Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = CNG stations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 6658 KiB  
Article
Dynamic Modeling of a Compressed Natural Gas Refueling Station and Multi-Objective Optimization via Gray Relational Analysis Method
by Fatih Özcan and Muhsin Kılıç
Appl. Sci. 2025, 15(9), 4908; https://doi.org/10.3390/app15094908 - 28 Apr 2025
Viewed by 567
Abstract
Compressed natural gas (CNG) refueling stations operate under highly dynamic thermodynamic conditions, requiring accurate modeling and optimization to ensure efficient performance. In this study, a dynamic simulation model of a CNG station was developed using MATLAB-SIMULINK, including detailed subsystems for multi-stage compression, cascade [...] Read more.
Compressed natural gas (CNG) refueling stations operate under highly dynamic thermodynamic conditions, requiring accurate modeling and optimization to ensure efficient performance. In this study, a dynamic simulation model of a CNG station was developed using MATLAB-SIMULINK, including detailed subsystems for multi-stage compression, cascade storage, and vehicle tank filling. Real gas effects were incorporated to improve prediction accuracy of the pressure, temperature, and mass flow rate variations during fast filling. The model was validated against experimental data, showing good agreement in both pressure rise and flow rate evolution. A two-stage multi-objective optimization approach was applied using Taguchi experimental design and gray relational analysis (GRA). In the first stage, storage pressures were optimized to maximize the number of vehicles filled and gas mass delivered, while minimizing compressor-specific work. The second stage focused on optimizing the volume distribution among the low, medium, and high-pressure tanks. The combined optimization led to a 12.33% reduction in compressor-specific energy consumption with minimal change in refueling throughput. These results highlight the critical influence of pressure levels and volume ratios in cascade storage systems on station performance. The presented methodology provides a systematic framework for the analysis and optimization of transient operating conditions in CNG infrastructure. Full article
Show Figures

Figure 1

28 pages, 3060 KiB  
Article
Bilevel Optimal Economic Dispatch of CNG Main Station Considering Demand Response
by Yongliang Liang, Zhiqi Li, Yuchuan Li, Shuwen Leng, Hongmei Cao and Kejun Li
Energies 2023, 16(7), 3080; https://doi.org/10.3390/en16073080 - 28 Mar 2023
Cited by 3 | Viewed by 1912
Abstract
Compressed natural gas (CNG) main stations are critical components of the urban energy infrastructure for CNG distribution. Due to its high electrification and significant power consumption, researching the economic operation of the CNG main station in demand response (DR)-based electricity pricing environments is [...] Read more.
Compressed natural gas (CNG) main stations are critical components of the urban energy infrastructure for CNG distribution. Due to its high electrification and significant power consumption, researching the economic operation of the CNG main station in demand response (DR)-based electricity pricing environments is crucial. In this paper, the dehydration process is considered in the CNG main station energy consumption model to enhance its participation in DR. A bilevel economic dispatch model for the CNG main station is proposed, considering critical peak pricing. The upper-level and lower-level models represent the energy cost minimization problems of the pre-system and rear-system, respectively, with safety operation constraints. The bilevel programming model is solved using a genetic algorithm combined with a bilevel programming method, which has better efficiency and convergence. The proposed optimization scheme has better control performance and stability, reduces the daily electricity cost by approximately 21.04%, and decreases the compressor switching frequency by 50.00% without changing the CNG filling demand, thus significantly extending the compressor’s service life. Moreover, the average comprehensive power cost of processing one unit of CNG reduces 20.62%. Full article
(This article belongs to the Special Issue Development Trend Analysis of Power Distribution Systems)
Show Figures

Figure 1

22 pages, 1106 KiB  
Review
Low-Emission Alternative Energy for Transport in the EU: State of Play of Research and Innovation
by Alejandro Ortega, Konstantinos Gkoumas, Anastasios Tsakalidis and Ferenc Pekár
Energies 2021, 14(22), 7764; https://doi.org/10.3390/en14227764 - 19 Nov 2021
Cited by 20 | Viewed by 3796
Abstract
The 2030 Climate target plan of the European Commission (EC) establishes a greenhouse gases (GHG) emissions reduction target of at least 55% by 2030, compared to 1990. It highlights that all transport modes—road, rail, aviation and waterborne—will have to contribute to this aim. [...] Read more.
The 2030 Climate target plan of the European Commission (EC) establishes a greenhouse gases (GHG) emissions reduction target of at least 55% by 2030, compared to 1990. It highlights that all transport modes—road, rail, aviation and waterborne—will have to contribute to this aim. A smart combination of vehicle/vessel/aircraft efficiency improvements, as well as fuel mix changes, are among the measures that can reduce GHG emissions, reducing at the same time noise pollution and improving air quality. This research provides a comprehensive analysis of recent research and innovation in low-emission alternative energy for transport (excluding hydrogen) in selected European Union (EU)-funded projects. It considers the latest developments in the field, identifying relevant researched technologies by fuel type and their development phase. The results show that liquefied natural gas (LNG) refueling stations, followed by biofuels for road transport and alternative aviation fuels, are among the researched technologies with the highest investments. Methane-based fuels (e.g., compressed natural gas (CNG), LNG) have received the greatest attention concerning the number of projects and the level of funding. By contrast, liquefied petroleum gas (LPG) only has four ongoing projects. Alcohols, esters and ethers, and synthetic paraffinic and aromatic fuels (SPF) are in between. So far, road transport has the highest use of alternative fuels in the transport sector. Despite the financial support from the EU, advances have yet to materialize, suggesting that EU transport decarbonization policies should not consider a radical or sudden change, and therefore, transition periods are critical. It is also noteworthy that there is no silver bullet solution to decarbonization and thus the right use of the various alternative fuels available will be key. Full article
Show Figures

Figure 1

15 pages, 2298 KiB  
Article
Hybrid Hydrogen–PV–e-Mobility Industrial Energy Community Concept—A Technology Feasibility Study
by Istvan Vokony
Clean Technol. 2021, 3(4), 670-684; https://doi.org/10.3390/cleantechnol3040040 - 22 Sep 2021
Cited by 1 | Viewed by 3608
Abstract
As renewable energy sources are spreading, the problems of energy usage, transport and storage arise more frequently. In order that the performance of energy producing units from renewable sources, which have a relatively low efficiency, should not be decreased further, and to promote [...] Read more.
As renewable energy sources are spreading, the problems of energy usage, transport and storage arise more frequently. In order that the performance of energy producing units from renewable sources, which have a relatively low efficiency, should not be decreased further, and to promote sustainable energy consumption solutions, a living lab conception was elaborated in this project. At the pilot site, the produced energy (by PV panels, gas turbines/engines) is stored in numerous ways, including hydrogen production. The following uses of hydrogen are explored: (i) feeding it into the national natural gas network; (ii) selling it at a H-CNG (compressed natural gas) filling station; (iii) using it in fuel cells to produce electricity. This article introduces the overall implementation plan, which can serve as a model for the hybrid energy communities to be established in the future. Full article
(This article belongs to the Special Issue Hydrogen Economy Technologies)
Show Figures

Figure 1

21 pages, 59770 KiB  
Article
Impact of Compressed Natural Gas (CNG) Fuel Systems in Small Engine Wood Chippers on Exhaust Emissions and Fuel Consumption
by Łukasz Warguła, Mateusz Kukla, Piotr Lijewski, Michał Dobrzyński and Filip Markiewicz
Energies 2020, 13(24), 6709; https://doi.org/10.3390/en13246709 - 19 Dec 2020
Cited by 50 | Viewed by 6661
Abstract
The projected increase in the availability of gaseous fuels by growing popularity of household natural gas (NG) filling stations and the increase in the production of gaseous biogas-derived fuels is conducive to an increase in the use of NG fuel. Currently, natural gas [...] Read more.
The projected increase in the availability of gaseous fuels by growing popularity of household natural gas (NG) filling stations and the increase in the production of gaseous biogas-derived fuels is conducive to an increase in the use of NG fuel. Currently, natural gas in various forms (compressed natural gas (CNG), liquefied natural gas (LNG)) is popular in maritime, rail and road transport. A new direction of natural gas application may be non-road mobile machines powered by a small spark-ignition engine (SI). The use of these engines in the wood chippers can cause the reduction of machine costs and emissions of harmful exhaust gases. In addition, plant material chippers intended for composting in bio-gas plants can be driven by the gas they are used to produce. The biogas can be purified to bio-methane to meet natural gas quality standards. The article presents the design of the natural gas supply system, which is an upgrade of the Lifan GX 390 combustion engine spark ignition engine (Four-stroke, OHV (over head valve) with a maximum power of 9.56 kW), which is a common representative of small gasoline engines. The engine is mounted in a cylindrical chipper designed for shredding branches with a maximum diameter of up to 100 mm, which is a typical machine used for cleaning work in urban areas. The engine powered by CNG and traditionally gasoline has been tested in real working conditions, when shredding cherry plum (Prunus cerasifera Ehrh. Beitr. Naturk. 4:17. 1789 (Gartenkalender4:189–204. 1784)). Their diameter was ca. 80 mm, 3-metere-long, and humidity content ca. 25%. The systems were tested under the same actual operating conditions, the average power generated by the drives during shredding is about 0.69 kW. Based on the recorded results, it was found that the CNG-fuelled engine was characterized by nitrogen oxides (NOx) emissions higher by 45%. The other effects of CNG were a reduction in carbon dioxide (CO2), carbon monoxide (CO) and hydrocarbon (HC) emissions of about 81%, 26% and 57%, respectively. Additionally, the use of CNG reduced fuel consumption by 31% and hourly estimated machine operating costs resulting from fuel costs by 53% (for average fuel price in Poland: gasoline: 0.99 EUR/L and CNG: 0.71 EUR/m3 on 08 November 2020). The modernization performed by the authors ensured the work of the drive unit during shredding, closer to the value of stoichiometric mixtures. The average (AVG) value of the air fuel ratio (AFR) for CNG was enriched by 1.2% (AVG AFR was 17), while for the gasoline engine the mixture was more enriched by 4.8% (AVG AFR was 14). The operation of spark-ignition (SI) combustion engines is most advantageous when burning stoichiometric mixtures due to the cooperation with exhaust aftertreatment systems (e.g., three-function catalytic converter). A system powered by CNG may be beneficial in systems adapting to operating conditions, used in low-power shredding machines, whose problem is increased HC emissions, and CNG combustion may reduce them. The developed system does not exceed the emission standards applicable in the European Union. For CO emissions expressed in g/kWh, it was about 95% lower than the permissible value, and HC + NOx emissions were 85% lower. This suggests that the use of the fuel in question may contribute to tightening up the permissible emission regulations for non-road machinery. Full article
Show Figures

Figure 1

23 pages, 23802 KiB  
Article
Multi-Period Planning of Hydrogen Supply Network for Refuelling Hydrogen Fuel Cell Vehicles in Urban Areas
by Sungmi Bae, Eunhan Lee and Jinil Han
Sustainability 2020, 12(10), 4114; https://doi.org/10.3390/su12104114 - 18 May 2020
Cited by 32 | Viewed by 5464
Abstract
The hydrogen economy refers to an economic and industrial structure that uses hydrogen as its main energy source, replacing traditional fossil-fuel-based energy systems. In particular, the widespread adoption of hydrogen fuel cell vehicles (HFCVs) is one of the key factors enabling a hydrogen [...] Read more.
The hydrogen economy refers to an economic and industrial structure that uses hydrogen as its main energy source, replacing traditional fossil-fuel-based energy systems. In particular, the widespread adoption of hydrogen fuel cell vehicles (HFCVs) is one of the key factors enabling a hydrogen economy, and aggressive investment in hydrogen refuelling infrastructure is essential to make large-scale adoption of HFCVs possible. In this study, we address the problem of effectively designing a hydrogen supply network for refuelling HFCVs in urban areas relatively far from a large hydrogen production site, such as a petrochemical complex. In these urban areas where mass supply of hydrogen is not possible, hydrogen can be supplied by reforming city gas. In this case, building distributed hydrogen production bases that extract large amounts of hydrogen from liquefied petroleum gas (LPG) or compressed natural gas (CNG) and then supply hydrogen to nearby hydrogen stations may be a cost-effective option for establishing a hydrogen refuelling infrastructure in the early stage of the hydrogen economy. Therefore, an optimization model is proposed for effectively deciding when and where to build hydrogen production bases and hydrogen refuelling stations in an urban area. Then, a case study of the southeastern area of Seoul, known as a commercial and residential center, is discussed. A variety of scenarios for the design parameters of the hydrogen supply network are analyzed based on the target of the adoption of HFCVs in Seoul by 2030. The proposed optimization model can be effectively used for determining the time and sites for building hydrogen production bases and hydrogen refuelling stations. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

23 pages, 5629 KiB  
Article
Research on Urban Bearing Capacity of Gas Supply Stations
by Xin Tan, Penglin Zhang, Junqiang Wang and Jiewen Hong
Sustainability 2019, 11(24), 6971; https://doi.org/10.3390/su11246971 - 6 Dec 2019
Cited by 5 | Viewed by 2585
Abstract
Given the continuous optimisation of the energy structure, the proportion of natural gas consumption in China increases annually, the urban gas pipeline network continues to extend outward, and the supply range continues to expand. Although an increasing number of users can use natural [...] Read more.
Given the continuous optimisation of the energy structure, the proportion of natural gas consumption in China increases annually, the urban gas pipeline network continues to extend outward, and the supply range continues to expand. Although an increasing number of users can use natural gas, the coverage of the natural gas pipeline network remains low in some areas in China. A “point supply” pattern, which provides gas through liquefied natural gas (LNG), compressed natural gas (CNG) and liquefied petroleum gas (LPG) supply stations, has been developed to solve the problem of gas unavailability in areas not covered by the pipeline network. This pattern flexibly supplies gas, whose cost is low and market determined. Thus, the substantial development of these gas supply stations has been promoted. This pattern will continue to play an important role in the future. However, no unified standards for the construction of these gas supply stations have been provided, resulting in various problems, such as unreasonable location, inadequate management, potential risk and imbalance between supply and demand. On the basis of these concerns, this research attempts to study the urban bearing capacity of gas supply stations, provide some new ideas for the construction and planning of urban gas supply stations, and help promote sustainable urban development. The pressure–state–response model is adjusted to the pressure–state–capability model, which is used as a basis for proposing an evaluation index system and calculation models for the comprehensive evaluation of the urban bearing capacity of gas supply stations on city and country scales. The proposed methodology is used in a case study of urban agglomerations in the Yangtze River Delta. Full article
Show Figures

Figure 1

15 pages, 4763 KiB  
Article
Experimental Investigations and Operational Performance Analysis on Compressed Natural Gas Home Refueling System (CNG-HRS)
by Szymon Kuczyński, Krystian Liszka, Mariusz Łaciak, Andrzej Olijnyk and Adam Szurlej
Energies 2019, 12(23), 4511; https://doi.org/10.3390/en12234511 - 27 Nov 2019
Cited by 11 | Viewed by 3676
Abstract
Compressed natural gas can be globally used as fuel for combustion engines to reduce CO2 emission without negative impact on economy. Lack of refueling infrastructure is one of reason why NGVs shares only ~1.6% in total vehicle fleet worldwide. Operational tests of [...] Read more.
Compressed natural gas can be globally used as fuel for combustion engines to reduce CO2 emission without negative impact on economy. Lack of refueling infrastructure is one of reason why NGVs shares only ~1.6% in total vehicle fleet worldwide. Operational tests of CNG home fast refueling station were performed to investigate: (i) natural gas demand, m3/h; (ii) energy consumption, kW/h; and (iii) total cost of one refueling. Two scenarios for operational tests were developed to monitor and collect data. Safety tests for leakage, fill pressure change, interrupted power and gas supply, temperature, and unexpected failures were performed. This article present results of operational and safety tests of compressed natural gas home, fast refueling station (CNG-HRS) based on one stage hydraulic compressor. The average duration of HRS full operating cycle was 7 h and 32 min (buffering and refueling mode). The average electric energy and natural gas consumption for one full cycle was 5.52 kWh and 7.5 m3, respectively. Safety tests results for leakage, fill pressure change, interrupted power and gas supply, temperature and unexpected failures demonstrated valid operation of HRS which positively affects the general safety level. To compare HRS with large scale CNG refueling infrastructure the costs of 1 Nm3 CNG was estimated for both solutions. Results shows that home refueling appliance might be become a solution for filling the gap in CNG refueling infrastructure. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Graphical abstract

27 pages, 6134 KiB  
Article
A Model of Optimal Gas Supply to a Set of Distributed Consumers
by Markéta Mikolajková-Alifov, Frank Pettersson, Margareta Björklund-Sänkiaho and Henrik Saxén
Energies 2019, 12(3), 351; https://doi.org/10.3390/en12030351 - 23 Jan 2019
Cited by 11 | Viewed by 4332
Abstract
A better design of gas supply chains may lead to a more efficient use of locally available resources, cost savings, higher energy efficiency and lower impact on the environment. In optimizing the supply chain of liquefied natural gas (LNG), compressed natural gas (CNG) [...] Read more.
A better design of gas supply chains may lead to a more efficient use of locally available resources, cost savings, higher energy efficiency and lower impact on the environment. In optimizing the supply chain of liquefied natural gas (LNG), compressed natural gas (CNG) or biogas for smaller regions, the task is to find the best supplier and the most efficient way to transport the gas to the customers to cover their demands, including the design of pipeline networks, truck transportation and storage systems. The analysis also has to consider supporting facilities, such as gasification units, truck loading lines and CNG tanking and filling stations. In this work a mathematical model of a gas supply chain is developed, where gas may be supplied by pipeline, as compressed gas in containers or as LNG by tank trucks, with the goal to find the solution that corresponds to lowest overall costs. In order to efficiently solve the combinatorial optimization problem, it is linearized and tacked by mixed integer linear programming. The resulting model is flexible and can easily be adapted to tackle local supply chain problems with multiple gas sources and distributed consumers of very different energy demands. The model is illustrated by applying it on a local gas distribution problem in western Finland. The dependence of the optimal supply chain on the conditions is demonstrated by a sensitivity analysis, which reveals how the model can be used to evaluate different aspects of the resulting supply chains. Full article
Show Figures

Figure 1

8 pages, 12155 KiB  
Communication
Atmospheric Neutrino Search in the ICARUS T600 Detector
by Christian Farnese
Universe 2019, 5(1), 17; https://doi.org/10.3390/universe5010017 - 9 Jan 2019
Cited by 4 | Viewed by 2618
Abstract
The 760-ton liquid argon ICARUS T600 detector performed a successful three-year physics run at the underground LNGS laboratories, studying in particular neutrino oscillations with the CNGS neutrino beam from CERN. This detector has been moved in 2017 to Fermilab after a significant overhauling [...] Read more.
The 760-ton liquid argon ICARUS T600 detector performed a successful three-year physics run at the underground LNGS laboratories, studying in particular neutrino oscillations with the CNGS neutrino beam from CERN. This detector has been moved in 2017 to Fermilab after a significant overhauling and will be exposed soon to the Booster Neutrino Beam acting as the far station to search for sterile neutrinos within the SBN program. The contribution addresses the developed methods and the results of an analysis to identify and reconstruct atmospheric neutrino interactions collected by ICARUS T600 in the underground run at LNGS. Despite the limited statistics, this search demonstrates the excellent quality of the detector reconstruction and the feasibility of an automatic search for the electron neutrino CC interactions in the sub-GeV range, as required for the study of the BNB neutrinos at FNAL. Full article
Show Figures

Figure 1

18 pages, 2614 KiB  
Article
Driver Use and Perceptions of Refueling Stations Near Freeways in a Developing Infrastructure for Alternative Fuel Vehicles
by Scott Kelley
Soc. Sci. 2018, 7(11), 242; https://doi.org/10.3390/socsci7110242 - 19 Nov 2018
Cited by 8 | Viewed by 3266
Abstract
There is growing agreement that refueling station location plans that aim to encourage public adoption of alternative fuel vehicles (AFVs) should include sites near freeways in urban areas. Little is known, though, about the refueling behavior of early AFV adopters in these locations, [...] Read more.
There is growing agreement that refueling station location plans that aim to encourage public adoption of alternative fuel vehicles (AFVs) should include sites near freeways in urban areas. Little is known, though, about the refueling behavior of early AFV adopters in these locations, which can involve travel on complex and congested roadways. To address this, an intercept travel survey collected data from 158 drivers of compressed natural gas (CNG) vehicles who refueled at CNG stations near freeways in greater Los Angeles, California. Results show that these stations met refueling demand from across the majority of the metropolitan area, and the distribution of local and distant refueling demand was consistent except for the downtown station. Drivers also considered these stations to be safe and accessible. Nearly half of drivers did not include another local stop in conjunction with their refueling trip that required leaving and returning to the freeway. These respondents refueled on longer trips with lower fuel tank levels, while refueling at the station that minimized deviation. Refueling downtown negatively influenced refueling in this manner. These findings should be considered when recommending station sites near freeways in future AFV infrastructure plans. Full article
Show Figures

Figure 1

17 pages, 2421 KiB  
Article
Total Cost of Ownership Based Economic Analysis of Diesel, CNG and Electric Bus Concepts for the Public Transport in Istanbul City
by Orhan Topal and İsmail Nakir
Energies 2018, 11(9), 2369; https://doi.org/10.3390/en11092369 - 7 Sep 2018
Cited by 68 | Viewed by 12155
Abstract
As across the world, in Turkey, several studies have been carried out by local government to use sustainable and 100% zero-emission public transport following increased public awareness. Increasing greenhouse gas emissions (GHG) due to transportation systems in the world make it necessary to [...] Read more.
As across the world, in Turkey, several studies have been carried out by local government to use sustainable and 100% zero-emission public transport following increased public awareness. Increasing greenhouse gas emissions (GHG) due to transportation systems in the world make it necessary to establish “zero-emission sustainable transportation systems” in Turkey. In this study, an economic analysis based on actual field data is presented for Istanbul Electricity, Tramway and Tunnel General Management (IETT) to seek the suitability of an electric bus concept for Istanbul conditions. For this purpose, a dynamic model based on the Total Cost of Ownership (TCO) from well to wheel has been proposed for the three groups of transportation, namely diesel, CNG (compressed natural gas) and electric buses. The data source used in the proposed approach is created by performing actual field performance tests for diesel, CNG and electric buses under real Istanbul road, time, and trip conditions. Afterwards, the Net Present Value (NPV), Internal Rate of Return (IRR), and Payback Period (PB) methods considering TCO values and updated unit prices are carried out for the investment versus profitability analyses to compare the different public bus concepts. The results show that the electric bus concept with a charging station depot achieving sustainable and zero-emission goals will be the driving force to advance the electric bus concept for Istanbul Public Transport. Full article
(This article belongs to the Special Issue Energy Markets and Economics)
Show Figures

Figure 1

21 pages, 279 KiB  
Article
Features of Compressed Natural Gas Physical Distribution: A Bulgarian Case Study
by Miroslav Stefanov
Logistics 2018, 2(3), 17; https://doi.org/10.3390/logistics2030017 - 1 Sep 2018
Cited by 1 | Viewed by 5231
Abstract
Building a competitive and resource-efficient transportation system involves the achievement of a number of ambitious goals. Two of the main instruments in the European transportation policy in this field address the significant reduction of GHG emissions and oil dependency in transportation. Alternative fuels [...] Read more.
Building a competitive and resource-efficient transportation system involves the achievement of a number of ambitious goals. Two of the main instruments in the European transportation policy in this field address the significant reduction of GHG emissions and oil dependency in transportation. Alternative fuels and compressed natural gas (CNG) in particular have huge potential for achieving these goals. The main problem that limits its wide utilization is related to the insufficient number of CNG refueling stations, especially along highways and routes from the core TEN-T network where no gas pipelines are available. Therefore, the aim of this research is to study a possible solution to building daughter CNG refueling stations which can be used as basis for formulating some recommendations for their accelerated construction along TEN-T core network as well as providing some initial knowledge to be used later for more comprehensive research. The research is based on the case-study method, which allows the presentation of the described best practice. The process of data collection is based on semi-structured interviews, study of normative documents, observation of daily sales and direct observations which were processed with the help of qualitative and quantitative methods for time series analysis—trend and seasonal component as well as descriptive statistics tools. Scientific literature and research as well as secondary data provided by international institutions are also used. Full article
(This article belongs to the Section Last Mile, E-Commerce and Sales Logistics)
14 pages, 1679 KiB  
Article
The Effects of Bus Ridership on Airborne Particulate Matter (PM10) Concentrations
by Jaeseok Her, Sungjin Park and Jae Seung Lee
Sustainability 2016, 8(7), 636; https://doi.org/10.3390/su8070636 - 5 Jul 2016
Cited by 5 | Viewed by 5621
Abstract
Air pollution caused by rapid urbanization and the increased use of private vehicles seriously affects citizens’ health. In order to alleviate air pollution, many cities have replaced diesel buses with compressed natural gas (CNG) buses that emit less exhaust gas. Urban planning strategies [...] Read more.
Air pollution caused by rapid urbanization and the increased use of private vehicles seriously affects citizens’ health. In order to alleviate air pollution, many cities have replaced diesel buses with compressed natural gas (CNG) buses that emit less exhaust gas. Urban planning strategies such as transit-oriented development (TOD) posit that reducing private vehicle use and increasing public transportation use would reduce air pollution levels. The present study examined the effects of bus ridership on airborne particulate matter (PM10) concentrations in the capital region of Korea. We interpolated the levels of PM10 from 128 air pollution monitoring stations, utilizing the Kriging method. Spatial regression models were used to estimate the impact of bus ridership on PM10 levels, controlling for physical environment attributes and socio-economic factors. The analysis identified that PM10 concentration levels tend to be lower in areas with greater bus ridership. This result implies that urban and transportation policies designed to promote public transportation may be effective strategies for reducing air pollution. Full article
Show Figures

Figure 1

7 pages, 308 KiB  
Article
Exposure Assessment of Diesel Bus Emissions
by Maricela Yip, Pierre Madl, Aaron Wiegand and Werner Hofmann
Int. J. Environ. Res. Public Health 2006, 3(4), 309-315; https://doi.org/10.3390/ijerph2006030038 - 31 Dec 2006
Cited by 10 | Viewed by 12082
Abstract
The goal of this study was to measure ultrafine particle concentrations with diameters less than 1 μm emitted by diesel buses and to assess resulting human exposure levels. The study was conducted at the Woolloongabba Busway station in Brisbane, Australia in the winter [...] Read more.
The goal of this study was to measure ultrafine particle concentrations with diameters less than 1 μm emitted by diesel buses and to assess resulting human exposure levels. The study was conducted at the Woolloongabba Busway station in Brisbane, Australia in the winter months of 2002 during which temperature inversions frequently occurred. Most buses that utilize the station are fuelled by diesel, the exhaust of which contains a significant quantity of particle matter. Passengers waiting at the station are exposed to these particles emitted from the buses. During the course of this study, passenger census was conducted, based on video surveillance, yielding person-by-person waiting time data. Furthermore, a bus census revealed accurate information about the total number of diesel versus Compressed Natural Gas (CNG) powered buses. Background (outside of the bus station) and platform measurements of ultrafine particulate number size distributions were made to determine ambient aerosol concentrations. Particle number exposure concentration ranges from 10 and 40 to 60% of bus related exhaust fumes. This changes dramatically when considering the particle mass exposure concentration, where most passengers are exposed to about 50 to 80% of exhaust fumes. The obtained data can be very significant for comparison with similar work of this type because it is shown in previous studies that exhaust emissions causes cancer in laboratory animals. It was assumed that significant differences between platform and background distributions were due to bus emissions which, combined with passenger waiting times, yielded an estimate of passenger exposure to ultrafine particles from diesel buses. From an exposure point of view, the Busway station analyzed resembles a street canyon. Although the detected exhaust particle concentration at the outbound platform is found to be in the picogram range, exposure increases with the time passengers spend on the platform along with their breathing frequency. Full article
Show Figures

Back to TopTop