Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = CNR1 promoter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6101 KiB  
Article
Potential Impact of Drought and Rewatering on Plant Physiology and Fruit Quality in Long-Shelf-Life Tomatoes
by Cristina Patanè, Sarah Siah, Valeria Cafaro, Salvatore L. Cosentino and Sebastiano A. Corinzia
Agronomy 2024, 14(9), 2045; https://doi.org/10.3390/agronomy14092045 - 6 Sep 2024
Cited by 1 | Viewed by 1460
Abstract
In this study, the effects of repeated cycles of drying and rehydration on some physiological traits were assessed in long shelf-life tomatoes cultivated in a typical semi-arid area of Southern Italy. Three Sicilian landraces (‘Custonaci’, ‘Salina’, and ‘Vulcano’) from the germplasm collection at [...] Read more.
In this study, the effects of repeated cycles of drying and rehydration on some physiological traits were assessed in long shelf-life tomatoes cultivated in a typical semi-arid area of Southern Italy. Three Sicilian landraces (‘Custonaci’, ‘Salina’, and ‘Vulcano’) from the germplasm collection at CNR-IBE (Catania, Italy) and a commercial tomato mini-plum (‘Faino Hy., control) were investigated under three water regimes: DRY (no irrigation), IRR (long-season full irrigation) and REW (post-drought rewaterings). Net photosynthetic assimilation rate (Pn), leaf transpiration (E), stomatal conductance (gs), instantaneous water use efficiency (WUEi), leaf intercellular CO2 (Ci, ppm), and leaf temperature (°C), were measured during the growing season. At harvest (late July), fruit production per plant was measured and ripened fruits were analysed for total solids (TS), soluble solids (SS), reducing sugars (RS), vitamin C (AscA), and total phenols (TP). Pn promptly responded to rewatering (REW), quickly increasing immediately after irrigation, and declined with soil drying up. All genotypes had similar physiological pathways in DRY, but in IRR, ‘Faino’ had higher Pn (up to 31 μmol CO2 m−2s−1) and E (up to 18 mmol H2O m−2s−1). Stomatal conductance (gs) after rewatering steeply increased and quickly declined after that. All local landraces had the same gs in IRR and REW. Variations in RWC were less pronounced than those in other physiological parameters. WUEi in REW and DRY proceeded similarly (up to 3 μmol CO2 mmol H2O). Irrigation in REW significantly promoted plant productivity over the DRY control (up to +150% in ‘Vulcano’). TS and SS in REW were lower than those in DRY, but higher (+19 and +7%, respectively) than in IRR. Vitamin C was greater in DRY and REW (26 and 18% higher than in IRR, respectively). TP in all local tomatoes were significantly higher (up to +29% in ‘Vulcano’) than those in the commercial control. Water regime had a minor effect on TP in ‘Custonaci’ and ‘Salina’. Principal Component Analysis (PCA) provided information on the changes in physiological and fruit quality traits in tomatoes in relation to cultivars and water regimes. The results of this study also revealed that a water-saving irrigation strategy where few irrigations are applied after prolonged periods of drought might be profitable in terms of fruit production enhancement in long shelf-life tomatoes and that limited rewaterings in most cases, help retaining high levels of fruit quality traits. Full article
Show Figures

Figure 1

16 pages, 16682 KiB  
Article
Dispersed CeO2 Nanorods with Low-Speed Mixing for Mechanical Properties Promotion of PTA Steel Coatings
by Jun-Yu Yue, Peng-Cheng Jiao, Yi Sui, Fei Lu, Rui-Ying Zhang, Wei-Dong Chen and Li-Sha Zhao
Coatings 2024, 14(6), 713; https://doi.org/10.3390/coatings14060713 - 5 Jun 2024
Cited by 1 | Viewed by 1308
Abstract
The plasma-transferred arc technology has been observed to induce preferential grain orientation in multiple directions, leading to nonuniform grain growth within the alloy coating material. The addition of nano-oxides can act as heterogeneous nucleation sites, reducing the preferred orientation of grains. In this [...] Read more.
The plasma-transferred arc technology has been observed to induce preferential grain orientation in multiple directions, leading to nonuniform grain growth within the alloy coating material. The addition of nano-oxides can act as heterogeneous nucleation sites, reducing the preferred orientation of grains. In this study, a low-speed mixing method was employed to coat highly dispersed CeO2 nanorods (CNRs) onto the surface of 14Cr2NiSiVMn alloy powder particles. The aim was to analyze the influence of dispersed CNRs on grain growth orientation in different directions and the refinement and heterogeneous nucleation effect of CNR additives. The addition of 0.5 wt.% CNRs resulted in the refinement of dendritic grains along both the perpendicular and parallel directions to the coating cladding direction, leading to the formation of more uniform equiaxed crystals. The combination of Ce with Si and V elements formed submicron particles, which promoted grain nucleation and reduced defects in the coating. Consequently, the mechanical performance of the sample significantly improved. In the deposition direction, there was a notable improvement in microhardness (20.4%), tensile strength (97.6%), and elongation (59.0%). In the perpendicular deposition direction, the tensile strength increased by 88.1%, and the elongation increased by 33.9%. Additionally, the weight loss due to wear decreased by 44.2%, and the relative wear resistance improved by 79.3%. Full article
(This article belongs to the Section Plasma Coatings, Surfaces & Interfaces)
Show Figures

Figure 1

14 pages, 3630 KiB  
Article
The Breeding of Waxy Sorghum Using Traditional Three-Line Method and Marker-Assisted Selection
by Yong-Pei Wu, Yu-Chi Chang, Su-Chen Kuo, Dah-Jing Liao, Ting-Yu Shen, Hsin-I Kuo, Sheng-Wen Wang and Yu-Chien Tseng
Agriculture 2023, 13(11), 2054; https://doi.org/10.3390/agriculture13112054 - 26 Oct 2023
Cited by 2 | Viewed by 1903
Abstract
Sorghum (Sorghum bicolor) exhibits drought resistance and environmental adaptability, making it a crucial cereal crop for semi-arid regions. It has a wide range of uses, including as food, feed, brooms, alcohol production, and bioethanol. In particular, Taiwan imports nearly 50,000 tons [...] Read more.
Sorghum (Sorghum bicolor) exhibits drought resistance and environmental adaptability, making it a crucial cereal crop for semi-arid regions. It has a wide range of uses, including as food, feed, brooms, alcohol production, and bioethanol. In particular, Taiwan imports nearly 50,000 tons of sorghum annually, primarily for the production of sorghum liquor. However, the ideal raw material for high-quality sorghum liquor is waxy sorghum, and not all sorghum varieties imported or promoted in Taiwan are of this waxy type. Consequently, there is a shortage of sufficient waxy sorghum raw materials to meet the demands of the Taiwan market. The occurrence of waxy sorghum (wx) is caused by the mutation of granule-bound starch synthase I (GBBS I), and there are currently several known types of mutants, carrying different wxa, wxb, and wxc waxy alleles. Among them, wxc is a novel mutation type, and in native sorghum in Taiwan, individuals with the waxy allele wxc have been found. The three-line method is a commonly used breeding strategy, which simplifies the process of emasculation to obtain hybrid F1 offspring. In this study, imported sorghum variety Liangnuo No.1 (with male sterility), native glutinous sorghum variety SB6 from Taiwan (carrying the wxc waxy allele), and sorghum reference genome variety BTx623 were used as research materials. The goal was to use the three-line method to produce waxy sorghums, including the male sterile line (A-line), male sterile maintenance line (B-line), and fertility-restoring line (R-line). The breeding results showed that by using backcross breeding, molecular-assisted selection, and traditional field selection methods, high-quality three-line materials (A-, B-, R-lines, named CNA1, CNB1 CNR1, respectively) and F1 hybrid (CNH1) with favorable agronomic traits and yield quality were successfully obtained. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

10 pages, 479 KiB  
Article
Cannabinoid and Opioid Receptor Affinity and Modulation of Cancer-Related Signaling Pathways of Machaeriols and Machaeridiols from Machaerium Pers.
by Ilias Muhammad, Mohammad A. Ibrahim, Mallika Kumarihamy, Janet A. Lambert, Jin Zhang, Marwa H. Mohammad, Shabana I. Khan, David S. Pasco and Premalatha Balachandran
Molecules 2023, 28(10), 4162; https://doi.org/10.3390/molecules28104162 - 18 May 2023
Cited by 5 | Viewed by 2908
Abstract
Machaeriols and machaeridiols are unique hexahydrodibenzopyran-type aralkyl phytocannabinoids isolated from Machaerium Pers. Earlier studies of machaeriol A (1) and B (2) did not show any affinity for cannabinoid receptor 1 (CB1 or CNR1), although they are structural analogs of [...] Read more.
Machaeriols and machaeridiols are unique hexahydrodibenzopyran-type aralkyl phytocannabinoids isolated from Machaerium Pers. Earlier studies of machaeriol A (1) and B (2) did not show any affinity for cannabinoid receptor 1 (CB1 or CNR1), although they are structural analogs of psychoactive hexahydrocannabinol. This study comprehensively reports on the affinities of isolated Machaerium Pers. compounds, namely machaeriol A–D (14) and machaeridiol A–C (57), against cannabinoid (CB1 and CB2) and opioid (κ, δ and µ) receptors. Among the isolated compounds, machaeriol D (4) and machaeridiol A–C (57) showed some selective binding affinity for the CB2 receptor, using a radioligand binding assay, with Ki values of >1.3, >1.77, >2.18 and >1.1 μM, respectively. On the other hand, none of the compounds showed any binding to the CB1 receptor. Due to recent reports on the anticancer potential of the endocannabinoid system, compounds 17 were tested against a battery of luciferase reporter gene vectors that assess the activity of many cancer-related signaling pathways, including Stat3, Smad2/3, AP-1, NF-κB, E2F, Myc, Ets, Notch, FoxO, Wnt, Hedgehog and pTK in HeLa and T98G glioblastoma cells. Complete dose–response curves have been determined for each compound in both of these cell lines, which revealed that machaeridiol 6 displayed activities (IC50 in µM in HeLa and T98G cells) towards Stat3 (4.7, 1.4), Smad2/3 (1.2, 3.0), AP-1 (5.9, 4.2), NF-κB (0.5, 4.0), E2F (5.7, 0.7), Myc (5.3, 2.0), ETS (inactive, 5.9), Notch (5.3, 4.6), Wnt (4.2, inactive) and Hedgehog (inactive, 5.0). Furthermore, a combination study between machaeriol C (3) and machaeridiol B (6) displayed additive effects for E2F, ETS, Wnt and Hedgehog pathways, where these compounds individually were either minimally active or inactive. None of the compounds inhibited luciferase expression driven by the minimal thymidine kinase promoter (pTK), indicating the lack of general cytotoxicity for luciferase enzyme inhibition at the 50 µM concentration in both of these cell lines. The significance of the inhibition of these signaling pathways via machaeridiol 57 and their cross-talk potential has been discussed. Full article
Show Figures

Graphical abstract

14 pages, 1395 KiB  
Article
Defining Candidate Imprinted loci in Bos taurus
by Minou Bina
Genes 2023, 14(5), 1036; https://doi.org/10.3390/genes14051036 - 2 May 2023
Cited by 2 | Viewed by 2421
Abstract
Using a whole-genome assembly of Bos taurus, I applied my bioinformatics strategy to locate candidate imprinting control regions (ICRs) genome-wide. In mammals, genomic imprinting plays essential roles in embryogenesis. In my strategy, peaks in plots mark the locations of known, inferred, and [...] Read more.
Using a whole-genome assembly of Bos taurus, I applied my bioinformatics strategy to locate candidate imprinting control regions (ICRs) genome-wide. In mammals, genomic imprinting plays essential roles in embryogenesis. In my strategy, peaks in plots mark the locations of known, inferred, and candidate ICRs. Genes in the vicinity of candidate ICRs correspond to potential imprinted genes. By displaying my datasets on the UCSC genome browser, one could view peak positions with respect to genomic landmarks. I give two examples of candidate ICRs in loci that influence spermatogenesis in bulls: CNNM1 and CNR1. I also give examples of candidate ICRs in loci that influence muscle development: SIX1 and BCL6. By examining the ENCODE data reported for mice, I deduced regulatory clues about cattle. I focused on DNase I hypersensitive sites (DHSs). Such sites reveal accessibility of chromatin to regulators of gene expression. For inspection, I chose DHSs in chromatin from mouse embryonic stem cells (ESCs) ES-E14, mesoderm, brain, heart, and skeletal muscle. The ENCODE data revealed that the SIX1 promoter was accessible to the transcription initiation apparatus in mouse ESCs, mesoderm, and skeletal muscles. The data also revealed accessibility of BCL6 locus to regulatory proteins in mouse ESCs and examined tissues. Full article
Show Figures

Figure 1

16 pages, 6531 KiB  
Article
Genome-Wide Identification and Expression Analysis of the fw2.2-like Gene Family in Pear
by Xiaoqiu Pu, Jia Tian, Jiang Li and Yue Wen
Horticulturae 2023, 9(4), 429; https://doi.org/10.3390/horticulturae9040429 - 25 Mar 2023
Cited by 1 | Viewed by 2398
Abstract
Fruit size is a major factor determining yield, quality, and consumer acceptability. fw2.2 (fruit weight-2.2) is a primary quantitative trait locus that was the first to be cloned, accounting for 30% of the variation in tomato fruit size. The various homologs [...] Read more.
Fruit size is a major factor determining yield, quality, and consumer acceptability. fw2.2 (fruit weight-2.2) is a primary quantitative trait locus that was the first to be cloned, accounting for 30% of the variation in tomato fruit size. The various homologs of fw2.2 (fw2.2-like) have been identified in many plants and belong to a large family. To date, there has been no report that has carried out a comprehensive identification of fw2.2-like members in pear. In this study, a total of 14 fw2.2-like genes were identified in the pear (Pyrus bretschneideri Rehd) genome and designated as PbFWL1-14. All of the PbFWL genes were unevenly distributed on nine chromosomes, and each chromosome contained between one and four genes. All PbFWL proteins contained more than two conserved motifs, and PbFWL genes contained more than one intron, and the genes of the same subfamily seemed to have a similar intron gene structure. According to the neighbor-joining phylogenetic tree, a total of 78 fw2.2/CNR (cell number regulator) from five plant species, including pear, maize, tomato, peach, rice, and physalis, could be divided into seven subgroups, and PbFWL proteins were mainly distributed in subgroups 1, 3, 4, 5, and 6. The Ka/Ks analysis also revealed that the fw2.2-like gene family of pear may have been subjected to strong purifying selection pressure during its evolution. A cis-element analysis found that many cis-elements responsive to hormones and stress were discovered in promotion regions for all PbFWLs. When combining real-time quantitative PCR analysis detection results, PbFWL1/2/5 were found to be the most likely candidate genes for regulating pear fruit size. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

33 pages, 9776 KiB  
Article
e-Archeo: A Pilot National Project to Valorize Italian Archaeological Parks through Digital and Virtual Reality Technologies
by Eva Pietroni, Sofia Menconero, Carolina Botti and Francesca Ghedini
Appl. Syst. Innov. 2023, 6(2), 38; https://doi.org/10.3390/asi6020038 - 9 Mar 2023
Cited by 10 | Viewed by 3830
Abstract
Commissioned to ALES spa by the Ministry of Culture (MiC), the e-Archeo project was born with the intention of enhancing and promoting knowledge of some Italian archaeological sites with a considerable narrative potential that has not yet been fully expressed. The main principle [...] Read more.
Commissioned to ALES spa by the Ministry of Culture (MiC), the e-Archeo project was born with the intention of enhancing and promoting knowledge of some Italian archaeological sites with a considerable narrative potential that has not yet been fully expressed. The main principle that guided the choice of the sites and the contents was of illustrating the various cultures and types of settlements present in the Italian territory. Eight sites were chosen, spread across the national territory from north to south, founded by Etruscans, Greeks, Phoenicians, natives and Romans. e-Archeo has developed multimedia, integrated and multi-channel solutions for various uses and types of audiences, adopting both scientific and narrative and emotional languages. Particular attention was paid to multimedia accessibility, technological sustainability and open science. The e-Archeo project was born from a strong synergy between public entities, research bodies and private industries thanks to the collaboration of MiC and ALES with the CNR ISPC, 10 Italian Universities, 12 Creative Industries and the Italian National Television (RAI). This exceptional and unusual condition made it possible to realise all the project’s high-quality contents and several outputs in only one and a half years. Full article
(This article belongs to the Special Issue Advanced Virtual Reality Technologies and Their Applications)
Show Figures

Figure 1

18 pages, 2904 KiB  
Article
M3 Receptor Pathway Stimulates Rapid Transcription of the CB1 Receptor Activation through Calcium Signalling and the CNR1 Gene Promoter
by Pietro Marini, Philip Cowie, Ahmet Ayar, Guy S. Bewick, John Barrow, Roger G. Pertwee, Alasdair MacKenzie and Paolo Tucci
Int. J. Mol. Sci. 2023, 24(2), 1308; https://doi.org/10.3390/ijms24021308 - 9 Jan 2023
Cited by 3 | Viewed by 2700
Abstract
In this study, we have investigated a possible mechanism that enables CB1/M3 receptor cross-talk, using SH-SY5Y cells as a model system. Our results show that M3 receptor activation initiates signaling that rapidly upregulates the CNR1 gene, resulting in a [...] Read more.
In this study, we have investigated a possible mechanism that enables CB1/M3 receptor cross-talk, using SH-SY5Y cells as a model system. Our results show that M3 receptor activation initiates signaling that rapidly upregulates the CNR1 gene, resulting in a greatly potentiated CB1 receptor response to agonists. Calcium homeostasis plays an essential intermediary role in this functional CB1/M3 receptor cross-talk. We show that M3 receptor-triggered calcium release greatly increases CB1 receptor expression via both transcriptional and translational activity, by enhancing CNR1 promoter activity. The co-expression of M3 and CB1 receptors in brain areas such as the nucleus accumbens and amygdala support the hypothesis that the altered synaptic plasticity observed after exposure to cannabinoids involves cross-talk with the M3 receptor subtype. In this context, M3 receptors and their interaction with the cannabinoid system at the transcriptional level represent a potential pharmacogenomic target not only for the develop of new drugs for addressing addiction and tolerance. but also to understand the mechanisms underpinning response stratification to cannabinoids. Full article
Show Figures

Figure 1

23 pages, 123709 KiB  
Article
The Church of S. Maria Delle Palate in Tusa (Messina, Italy): Digitization and Diagnostics for a New Model of Enjoyment
by Dario Giuffrida, Sara Bonanno, Francesco Parrotta, Viviana Mollica Nardo, Gianfranco Anastasio, Maria Luisa Saladino, Francesco Armetta and Rosina Celeste Ponterio
Remote Sens. 2022, 14(6), 1490; https://doi.org/10.3390/rs14061490 - 19 Mar 2022
Cited by 7 | Viewed by 4069
Abstract
Cultural places represent the tangible part of the identity and historical heritage of a civilization as well as an extraordinary driving force for the economic development of a country. Within its huge asset, Italy counts a wide number of archaeological sites and monuments [...] Read more.
Cultural places represent the tangible part of the identity and historical heritage of a civilization as well as an extraordinary driving force for the economic development of a country. Within its huge asset, Italy counts a wide number of archaeological sites and monuments which, despite their cultural value, are totally cut off from the most important cultural routes. This paper aims to demonstrate how specific actions of digitization can contribute to valorize (restoring a cultural value) ‘marginal’ landmarks, promoting their knowledge and inclusion. The case study described is represented by the Church of “Santa Maria delle Palate”, located inside the well-known Archaeological Park of Halaesa Arconidea (Tusa, ME). The church, built in 1551 and subject to several renovations throughout the centuries, has been investigated as part of an interdisciplinary training and skill transfer project carried out by a CNR-IPCF research team. During the activities, the group of trainees approached a multi-analytic method for the study of many Sicilian places using different techniques such as laser scanning, photogrammetry, thermography and spectroscopy and collecting a large amount of information and data. In 2019, the building in question was the object of a complete architectural survey in order to obtain an accurate digital replica; moreover, the wall painting representing St. Francis, preserved in the southern nave, was investigated through non-invasive investigations (IR-imaging, XRF and Raman spectrometry) with the intention of collecting information about its state of preservation and nature of pigments used and help the restoration work, which would have been carried out in the following months. The result of the work is a combined “digital archive” useful not only for the purposes of conservation, monitoring and dissemination, but as a container of information enjoyable at different levels of depth. In addition to the scientific outcomes achieved for the study of the painting, relevant from the historical and artistic point of view, we must underline the importance of the work for the implementation of a web-based platform where expert and inexpert users can virtually access the church virtual tour and search for specialized contents (e.g., measures, analyzes results). Media such as this are finally demonstrated to be able to promote the inclusion (e.g., for people unable to reach the place or with reducing mobility) and accessibility to cultural places during ordinary (maintenance, closure) or extraordinary events (pandemic). Full article
Show Figures

Figure 1

22 pages, 2081 KiB  
Article
Botanically-Derived Δ9-Tetrahydrocannabinol and Cannabidiol, and Their 1:1 Combination, Modulate Toll-like Receptor 3 and 4 Signalling in Immune Cells from People with Multiple Sclerosis
by John-Mark Fitzpatrick, Becky Hackett, Lisa Costelloe, William Hind and Eric J. Downer
Molecules 2022, 27(6), 1763; https://doi.org/10.3390/molecules27061763 - 8 Mar 2022
Cited by 10 | Viewed by 4235
Abstract
The innate immune response to bacterial and viral molecules involves the coordinated production of cytokines, chemokines, and type I interferons (IFNs), which is orchestrated by toll-like receptors (TLRs). TLRs, and their intracellular signalling intermediates, are closely associated with multiple sclerosis (MS) pathogenesis. Recent [...] Read more.
The innate immune response to bacterial and viral molecules involves the coordinated production of cytokines, chemokines, and type I interferons (IFNs), which is orchestrated by toll-like receptors (TLRs). TLRs, and their intracellular signalling intermediates, are closely associated with multiple sclerosis (MS) pathogenesis. Recent data from our laboratory reported that the plant-derived cannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), regulate viral and bacterial inflammatory signalling pathways controlled by TLR3 and TLR4 in macrophages. The aim of this study was to assess the impact of THC and CBD, when delivered in isolation and in combination (1:1), on TLR3- and TLR4-dependent signalling in peripheral blood mononuclear cells (PBMCs) from people with MS (pwMS; n = 21) and healthy controls (HCs; n = 26). We employed the use of poly(I:C) and lipopolysaccharide (LPS) to induce viral TLR3 and bacterial TLR4 signalling, and PBMCs were pre-exposed to plant-derived highly purified THC (10 μM), CBD (10 μM), or a combination of both phytocannabinoids (1:1 ratio, 10:10 μM), prior to LPS/poly(I:C) exposure. TLR3 stimulation promoted the protein expression of the chemokine CXCL10 and the type I IFN-β in PBMCs from both cohorts. THC and CBD (delivered in 1:1 combination at 10 μM) attenuated TLR3-induced CXCL10 and IFN-β protein expression in PBMCs from pwMS and HCs, and this effect was not seen consistently when THC and CBD were delivered alone. In terms of LPS, TLR4 activation promoted TNF-α expression in PBMCs from both cohorts, and, interestingly, CBD when delivered alone at 10 μM, and in combination with THC (in 1:1 combination at 10 μM), exacerbated TLR4-induced TNF-α protein expression in PBMCs from pwMS and HCs. THC and CBD displayed no evidence of toxicity in primary PBMCs. No significant alteration in the relative expression of TLR3 and TLR4 mRNA, or components of the endocannabinoid system, including the cannabinoid receptor CB1 (encoded by CNR1 gene) and CB2 (encoded by CNR2 gene), and endocannabinoid metabolising enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGLL), was determined in PBMCs from pwMS versus HCs. Given their role in inflammation, TLRs are clinical targets, and data herein identify CBD and THC as TLR3 and TLR4 modulating drugs in primary immune cells in vitro. This offers insight on the cellular target(s) of phytocannabinoids in targeting inflammation in the context of MS. Full article
(This article belongs to the Special Issue High Times for Cannabinoid Research)
Show Figures

Figure 1

25 pages, 5046 KiB  
Article
Identification of Impacted Pathways and Transcriptomic Markers as Potential Mediators of Pulmonary Fibrosis in Transgenic Mice Expressing Human IGFBP5
by Xinh-Xinh Nguyen, Ludivine Renaud and Carol Feghali-Bostwick
Int. J. Mol. Sci. 2021, 22(22), 12609; https://doi.org/10.3390/ijms222212609 - 22 Nov 2021
Cited by 14 | Viewed by 4501
Abstract
Pulmonary fibrosis is a serious disease characterized by extracellular matrix (ECM) component overproduction and remodeling. Insulin-like growth factor-binding protein 5 (IGFBP5) is a conserved member of the IGFBP family of proteins that is overexpressed in fibrotic tissues and promotes fibrosis. We used RNA [...] Read more.
Pulmonary fibrosis is a serious disease characterized by extracellular matrix (ECM) component overproduction and remodeling. Insulin-like growth factor-binding protein 5 (IGFBP5) is a conserved member of the IGFBP family of proteins that is overexpressed in fibrotic tissues and promotes fibrosis. We used RNA sequencing (RNAseq) to identify differentially expressed genes (DEGs) between primary lung fibroblasts (pFBs) of homozygous (HOMO) transgenic mice expressing human IGFBP5 (hIGFBP5) and wild type mice (WT). The results of the differential expression analysis showed 2819 DEGs in hIGFBP5 pFBs. Functional enrichment analysis confirmed the pro-fibrotic character of IGFBP5 and revealed its impact on fundamental signaling pathways, including cytokine–cytokine receptor interaction, focal adhesion, AGE-RAGE signaling, calcium signaling, and neuroactive ligand-receptor interactions, to name a few. Noticeably, 7% of the DEGs in hIGFBP5-expressing pFBs are receptors and integrins. Furthermore, hub gene analysis revealed 12 hub genes including Fpr1, Bdkrb2, Mchr1, Nmur1, Cnr2, P2ry14, and Ptger3. Validation assays were performed to complement the RNAseq data. They confirmed significant differences in the levels of the corresponding proteins in cultured pFBs. Our study provides new insights into the molecular mechanism(s) of IGFBP5-associated pulmonary fibrosis through possible receptor interactions that drive fibrosis and tissue remodeling. Full article
Show Figures

Figure 1

14 pages, 1098 KiB  
Article
Maternal High-Fat Diet Modulates Cnr1 Gene Expression in Male Rat Offspring
by Dawid Gawliński, Kinga Gawlińska and Irena Smaga
Nutrients 2021, 13(8), 2885; https://doi.org/10.3390/nu13082885 - 22 Aug 2021
Cited by 16 | Viewed by 4464
Abstract
In recent years, strong evidence has emerged that exposure to a maternal high-fat diet (HFD) provokes changes in the structure, function, and development of the offspring’s brain and may induce several neurodevelopmental and psychiatric illnesses. The aims of this study were to evaluate [...] Read more.
In recent years, strong evidence has emerged that exposure to a maternal high-fat diet (HFD) provokes changes in the structure, function, and development of the offspring’s brain and may induce several neurodevelopmental and psychiatric illnesses. The aims of this study were to evaluate the effects of a maternal HFD during pregnancy and lactation on depressive-like behavior and Cnr1 gene expression (encoding the CB1 receptor) in brain structures of rat offspring and to investigate the epigenetic mechanism involved in this gene expression. We found that a maternal HFD during pregnancy and lactation induced a depressive-like phenotype at postnatal days (PNDs) 28 and 63. We found that a maternal HFD decreased the Cnr1 mRNA levels in the prefrontal cortex with the increased levels of miR-212-5p and methylation of CpG islands at the Cnr1 promoter and reduced the level of Cnr1 gene expression in the dorsal striatum with an increased level of miR-154-3p in adolescent male offspring. A contrasting effect of a maternal HFD was observed in the hippocampus, where upregulation of Cnr1 gene expression was accompanied by a decrease of miR-154-3p (at PNDs 28 and 63) and miR-212-5p (at PND 63) expression and methylation of CpG islands at the Cnr1 promoter in male offspring. In summary, we showed that a maternal HFD during pregnancy and lactation triggered several epigenetic mechanisms in the brains of rat offspring, which may be related to long-lasting alterations in the next generation and produce behavioral changes in offspring, including a depressive-like phenotype. Full article
(This article belongs to the Special Issue Fat Diets and Metabolic Diseases)
Show Figures

Graphical abstract

16 pages, 4964 KiB  
Article
Hourly Elemental Composition and Source Identification by Positive Matrix Factorization (PMF) of Fine and Coarse Particulate Matter in the High Polluted Industrial Area of Taranto (Italy)
by Franco Lucarelli, Giulia Calzolai, Massimo Chiari, Fabio Giardi, Caroline Czelusniak and Silvia Nava
Atmosphere 2020, 11(4), 419; https://doi.org/10.3390/atmos11040419 - 21 Apr 2020
Cited by 21 | Viewed by 3626
Abstract
In the framework of an extensive environmental investigation, promoted by the Italian Health Ministry, the ISPESL (Istituto Superiore per la Prevenzione e la Sicurezza del Lavoro) and the CNR (Consiglio Nazionale della Ricerca), aerosol samples were collected in Taranto (one of the most [...] Read more.
In the framework of an extensive environmental investigation, promoted by the Italian Health Ministry, the ISPESL (Istituto Superiore per la Prevenzione e la Sicurezza del Lavoro) and the CNR (Consiglio Nazionale della Ricerca), aerosol samples were collected in Taranto (one of the most industrialized towns in southern Italy) with high time resolution and analyzed by PIXE. The samples were collected in two periods (February–March and June 2004) and in two different sites: an urban district close to the industrial area and a small town 7 km N-NW of Taranto. The use of ‘‘streaker’’ samplers (by PIXE International Corporation) allowed for the simultaneous collection of the fine (<2.5 μm) and coarse (2.5–10 μm) fractions of particulate matter. PIXE analyses were performed with a 3 MeV proton beam from the 3 MV Tandetron accelerator of the INFN-LABEC laboratory. Particulate emissions as well as their atmospheric transport and dilution processes change within a few hours, but most of the results in literature are limited to daily time resolution of the input samples that are not suitable for tracking these rapid changes. Furthermore, since source apportionment receptor models need a series of samples containing material from the same set of sources in different proportions, a higher variability between samples can be obtained by increasing the temporal resolution rather than with samples integrated over a longer time. In this study, the high time resolution of the adopted approach allowed us to follow in detail the changes in the aerosol elemental composition due to both the time evolution of the industrial emissions and the time changes in meteorological conditions, and thus, transport pathways. Moreover, the location of the sampling sites, along the prevalent wind direction and in opposite positions with respect to the industrial site, allowed us to follow the impact of the industrial plume as a function of wind direction. Positive matrix factorization (PMF) analysis on the elemental hourly concentrations identified eight sources in the fine fraction and six sources in the coarse one. Full article
(This article belongs to the Special Issue Recent Advances of Air Pollution Studies in Italy)
Show Figures

Figure 1

15 pages, 264 KiB  
Article
The Relationship between Selected CNR1, MC4R, LEP, FTO and VDR Gene Polymorphisms and Several Basic Toxicological Parameters Among Persons Occupationally Exposed to Arsenic, Cadmium and Lead
by Tomasz Matys, Anna Szymańska-Chabowska, Katarzyna Bogunia-Kubik, Beata Smyk, Małgorzata Kamińska, Grzegorz Mazur, Rafał Poręba and Paweł Gać
J. Clin. Med. 2020, 9(4), 1040; https://doi.org/10.3390/jcm9041040 - 7 Apr 2020
Cited by 3 | Viewed by 2355
Abstract
The purpose of this work was to assess the influence of selected CNR1, MC4R, LEP, FTO and VDR FOKI gene polymorphisms on blood and urine concentration markers of lead, cadmium and arsenic in a population directly exposed to these metals. Eighty-five people exposed [...] Read more.
The purpose of this work was to assess the influence of selected CNR1, MC4R, LEP, FTO and VDR FOKI gene polymorphisms on blood and urine concentration markers of lead, cadmium and arsenic in a population directly exposed to these metals. Eighty-five people exposed to lead, arsenic and cadmium were qualified to take part in the study. Standard urine samples and 25 mL of venous blood from each worker were collected to assay basic laboratory and toxicological markers as well as selected single nucleotide polymorphisms (SNPs) within CNR1—cannabinoid receptor 1 gene (rs806368, rs806381, rs1049353, rs12720071), MC4R—melanocortin 4 receptor gene (rs17782313), LEP—leptin promoter gene (rs7799039), FTO—alpha-ketoglutarate-dependent dioxygenase gene (rs9939609) and VDR—vitamin D receptor (rs10735810) genes. It appeared that, except for the MC4R SNP, all the other polymorphisms were found to be associated with various laboratory parameters. Arsenic concentration in urine was associated with all four CNR1 and LEP SNPs, while cadmium concentration in blood was affected by the VDR polymorphism. Moreover, some significant relationships were also observed between CNR1 rs1049353 and FTO rs9939609 gene variants and markers of lead exposure. These results imply SNPs within genes coding for proteins involved in development of metabolic syndrome may be of prognostic value for persons directly exposed to lead, cadmium and arsenic. Full article
(This article belongs to the Special Issue Climate, Environment, and Disease)
17 pages, 2265 KiB  
Review
Bond Forming Reactions Involving Isocyanides at Diiron Complexes
by Rita Mazzoni, Fabio Marchetti, Andrea Cingolani and Valerio Zanotti
Inorganics 2019, 7(3), 25; https://doi.org/10.3390/inorganics7030025 - 26 Feb 2019
Cited by 16 | Viewed by 5106
Abstract
The versatility of isocyanides (CNR) in organic chemistry has been tremendously enhanced by continuous advancement in transition metal catalysis. On the other hand, the urgent need for new and more sustainable synthetic strategies based on abundant and environmental-friendly metals are shifting the focus [...] Read more.
The versatility of isocyanides (CNR) in organic chemistry has been tremendously enhanced by continuous advancement in transition metal catalysis. On the other hand, the urgent need for new and more sustainable synthetic strategies based on abundant and environmental-friendly metals are shifting the focus towards iron-assisted or iron-catalyzed reactions. Diiron complexes, taking advantage of peculiar activation modes and reaction profiles associated with multisite coordination, have the potential to compensate the lower activity of Fe compared to other transition metals, in order to activate CNR ligands. A number of reactions reported in the literature shows that diiron organometallic complexes can effectively assist and promote most of the “classic” isocyanide transformations, including CNR conversion into carbyne and carbene ligands, CNR insertion, and coupling reactions with other active molecular fragments in a cascade sequence. The aim is to evidence the potential offered by diiron coordination of isocyanides for the development of new and more sustainable synthetic strategies for the construction of complex molecular architectures. Full article
(This article belongs to the Special Issue Binuclear Complexes)
Show Figures

Scheme 1

Back to TopTop