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Abstract: Air pollution caused by rapid urbanization and the increased use of private vehicles
seriously affects citizens’ health. In order to alleviate air pollution, many cities have replaced diesel
buses with compressed natural gas (CNG) buses that emit less exhaust gas. Urban planning strategies
such as transit-oriented development (TOD) posit that reducing private vehicle use and increasing
public transportation use would reduce air pollution levels. The present study examined the effects
of bus ridership on airborne particulate matter (PM10) concentrations in the capital region of Korea.
We interpolated the levels of PM10 from 128 air pollution monitoring stations, utilizing the Kriging
method. Spatial regression models were used to estimate the impact of bus ridership on PM10 levels,
controlling for physical environment attributes and socio-economic factors. The analysis identified
that PM10 concentration levels tend to be lower in areas with greater bus ridership. This result
implies that urban and transportation policies designed to promote public transportation may be
effective strategies for reducing air pollution.

Keywords: airborne particulate matter; bus ridership; air pollution; urban form; spatial model

1. Introduction

Many cities suffer from air pollution caused by rapid urbanization and the increased use of
private vehicles [1,2]. Air pollution seriously affects citizens’ health and causes various respiratory
diseases [3–14]. According to the Organisation for Economic Co-operation and Development (OECD),
the number of deaths attributable to air pollution rose by about 4% from 2005–2010, while the economic
costs amounted to approximately 3.5 trillion US dollars annually [15]. The most commonly observed air
pollutants include particulate matters (PM10 and PM2.5), ground-level ozone (O3), carbon monoxide
(CO), sulfur oxides (SO2), nitrogen oxides (NO2), and lead. The sources of these air pollutants
include fuel combustion from vehicles, the burning of fossil fuels, industrial processes, and chemical
reactions [16–19]. Amongst these, transportation represents the primary source of air pollutants,
accounting for about half of all air pollutants emitted [20].

In Korea, urban air pollution is a serious problem, particularly in the capital region, where most
of the country’s population, industry, and traffic are concentrated. Between 2008 and 2010, the levels
of NO2 and PM10 in the capital region were higher than the OECD average [15]. While many factors
influence air pollution (e.g., population, land-use, terrain, and wind direction), exhaust gases from
vehicles (e.g., CO, NO2, and PM10) are the main contributor in the capital region [11,19]. In order to
alleviate air pollution, in 2000 the government of Seoul, as well as other local governments, began
replacing diesel buses with compressed natural gas (CNG) buses, which emit less exhaust gas [21].
By 2015, every bus in Seoul was running on CNG, while about 80% of buses in other cities in the
capital region had been converted [22].
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Urban planning strategies, such as transit-oriented development (TOD), posit that decreased
private vehicle use and increased public transportation use would reduce air pollution
levels [11,19,23–27]. TOD relies on a mixed-use residential and commercial design to maximize
access to public transport [23]. A TOD neighborhood typically has a center with a transportation
node (e.g., train station, metro station, or bus station) [23,28]. TOD projects generally encompass a
one-quarter to one-half mile radius from a transportation node; this is considered an appropriate scale
for pedestrians [29]. While many studies have investigated the effects of TOD, few have empirically
evaluated the impact of transit ridership on air pollution. Thus, in this study we examined the
relationship between bus ridership and airborne particulate matter (PM10) concentration levels,
interpolating the level of PM10 from 128 air pollution monitoring stations in the capital region of Korea
with the expected objective of providing valuable insight into effective and sustainable urban and
transportation polices for alleviating air pollution.

We used bus traffic as an explanatory variable and socio-economic factors as control variables.
We also utilized environmental variables that affect traffic and air flow—through street-canyon
effects—such as intersection density, building coverage ratio, and land-use diversity. These variables
controlled for the effects of urban geometry related to the dispersion of PM10 [30,31]. In addition,
approximately half of the PM10 observed in Korea originates from China and is transferred over the
Yellow Sea, which is located between China and Korea [32]. Thus, we used a variable that measures
the distances between the administrative districts in the region and the Yellow Sea to account for the
effect of air pollutants emitted from China, which is one of the most significant problems in Northeast
Asia [32,33]. The rest of this paper consists of a review of relevant theories and empirical studies, an
introduction to the study settings and methods, an analytical report of the results, and a discussion of
those results.

2. Background

Calthrope, an American architect and planner, was the first to propose TOD [23], which strives to
build public transportation and pedestrian-friendly environments to reduce automobile use, thereby
alleviating pollution, excessive energy consumption, and the destruction of green areas. Many cities
(especially American cities) have since incorporated the TOD concept, and many references to TOD
can be found in institutional reports and journals [23]. Some TOD-related studies have investigated
factors influencing travel behavior (e.g., private vehicle use, transit ridership, walking, and biking).
Focusing on bus ridership, Cascajo et al. [34] investigated variables that affected the use of this
transport method in Spanish cities. Their spatial error model detected significant effects of urban
surfaces, population density, and the length of the bus network on bus ridership, finding that the
distance travelled by bus per person decreased with the existence of a metro system in the city; thus,
these researchers concluded that bus and metro transportation systems are not complementary but
rather compete with each other.

Chakraborty and Mishra [35] attempted to establish the relationship between transit ridership and
land use variables using ordinary least-squares (OLS) and spatial error modelling (SEM), classifying the
state of Maryland, USA, into urban, suburban, and rural areas; their results showed that determinants
and coefficients varied across the three area types. These researchers also found that land-use type,
density, transit accessibility, and income strongly correlated with transit ridership. Thompson et al. [36]
analyzed the transit demand for work travel in Broward County, Florida, identifying the following
factors that improved transit ridership: mixed land use, greater walkability, and, especially, easy access
to employment. To increase transit ridership, these researchers suggested facilitating direct transit
links and linking riders to employment centers using multi-destination transit network structures.

Other literature has sought to identify the effects of urban spatial structures on air pollution
through several methods. Such studies have widely used spatial interpolation methods (e.g., Kriging,
IDW (Inverse Distance Weighting), nearest neighbor, and spatial averages) to construct new data
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points within the range of a discrete set of known data points. Among these, the Kriging method
appears to be more realistic and less biased than other methods [37].

Ross et al. [38] used the land use regression (LUR) model developed by Briggs et al. [39]. The LUR
model is one of the most widely used exposure assessment tools in air pollution epidemiological
research to estimate pollutant concentrations at unmonitored locations. The LUR model evaluates the
relationship between observed air pollution concentrations and predictor variables (e.g., land use and
traffic conditions) around monitoring sites, following a multivariate regression model. Researchers
generally construct these predictor variables using a Geographic Information System (GIS). Ross et al.
estimated nitrogen dioxide (NO2) concentration levels in southern California using the LUR model,
with traffic in a 300–1000-m buffer zone, road length in a 40-m buffer zone, and distance to the coast
serving as key variables. These researchers found that road length and traffic were positively correlated
with NO2 levels. Few previous studies had considered wind or coastal effects, but their study identified
a coastal effect on air pollution.

Oh and Chung [40] estimated the influence of urban development density on air pollution in
Seoul, Korea. Their model included development factors such as population, employee density, land
use, the number of buildings, and traffic. These researchers identified a correlation between changes in
development density and air pollution levels.

Jerrett et al. [41] used the LUR model to analyze the relationship between air pollution levels and
the built environment in Toronto, Canada. Their model included variables grouped into five categories:
land use, roads and traffic, population, physical geography, and meteorology. Their analysis identified
road density as the most influential factor on NO2 levels, being related to traffic demands. Hence, as
lower mixed land use tends to increase vehicle traffic demands, this study indicated that increased
mixed land use could reduce traffic demands.

Kim [42] estimated the effects of urban structure factors on CO2 concentrations. In his
study, Kim grouped 72 Korean cities into four different types: monocentric-centralized cities,
polycentric-centralized cities, monocentric-decentralized cities, and polycentric-decentralized cities.
Among the four types, the study found that CO2 levels tended to be lowest in monocentric-centralized
cities (e.g., Wonju-si). The study also identified high density and mixed development as having lower
levels of CO2 concentrations. Kim and Jun [43] analyzed air pollutants in the capital region of Korea,
classifying it into the city centers, satellite cities, and suburbs. Particulate matter levels were highest in
the suburbs and lowest in the city centers. Their study also found that distance from the Han River
and the Yellow Sea was a statistically significant predictor of CO2 concentrations.

While researchers have conducted many studies related to air pollution in the fields of urban and
transportation planning, few studies have explored the effects of transit ridership on air pollution.
Although the TOD literature suggests that the promotion of public transit can reduce air pollution,
there is insufficient empirical research on the relationship between the level of public transit use and air
conditions. Therefore, the present study tested the effects of transit ridership on air pollution, focusing
on PM10 levels in the capital region of Seoul, Korea (where clean CNG buses widely operate). Because
transportation represents the primary source of PM10 concentrations, we expected higher levels of bus
ridership, through traffic reduction, to be correlated with lower PM10 concentrations [20].

3. Method

3.1. Context

The capital region of the Republic of Korea contains three different administrative districts: Seoul,
Incheon, and Gyeonggi-do. As of 2015, this region covered about 11,704 km2, with a population of
approximately 25.5 million. Although geographically it represents only 12% of Korea, approximately
half of the country’s population, manufacturing, and service industries are concentrated in the capital
region. Moreover, 68% of deposits and 86% of public institutions are situated in this region, which
serves as the Korean center of administration, finance, and industry.
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Among the three districts, Seoul is the center of the capital region. It is the capital and the largest
metropolis in South Korea. One of the densest and the largest cities in the world, Seoul is home to
10.1 million citizens (as of 2015) within its 605.3 km2 boundary, with a population density of around
16,700 persons/km2. The city has one of the most advanced public transportation systems in the
world. As of 2015, 10 subway lines (excluding national railways) and 598 bus lines were operating
within Seoul. The city’s bus system, which was reorganized in 2004, connects destinations that are
inaccessible by subway. A median bus corridor plays a particularly important role in enhancing the
system’s efficiency.

3.2. Data and Key Variables

The descriptive statistics of the key variables are shown in Table 1. Administrative districts
served as the unit of analysis. In air pollution studies, PM10 refers to particles smaller than 10 µm [44].
We used the data that include hourly PM10 concentration levels at 128 air pollution monitoring stations
in the capital region (Figure 1), which were provided by the National Institute of Environmental
Research, South Korea. In Korea, the beta-ray absorption method is the standard instrument for
PM10 concentration measurement [45]. Hourly PM10 concentrations are obtained from measuring
the increase in beta-ray absorption through particles collected on the filter paper. The principle of the
beta-ray absorption method is that the beta-ray absorption rate increases in proportion to the mass
of the PM10 on the filter. The beta-ray absorption method can be incorporated into an automatic
measurement system. However, because the beta-ray absorption method requires approximately one
hour to collect PM10, real-time measurement is impossible. Also, PM10 concentration measurement
using the beta-ray absorption method is influenced by the relative humidity of the area [46].

Table 1. Descriptive statistics (n = 1097).

Variable Mean Std. Dev. Min Max

Outcome Variables PM10 (µg/m3) 55.515 3.587 49.271 67.436

Traffic Variables

Bus Traffic 18,101.47 13,481.31 77.765 145,423.3

ln (Bus Traffic) 9.507 0.916 4.354 11.887

Total Traffic 102,541.2 72,559.18 683.055 784,550.3

ln (Total Traffic) 11.299 0.783 6.527 13.573

Socio-economic
Variables

Population Density
(1000 persons/km2) 15.754 13.375 0.002 56.112

Employee Density
(1000 persons/km2) 5.037 7.829 0.000 90.510

Ratio of Manufacturing
Employees (%) 1.994 5.043 0.000 87.576

Environmental
Variables

Administrative District Area (km2) 10.872 22.816 0.185 246.956

Power Plant (dummy) 0.006 0.000 1.000

Intersection Density (unit/m) 8.133 4.995 0.642 26.457

Park Density (%) 0.096 0.147 0.000 0.847

Building Coverage Ratio (%) 0.164 0.124 0.000 0.524

Land Use Diversity 0.443 0.139 0.000 0.854

Green Belt (dummy) 0.174 0.000 1.000

Distance from Yellow Sea (km) 66.979 18.039 0.000 136.101
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Figure 1. Air pollution monitoring stations.

The air pollution monitoring stations are categorized into three groups (104 urban stations,
20 roadside stations, and 4 suburban stations) by the Ministry of Environment, South Korea. The PM10
monitoring stations in the capital region are clustered in the western portion of the region, covering the
administrative areas in which the population is concentrated. There are fewer stations located on the
peripheries of the region, where there is a relatively low population density. We calculated the annual
average PM10 level at each station. A possible problem is that PM10 concentration levels at roadside
monitoring stations tend to be higher than the values at other types of stations due to PM10 emission
from traffic. However, the extent to which roadside stations inflate PM10 concentration levels relative
to other station types is unclear. After conducting a sensitivity analysis (Table 1) (we conducted a
sensitivity analysis that applied weights (0.9, 0.8, 0.7, 0.6) to PM10 values at roadside stations. Table 1
shows that the effects of bus traffic remained significant at the 0.05 alpha level when weights of 0.9
and 0.8 were applied, became significant at the 0.10 level when a weight of 0.7 was applied, and
disappeared with a weight of 0.6. The effect of employment density became insignificant when a
weight of 0.7 was applied. The effects of total traffic, ratio of manufacturing employees, and distance
from the Yellow Sea remained significant regardless of the weights. Overall, the estimates were stable
until applying weights of 0.8 to values at roadside monitoring stations), we decided to estimate PM10
concentration levels without weights according to the three categories and spatial distribution of the
stations, following previous studies that used the same data source [37–39].

Because PM10 levels were measured at only 128 monitoring stations, no PM10 data was available
for many administrative areas. We estimated PM10 concentration levels at unobserved locations
utilizing the Kriging method (Figure 2). The Kriging method of interpolation weights observed
surrounding data points according to spatial covariance values, thus predicting values for unmeasured
locations. Hence, the PM10 concentration levels for the whole capital region were estimated from
the data observed at the monitoring stations. Because the administrative district served as the unit
of analysis, we calculated the average PM10 value for each district (Figure 3). As seen in Table 1, the
average PM10 concentration level in 2010 in the capital region was 55.5 µg/m3, which is much higher
than the World Health Organization’s guideline (20 µg/m3). This value shows how serious the PM10
problem is in the region.
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Figure 3. The average PM10 value within the administration districts.

In order to construct variables that captured traffic, socio-economic factors, and environmental
attributes, the present study combined data from the household travel diary survey with Korean GIS
data (Table 1). We based the traffic variable on the household travel diary survey, comprising primary
transport O/D (Origin/Destination) data. The total bus traffic variable estimated the number of bus
riders (including ingressing and egressing riders) on a regular route, as well as on other types of
buses. The bus system is one of the major transportation modes in the region: the average bus traffic
value was 18,101.47, representing approximately 17% of total traffic (102,541.2) (Table 1). We expected
the PM10 levels in administrative districts with more bus riders to be lower—as CNG buses emit
little PM10—because high levels of bus ridership imply less automobile use, which produces PM10.
The total traffic variable encompassed the total number of riders via nine primary transport modes:
pedestrian/bike, freight/other, bus on a non-regular route, rail, private vehicle, taxi, bus, subway, and
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subway/bus. We included the total traffic variable to control for the effect of overall traffic on PM10
levels. We adapted the traffic variables to natural log-transformations, as both bus traffic and total
traffic distributions were positively skewed.

Socio-economic factors (e.g., population density and employee density) measured overall activity
levels in the administrative districts. The ratio of manufacturing employees indicated the concentration
of manufacturing industries; therefore, we expected districts with high manufacturing employee ratios
to have high PM10 levels, assuming that manufacturing industries emit relatively higher levels of
pollutants. A power plant and a green belt served as dummy variables. We expected a district with a
power plant to have high PM10 levels due to the pollutants emitted by the power plant. We expected
a district with a green belt to have low PM10 levels due to the lack of facilities emitting pollutants.
We anticipated a negative relationship between the park density variable and PM10 levels because
parks tend to mitigate air pollution.

We generated factors expected to affect bus ridership according to TOD theory (e.g., intersection
density, building coverage ratio, and land use diversity) using the road name address base map in GIS.
These urban geometries influence not only urban activities but also the dispersion of PM10 through
the street-canyon effect [30]. We constructed a variable that denotes the distance from the Yellow Sea
in order to identify the effect of serious air pollution from China. Air pollutants from China influence
air quality in Korea through westerly winds [33]. This variable was measured as the value of the
X-coordinate, setting the westernmost administration district as the origin.

3.3. Spatial Regression Model

Spatial regression models were used to estimate the impact of bus ridership on PM10 levels,
controlling for physical environment attributes and socio-economic factors. Air pollution data with
spatial attributes were influenced by spatial autocorrelation, which involves correlating one value of a
single variable with other nearby values [47,48]. The spatial autocorrelation of PM10 can be observed
in Figure 2; districts with low PM10 levels tend to cluster with other low PM10 districts, and high
PM10 districts also tend to cluster together. When spatial autocorrelation exists, a regression model of
OLS lacks credibility, as it violates the independent residuals assumption of OLS. We used Moran’s
I to verify spatial autocorrelation [49,50]. Moran’s I for PM10 levels was 0.63, reaching statistical
significance (p = 0.000) and confirming the existence of visually observed spatial autocorrelation.

Having identified spatial autocorrelation, SEM and the spatial lag model (SLM) can control for
spatial autocorrelation using a spatial weight matrix, overcoming the limits of OLS [47]. SLM assumes
that spatial autocorrelation occurs in the observed values of individual dependence variables and
thus controls for spatial autocorrelation by applying the spatial weight matrix (ρWy) to observed close
values that affect each observed value [48].

y “ ρWy ` xβ ` ε

y: dependent variable vector; W: spatial weight matrix; x: independent variable matrix; ρ, β:
coefficients; ε: independent and identically distributed residual vector.

SEM assumes that residuals include spatial autocorrelation that occurred in the unobserved
values of individual dependence variables and thus controls for spatial autocorrelation by applying
the spatial weight matrix to close residuals that affect each residual.

y “ xβ ` ε, ε “ λW ` µ

y: dependent variable vector; W: spatial weight matrix; x: independent variable matrix; λ,
β: coefficients; ε: spatial-dependent residual vector; µ: independent and identically distributed
residual vector.
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The present study used spatial regression models to estimate the impact of bus ridership on PM10
levels, controlling for physical environment attributes and socio-economic factors. We estimated the
models using GeoDa, a spatial analysis program.

4. Analysis Results

The present study first used the OLS regression model to select suitable spatial regression models
with which to estimate PM10 levels (Model 1 in Table 2). When spatial autocorrelation existed, we
selected the more suitable model between SLM and SEM by utilizing the robust Lagrange Multiplier
(LM) test. The results indicated that, while both SLM and SEM were superior to OLS, SEM was
more suitable due to its larger robust LM value [48]. Thus, the present study used SEM (Model 2 in
Table 2). The significant Lamda (λ) value also indicated that SEM was more suitable than OLS. Further,
the examination of residuals indicated that SEM successfully accounted for spatial autocorrelation
(Moran’s I = 0.036, Figure 4). The application of a spatial weight matrix in the SEM model notably
increased the R-squared value and changed the significance levels of some variables. The OLS model
detected statistically significant effects of explanatory variables (e.g., population density, administrative
district area, intersection density, park density, building coverage ratio, and green belt). However, these
effects vanished in the SEM model after controlling for spatial autocorrelation.

Table 2. Ordinary least-squares (OLS) and spatial error modelling (SEM) results for PM10 estimation.

Variable
Model 1: OLS Model 2: SEM

Coef. (S.E.) Coef. (S.E.)

Coefficient 52.911 *** 1.583 48.337 *** 0.508
ln (Bus Traffic) ´1.520 *** 0.249 ´0.240 ** 0.080

ln (Total Traffic) 1.730 *** 0.287 0.509 *** 0.091
Population Density (1000 persons/km2) ´0.057 *** 0.011 0.000 0.003
Employee Density (1000 persons/km2) ´0.117 *** 0.014 ´0.015 *** 0.004
Ratio of Manufacturing Employees (%) 17.207 *** 2.636 4.878 *** 1.205

Administrative District Area (km2) 0.030 *** 0.005 ´0.002 0.002
Power Plant (dummy) ´1.634 1.035 ´0.166 0.297

Intersection Density (unit/m) ´0.230 *** 0.029 0.001 0.010
Park Density (%) ´2.649 *** 0.640 ´0.151 0.192

Building Coverage Ratio (%) 6.517 *** 1.600 0.147 0.476
Land Use Diversity 0.367 0.678 0.077 0.193

Green Belt (dummy) ´0.729 ** 0.250 0.068 0.080
Distance from the Yellow Sea (km) ´0.011 ** 0.006 0.031 ** 0.011

Lamda (λ) 0.998 *** 0.002
R-Squared 0.439 0.951

n 1097 1097

Robust LM (lag) 149.115
***

Robust LM (error) 2258.293
***

Note: ** p < 0.01; *** p < 0.001.

The results of the SEM model supported our hypothesis that the level of PM10 concentration is
correlated with bus ridership. In the SEM model, the effect of bus traffic was statistically significant
(p = 0.003). The negative and significant coefficient of log-transformed bus traffic indicated that the
higher the bus traffic in a district, the lower the PM10 levels. The total traffic variable accounted for the
influence of overall traffic on PM10 concentrations because vehicles are the major source of PM10: the
positive coefficient of total traffic shows that, as expected, PM10 levels tended to be higher in districts
with higher total traffic (p < 0.000). The results regarding the two traffic variables showed that while
greater traffic is likely to produce more PM10, greater bus traffic tends to mitigate PM10 concentrations.
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Among the districts’ socioeconomic factors, the effects of employment density and the ratio
of manufacturing employees were statistically significant: PM10 levels were likely to be lower in
districts with higher employee density (p = 0.001) but higher in districts with a high proportion
of manufacturing employees (p < 0.000). Because the ratio of manufacturing employees captures
manufacturing industry concentrations, this result demonstrated the influence of secondary sector
industries on PM10 levels.

Sustainability 2016, 8, 636  9 of 14 

manufacturing industry concentrations, this result demonstrated the influence of secondary sector 

industries on PM10 levels. 

 

Figure 4. Moran’s I of SEM’s residual. 

The effects of environmental variables including administrative district area, intersection 

density, park density, building coverage ratio, and green belt—which were significant in the OLS 

model—became insignificant in the SEM model, implying the spatial dependency of PM10 

distribution. However, distance from the Yellow Sea remained significant (p = 0.006), even after 

controlling for the spatial autocorrelation of PM10 concentrations: the farther a location was from the 

Yellow Sea, the lower its PM10 concentration levels. This result indicated the effect of PM10 influx 

from China across over the Yellow Sea.  

5. Conclusions 

The rapid pace of urbanization and increased personal vehicle use has given rise to various 

urban problems (e.g., traffic congestion and air pollution). These problems have resulted in social 

costs and have negatively influenced the quality of citizens’ lives. In particular, air pollution 

exacerbates health conditions, causing various respiratory diseases. The OECD reported the 

seriousness of air pollution in 2014, and a number of international organizations (e.g., the United 

Nations) have endeavored to reduce air pollution. 

Korea suffers from severe air pollution. The capital region of Korea, in particular, has 

experienced serious negative effects from air pollution. Transportation is one of the major 

contributors to this pollution. Hence, the Korean government has endeavored to reduce air pollution 

by enacting policies encouraging public transportation use and the replacement of diesel buses with 

CNG buses.  

While transportation factors appear to be important for reducing air pollution, few studies have 

empirically evaluated the impact of transit ridership on air pollution. Instead, most studies have 

investigated the impact of urban forms on air pollution or on transit ridership. The present study is 

significant in that we analyzed the effects of the use of buses—a major mode of transportation, yet 

rarely investigated—on PM10 levels. We used SEM to test the influence of bus traffic on PM10 levels, 

accounting for the spatial autocorrelation of the distribution of PM10 concentrations. 

Our model identified a correlation between bus traffic (the estimated number of bus riders, 

including ingressing and egressing riders) and PM10 levels. The results indicate that districts with 

Figure 4. Moran’s I of SEM’s residual.

The effects of environmental variables including administrative district area, intersection
density, park density, building coverage ratio, and green belt—which were significant in the OLS
model—became insignificant in the SEM model, implying the spatial dependency of PM10 distribution.
However, distance from the Yellow Sea remained significant (p = 0.006), even after controlling for the
spatial autocorrelation of PM10 concentrations: the farther a location was from the Yellow Sea, the
lower its PM10 concentration levels. This result indicated the effect of PM10 influx from China across
over the Yellow Sea.

5. Conclusions

The rapid pace of urbanization and increased personal vehicle use has given rise to various urban
problems (e.g., traffic congestion and air pollution). These problems have resulted in social costs and
have negatively influenced the quality of citizens’ lives. In particular, air pollution exacerbates health
conditions, causing various respiratory diseases. The OECD reported the seriousness of air pollution
in 2014, and a number of international organizations (e.g., the United Nations) have endeavored to
reduce air pollution.

Korea suffers from severe air pollution. The capital region of Korea, in particular, has experienced
serious negative effects from air pollution. Transportation is one of the major contributors to this
pollution. Hence, the Korean government has endeavored to reduce air pollution by enacting policies
encouraging public transportation use and the replacement of diesel buses with CNG buses.

While transportation factors appear to be important for reducing air pollution, few studies have
empirically evaluated the impact of transit ridership on air pollution. Instead, most studies have
investigated the impact of urban forms on air pollution or on transit ridership. The present study is
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significant in that we analyzed the effects of the use of buses—a major mode of transportation, yet
rarely investigated—on PM10 levels. We used SEM to test the influence of bus traffic on PM10 levels,
accounting for the spatial autocorrelation of the distribution of PM10 concentrations.

Our model identified a correlation between bus traffic (the estimated number of bus riders,
including ingressing and egressing riders) and PM10 levels. The results indicate that districts with
higher bus traffic are likely to have lower PM10 levels. Additionally, the total amount of traffic
was positively correlated with PM10 levels, indicating that transportation is a major source of PM10
concentrations. Considering these two effects, CNG buses, which emit very little PM10, may have
replaced many private vehicles that emit air pollutants, leading to decreased PM10 levels. The fact
that bus traffic positively affects air quality supports the effectiveness of Korea’s transportation policy
that replaced diesel buses with CNG buses in the capital region. In addition, the results suggest the
benefits of urban planning strategies, for example, TOD, which promote public transportation use,
thereby alleviating air pollution.

The negative effect of employment density on PM10 levels is somewhat unexpected. A possible
explanation for this may be that most employees in the capital region are working in the tertiary sector,
which produces less PM10 relative to secondary sector industries. Related to this, a higher ratio of
manufacturing employees correlated to higher PM10 levels. Finally, the results demonstrate that PM10
concentrations increase as proximity to the Yellow Sea increases, indicating the influence of PM10
influx from the west.

Despite the significance of these findings, the results should be interpreted carefully, as our study
only included 128 air pollution monitoring stations. The three types of stations (urban area, roadside,
and suburban) could be a source of bias because PM10 levels on roadsides tend to be higher than
those in urban areas due to pollutants from traffic. The location of these monitoring stations is also
biased toward the western side of the capital region, reflecting the distribution of the population
and industry, which may lead to less reliable estimation of PM10 concentrations in eastern areas.
Although the Kriging method is widely used for deriving unobserved values from observed values,
this interpolation process contains an inherent limitation in that the predicted values ultimately differ
from the actual values. Further, we did not consider certain factors that affect air pollution (e.g., wind
and seasonal changes) in this study due to a lack of sufficient data.

To improve the measurement and estimation of PM10 concentrations, a larger number of
monitoring stations in a consistent context (e.g., roadside) is essential. Through the development of
information and communication technology, wireless PM10 sensors are now available. Our future
studies will monitor PM10 and other air pollutants using these wireless sensors, more reliably revealing
factors that affect air pollutant concentrations. Despite these limitations, the present study empirically
identified the influence of bus ridership on PM10 concentrations. Future studies utilizing more detailed
factors and more reliable interpolation methods could improve the reliability of this investigation,
thereby contributing greater insights for healthy urban and transportation planning.

To summarize, despite its uncertainties, the present study identified a relationship between higher
bus traffic and lower PM10 concentrations. Thus, the analysis offers an initial result that can contribute
to the formulation of traffic policies for air quality improvement. Moreover, the results suggest that
urban and transportation policy aimed at promoting public transportation can be an effective approach
to reducing air pollution. Thus, governments need to encourage citizens to use public transportation
while also preparing support systems (e.g., median bus corridor systems, convenient transfer systems,
and arrival information systems) to invigorate their public transportation systems.
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Appendix

Table 1. Sensitivity analysis result of SEM models weighting monitoring stations at roadside.

Variables

Road 1.0 Road 0.9 Road 0.8 Road 0.7 Road 0.6

Coef. Coef. Coef. Coef. Coef.
(S.E.) (S.E.) (S.E.) (S.E.) (S.E.)

p-Value p-Value p-Value p-Value p-Value

Coefficient
48.337 *** 47.075 *** 47.197 *** 48.218 *** 49.301 ***

(0.531) (0.631) (0.635) (0.587) (0.571)
0.000 0.000 0.000 0.000 0.000

ln (Bus Traffic)
´0.240 ** ´0.229 * ´0.209 * ´0.168 ´0.143

´0.081 ´0.096 ´0.097 ´0.089 ´0.087
0.003 0.017 0.03 0.061 0.1

ln (Total Traffic)
0.509 *** 0.529 *** 0.492 *** 0.398 *** 0.317 ***
´0.092 ´0.11 ´0.111 ´0.102 ´0.099
0.000 0.000 0.000 0.000 0.000

Population Density (1000 persons/km2)
0.000 0.000 ´0.001 ´0.001 0.000

´0.003 ´0.004 ´0.004 ´0.004 ´0.004
0.918 0.918 0.816 0.879 0.922

Employee Density (1000 persons/km2)
´0.015 *** ´0.013 * ´0.011 * ´0.007 ´0.003

´0.005 ´0.005 ´0.005 ´0.005 ´0.005
0.001 0.012 0.042 0.16 0.591

Ratio of Manufacturing Employees (%)
4.878 *** 5.847 *** 5.923 *** 5.027 *** 3.033 *
´1.221 ´1.451 ´1.461 ´1.351 ´1.313
0.000 0.000 0.000 0.000 0.021

Administrative District Area (km2)
´0.003 ´0.002 ´0.002 0 0.001
´0.002 ´0.002 ´0.002 ´0.002 ´0.002
0.128 0.3 0.422 0.916 0.596

Power Plant (dummy)
´0.166 ´0.324 ´0.203 ´0.085 0.159
´0.301 ´0.358 ´0.36 ´0.333 ´0.324

0.58 0.366 0.573 0.798 0.624

Intersection Density (unit/m)
0.001 ´0.001 ´0.005 ´0.009 ´0.012
´0.01 ´0.012 ´0.012 ´0.011 ´0.011
0.937 0.926 0.686 0.435 0.251

Park Density (%)
´0.151 ´0.280 ´0.177 ´0.012 0.193
´0.194 ´0.231 ´0.232 ´0.215 ´0.209
0.437 0.225 0.447 0.957 0.356

Building Coverage Ratio (%)
0.147 0.116 0.225 0.309 0.464

´0.481 ´0.572 ´0.576 ´0.532 ´0.517
0.76 0.839 0.696 0.561 0.369

Land Use Diversity
0.077 0.037 0.076 0.132 0.155

´0.196 ´0.233 ´0.234 ´0.216 ´0.21
0.696 0.872 0.746 0.543 0.461

Green Belt (dummy)
0.068 0.083 0.102 0.113 0.112
´0.08 ´0.096 ´0.096 ´0.089 ´0.086
0.398 0.384 0.29 0.205 0.196

Distance from the Yellow Sea (km)
0.031 ** 0.027 * 0.026 0.029 * 0.032 **
´0.011 ´0.013 ´0.013 ´0.012 ´0.012
0.006 0.043 0.054 0.021 0.008

Lamda (λ)
0.998 *** 0.998 *** 0.998 *** 0.999 *** 0.999 ***
´0.002 ´0.001 ´0.001 ´0.001 ´0.001

0 0 0 0 0

n 1097 1097 1097 1097 1097

Note: * p < 0.05; ** p < 0.01; *** p < 0.001.
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