerevisiae as a Toolkit for COP9 Signalosome Research
by Dana Harshuk-Shabso, Noam Castel, Ran Israeli, Sheri Harari and Elah Pick
Biomolecules 2021, 11(4), 497; https://doi.org/10.3390/biom11040497 - 25 Mar 2021
Cited by 1 | Viewed by 2655
Abstract
The COP9 signalosome (CSN) is a highly conserved eukaryotic multi-subunit enzyme, regulating cullin RING ligase activities and accordingly, substrate ubiquitination and degradation. We showed that the CSN complex of Saccharomyces cerevisiae that is deviated in subunit composition and in sequence homology harbors a [...] Read more.
The COP9 signalosome (CSN) is a highly conserved eukaryotic multi-subunit enzyme, regulating cullin RING ligase activities and accordingly, substrate ubiquitination and degradation. We showed that the CSN complex of Saccharomyces cerevisiae that is deviated in subunit composition and in sequence homology harbors a highly conserved cullin deneddylase enzymatic core complex. We took advantage of the non-essentiality of the S. cerevisiae CSN-NEDD8/Rub1 axis, together with the enzyme-substrate cross-species activity, to develop a sensitive fluorescence readout assay, suitable for biochemical assessment of cullin deneddylation by CSNs from various origins. We also demonstrated that the yeast catalytic subunit, CSN5/Jab1, is targeted by an inhibitor that was selected for the human orthologue. Treatment of yeast by the inhibitor led to the accumulation of neddylated cullins and the formation of reactive oxygen species. Overall, our data revealed S. cerevisiae as a general platform that can be used for studies of CSN deneddylation and for testing the efficacy of selected CSN inhibitors. Full article
(This article belongs to the Special Issue Ubiquitin-Like Modifiers and Their Diverse Impact on Cell Signaling)
Show Figures

Graphical abstract

11 pages, 648 KiB  
Review
The COP9 Signalosome: A Multi-DUB Complex
by Wolfgang Dubiel, Supattra Chaithongyot, Dawadschargal Dubiel and Michael Naumann
Biomolecules 2020, 10(7), 1082; https://doi.org/10.3390/biom10071082 - 21 Jul 2020
Cited by 56 | Viewed by 8569
Abstract
The COP9 signalosome (CSN) is a signaling platform controlling the cellular ubiquitylation status. It determines the activity and remodeling of ~700 cullin-RING ubiquitin ligases (CRLs), which control more than 20% of all ubiquitylation events in cells and thereby influence virtually any cellular pathway. [...] Read more.
The COP9 signalosome (CSN) is a signaling platform controlling the cellular ubiquitylation status. It determines the activity and remodeling of ~700 cullin-RING ubiquitin ligases (CRLs), which control more than 20% of all ubiquitylation events in cells and thereby influence virtually any cellular pathway. In addition, it is associated with deubiquitylating enzymes (DUBs) protecting CRLs from autoubiquitylation and rescuing ubiquitylated proteins from degradation. The coordination of ubiquitylation and deubiquitylation by the CSN is presumably important for fine-tuning the precise formation of defined ubiquitin chains. Considering its intrinsic DUB activity specific for deneddylation of CRLs and belonging to the JAMM family as well as its associated DUBs, the CSN represents a multi-DUB complex. Two CSN-associated DUBs, the ubiquitin-specific protease 15 (USP15) and USP48 are regulators in the NF-κB signaling pathway. USP15 protects CRL1β-TrCP responsible for IκBα ubiquitylation, whereas USP48 stabilizes the nuclear pool of the NF-κB transcription factor RelA upon TNF stimulation by counteracting CRL2SOCS1. Moreover, the CSN controls the neddylation status of cells by its intrinsic DUB activity and by destabilizing the associated deneddylation enzyme 1 (DEN1). Thus, the CSN is a master regulator at the intersection between ubiquitylation and neddylation. Full article
(This article belongs to the Special Issue Ubiquitin-Like Modifiers and Their Diverse Impact on Cell Signaling)
Show Figures

Figure 1

Back to TopTop