Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (115)

Search Parameters:
Keywords = CH4 recovery efficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6833 KB  
Article
Ultrasound-Assisted Deep Eutectic Solvent Extraction of Flavonoids from Cercis chinensis Seeds: Optimization, Kinetics and Antioxidant Activity
by Penghua Shu, Shuxian Fan, Simin Liu, Yu Meng, Na Wang, Shoujie Guo, Hao Yin, Di Hu, Xinfeng Fan, Si Chen, Jiaqi He, Tingting Guo, Wenhao Zou, Lin Zhang, Xialan Wei and Jihong Huang
Separations 2025, 12(10), 269; https://doi.org/10.3390/separations12100269 - 2 Oct 2025
Viewed by 227
Abstract
This study establishes an efficient and eco-friendly ultrasound-assisted extraction (UAE) method for total flavonoids present in Cercis chinensis seeds using natural deep eutectic solvents (NADES). Among nine NADES formulations screened, choline chloride–levulinic acid (ChCl–Lev, 1:2) demonstrated optimal performance, yielding 112.1 mg/g total flavonoids. [...] Read more.
This study establishes an efficient and eco-friendly ultrasound-assisted extraction (UAE) method for total flavonoids present in Cercis chinensis seeds using natural deep eutectic solvents (NADES). Among nine NADES formulations screened, choline chloride–levulinic acid (ChCl–Lev, 1:2) demonstrated optimal performance, yielding 112.1 mg/g total flavonoids. Through Response Surface Methodology (RSM), the ultrasound-assisted extraction (UAE) parameters were explored. Under the optimized conditions (water content of 30%, time of 28 min, temperature of 60 °C, and solvent-to-solid ratio of 1:25 g/mL), the total flavonoid yield reached 128.5 mg/g, representing a 195% improvement compared to conventional ethanol extraction. The recyclability of NADES was successfully achieved via AB-8 macroporous resin, retaining 80.89% efficiency after three cycles. Extraction kinetics, modeled using Fick’s second law, confirmed that the rate constant (k) increased with temperature, highlighting temperature-dependent diffusivity as a key driver of efficiency. The extracted flavonoids exhibited potent antioxidant activity, with IC50 values of 0.86 mg/mL (ABTS•+) and 0.69 mg/mL (PTIO•). This work presents a sustainable NADES-UAE platform for flavonoid recovery and offers comprehensive mechanistic and practical insights for green extraction of plant bioactives. Full article
Show Figures

Figure 1

20 pages, 2846 KB  
Article
Eco-Friendly Recovery of Homogalacturonan-Rich Pectin from Flaxseed Cake via NADES Extraction
by Aleksandra Mazurek-Hołys, Ewa Górska, Marta Tsirigotis-Maniecka, Maria Zoumpanioti, Roman Bleha and Izabela Pawlaczyk-Graja
Polymers 2025, 17(18), 2532; https://doi.org/10.3390/polym17182532 - 19 Sep 2025
Viewed by 516
Abstract
Flaxseed polysaccharides (FLP) are bioactive macromolecules with valuable functional properties and applications in the food, pharmaceutical, and packaging industries. This study focused on obtaining high-purity pectin from flaxseed cake using sustainable extraction with natural deep eutectic solvents (NADES) based on choline chloride (ChCl) [...] Read more.
Flaxseed polysaccharides (FLP) are bioactive macromolecules with valuable functional properties and applications in the food, pharmaceutical, and packaging industries. This study focused on obtaining high-purity pectin from flaxseed cake using sustainable extraction with natural deep eutectic solvents (NADES) based on choline chloride (ChCl) and citric acid (CA) The ChCl/CA system (1:1) resulted in the LU3 extract, which provided the best outcome, yielding the highest pectin recovery (36.88 mg/g), elevated uronic acid content (30.33% of sample; 68.15% of saccharides), and the lowest protein contamination (11.46%), confirming superior pectin purity. Structural (UV-Vis, FT-IR, GC-MS, GPC, LH-20) identified homogalacturonan with xylogalacturonan domains (53% DM) and a molecular weight range of 14–500 × 103 g/mol. Morphological and physicochemical characterization, including SEM/EDS imaging, zeta potential analysis, and rheological measurements, revealed that LU3 is an anionic, heterogeneous biopolymer exhibiting pH-dependent charge behavior. These properties underscore its potential as a safe and effective material for bio-industrial applications. Overall, the study demonstrates that NADES provide an eco-friendly and efficient medium for extracting high-quality pectin from flaxseed cake, offering a sustainable strategy for the valorization of flaxseed polysaccharides in bio-based products. Full article
(This article belongs to the Special Issue Perspectives of Biopolymer Functionalization for New Materials)
Show Figures

Graphical abstract

14 pages, 7246 KB  
Article
Fabrication of Spinel-Type H4Ti5O12 Ion Sieve for Lithium Recovery from Aqueous Resources: Adsorption Performance and Mechanism
by Weiwei Ma, Hongrong Huang, Guangjin Zhu, Xueqing Wang, Qiaoping Kong and Xueqing Shi
Processes 2025, 13(9), 2981; https://doi.org/10.3390/pr13092981 - 18 Sep 2025
Viewed by 403
Abstract
Lithium (Li) ion sieve is considered to have great potential in the selective extraction of Li+ from complex Li+-containing brine owing to its cost-effectiveness, excellent adsorption performance, and environmental friendliness. Nevertheless, the defects of complex regulation and control of technological [...] Read more.
Lithium (Li) ion sieve is considered to have great potential in the selective extraction of Li+ from complex Li+-containing brine owing to its cost-effectiveness, excellent adsorption performance, and environmental friendliness. Nevertheless, the defects of complex regulation and control of technological parameters in the preparation process of Li ion sieve and poor recycling efficiency limit its application. In this study, spinel-type H4Ti5O12 ion sieves (HTO) were successfully prepared through a high-temperature solid-state method for recovering Li+ from aqueous resources. Through the experiment of optimizing the key preparation process parameters of HTO, it was found that the optimum preparation conditions were as follows: lithium ion source of CH3COOLi‧H2O, calcination temperature of 800 °C, and acid (HCl) washing concentration of 0.3 mol/L. The uptake of Li+ by HTO aligned with the pseudo-second-order kinetic model, which was a chemical adsorption process controlled by reversible Li–H ion exchange reaction. HTO exhibited extremely high regeneration cycle characteristics, and after five cycles, it retained 96.06% of its initial adsorption capacity. The present work highlighted that spinel-type HTO has high industrial application potential in the field of Li+ recovery from oilfield brine. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

19 pages, 1287 KB  
Article
The Assessment of Anaerobic Digestion Performance and Efficiency in Terms of Waste Collection
by Przemysław Seruga, Marta Wilk, Edmund Cibis, Agnieszka Urbanowska and Łukasz Niedźwiecki
Energies 2025, 18(18), 4876; https://doi.org/10.3390/en18184876 - 13 Sep 2025
Viewed by 363
Abstract
Municipal solid waste (MSW) management is identified as a significant sustainability concern. Source segregation (SS) is the most effective method of managing MSW, and anaerobic digestion (AD) is the most efficient treatment method. The aim of this study was to analyze the impact [...] Read more.
Municipal solid waste (MSW) management is identified as a significant sustainability concern. Source segregation (SS) is the most effective method of managing MSW, and anaerobic digestion (AD) is the most efficient treatment method. The aim of this study was to analyze the impact of waste collection rules on the efficiency and performance of AD. The potential biomethane yields for SS-kitchen waste and SS-biowaste were calculated, determined in laboratory tests, and verified full-scale. The content of the organic fraction in SS-biowaste reached about 81 to 86%; however, regarding SS-kitchen waste, it reached almost 92%. The primary contaminants were plastics. The obtained biogas yield was slightly higher for SS-kitchen waste (136.2 m3/ton), compared to SS-biowaste (116.6 m3/ton). The pH values, acidity, and alkalinity indicated no risk of exploitation using both feedstocks. However, in the case of SS-kitchen waste, the acetic acid content was about 2.5 times higher than that of SS-biowaste. Furthermore, the acetic acid was noted in the outlet section (about 140–160 mg/kg), indicating no complete organic matter decomposition. Regarding SS-kitchen waste, the calculated methane yield reached 137.1 m3CH4/ton and laboratory tests showed a methanogenic potential of 129.7 m3CH4/ton, while at full-scale, it reached about 82.2 m3CH4/ton. The research confirmed that the SS of biowaste positively impacts MSW management by improving waste composition and increasing recycling possibilities. AD is an effective biowaste treatment process, allowing energy recovery from waste. Full article
(This article belongs to the Special Issue Biomass and Waste Valorization for Biofuel and Bioproducts Production)
Show Figures

Figure 1

15 pages, 5595 KB  
Article
Enhanced Methane Production in the Anaerobic Digestion of Swine Manure: Effects of Substrate-to-Inoculum Ratio and Magnetite-Mediated Direct Interspecies Electron Transfer
by Jung-Sup Lee, Tae-Hoon Kim, Byung-Kyu Ahn, Yun-Ju Jeon, Ji-Hye Ahn, Waris Khan, Seoktae Kang, Junho Kim and Yeo-Myeong Yun
Energies 2025, 18(17), 4692; https://doi.org/10.3390/en18174692 - 4 Sep 2025
Viewed by 829
Abstract
Improving the anaerobic digestion (AD) of swine manure is crucial for sustainable waste-to-energy systems, given its high organic load and process instability risks. This study examined the combined effects of substrate-to-inoculum ratio (SIR, 0.1–3.2) and magnetite-mediated direct interspecies electron transfer on biogas production, [...] Read more.
Improving the anaerobic digestion (AD) of swine manure is crucial for sustainable waste-to-energy systems, given its high organic load and process instability risks. This study examined the combined effects of substrate-to-inoculum ratio (SIR, 0.1–3.2) and magnetite-mediated direct interspecies electron transfer on biogas production, effluent quality, and microbial community dynamics. The highest methane yield (262 ± 10 mL CH4/g COD) was obtained at SIR 0.1, while efficiency declined at higher SIRs due to acid and ammonia accumulation. Magnetite supplementation significantly improved methane yield (up to a 54.1% increase at SIR 0.2) and reduced the lag phase, particularly under moderate SIRs. Effluent characterization revealed that low SIRs induced elevated soluble COD (SCOD) levels, attributed to microbial autolysis and extracellular polymeric substance release. Furthermore, magnetite addition mitigated SCOD accumulation and shifted molecular weight distributions toward higher fractions (>15 kDa), indicating enhanced microbial activity and structural polymer formation. Microbial analysis revealed that magnetite-enriched Syntrophobacterium and Methanothrix promoted syntrophic cooperation and acetoclastic methanogenesis. Diversity indices and PCoA further showed that both SIR and magnetite significantly shaped microbial structure and function. Overall, an optimal SIR range of 0.2–0.4 under magnetite addition provided a balanced strategy for enhancing methane recovery, effluent quality, and microbial stability in swine manure AD. Full article
Show Figures

Graphical abstract

20 pages, 6138 KB  
Article
Sequential Redox Precipitation and Solvent Extraction for Comprehensive Metal Recovery from Spent High Manganese Lithium-Ion Battery
by Jiawei Zhang, Fupeng Liu, Chunfa Liao, Tao Zhang, Feixiong Chen, Hao Wang and Yuxin Gao
Metals 2025, 15(9), 948; https://doi.org/10.3390/met15090948 - 26 Aug 2025
Viewed by 693
Abstract
The traditional recycling process of spent lithium-ion battery(LIB) with high Mn content faces the defects of high cost of neutralization and precipitation, poor economics of Mn extraction, and serious Li loss. Therefore, this paper introduces a comprehensive hydrometallurgical method for extracting valuable metals [...] Read more.
The traditional recycling process of spent lithium-ion battery(LIB) with high Mn content faces the defects of high cost of neutralization and precipitation, poor economics of Mn extraction, and serious Li loss. Therefore, this paper introduces a comprehensive hydrometallurgical method for extracting valuable metals from high-Mn spent LIB. Particularly, directional precipitation of Mn was achieved by utilizing its redox properties, and shot-process extraction and enrichment of Li was realized by using the extractant HBL121. In a sulfuric acid system, control of the oxidant dosage to 0.8% resulted in high leaching efficiencies for Li, Ni, Co, and Mn, with values of 96.58%, 96.13%, 95.22%, and 94.24%, respectively, under optimal conditions which were C(H2SO4) of 3.5 mol/L, V(H2O2) of 0.8% (v/v), L/S of 10:1, temperature of 60 °C, and time of 60 min. Subsequently, the addition of KMnO4 dosage (Kp/Kt) in a ratio of 1:1 resulted in the precipitation of 98.47% of Mn as MnO2, with Ni and Li precipitation efficiencies of 0.2% and 0.1%, respectively. Cascade extraction of Ni and Co was reached by using Cyanex272 extractant from the solution after Mn precipitation. At an organic-to-aqueous phase ratio (O/A) of 1:5, the Co extraction efficiency reached 98.68%, whereas the loss efficiency of Ni was 5.53%, and Li was less than 0.1%. Adjusting the O/A to 1:1 increased the Ni extraction efficiency to 89.99% and Li loss to 8.95%. Finally, the HBL121 extractant was utilized to extract Li from the Li-rich solution, achieving 95.08% extraction efficiency. The Li was stripped with 2 mol/L H2SO4 from the load organic phase, realizing a Li concentration of 11.44 g/L. Thus, this process facilitates the comprehensive and efficient recovery of valuable metals such as Li, Ni, Co, and Mn from spent high-Mn LIB. Full article
Show Figures

Graphical abstract

19 pages, 730 KB  
Article
Exploitation of Apulian Salicornia europaea L. via NADES-UAE: Extraction, Antioxidant Activity and Antimicrobial Potential
by Francesco Limongelli, Antonella Maria Aresta, Roberta Tardugno, Maria Lisa Clodoveo, Alexia Barbarossa, Alessia Carocci, Carlo Zambonin, Pasquale Crupi, Manuela Panić, Filomena Corbo and Ivana Radojčić Redovniković
Molecules 2025, 30(16), 3367; https://doi.org/10.3390/molecules30163367 - 13 Aug 2025
Viewed by 733
Abstract
Salicornia europaea L. is a spontaneous halophytic plant, widespread in coastal environments, recognized for its high polyphenol content and bioactivities. In this study, a sustainable extraction strategy was developed by coupling natural deep eutectic solvents (NADESs) with ultrasound-assisted extraction (UAE) to recover bioactive [...] Read more.
Salicornia europaea L. is a spontaneous halophytic plant, widespread in coastal environments, recognized for its high polyphenol content and bioactivities. In this study, a sustainable extraction strategy was developed by coupling natural deep eutectic solvents (NADESs) with ultrasound-assisted extraction (UAE) to recover bioactive compounds from autochthonous S. europaea collected in the Apulia region of southern Italy. Sixty-one NADES combinations were screened using COSMOtherm software, based on the predicted solubility of isorhamnetin, the major flavonol in Salicornia spp, to identify optimal hydrogen-bond donor (HBD) and acceptor (HBA) pairs. Six selected and prepared NADESs (B:CA, B:Suc, ChCl:U, ChCl:Xil, CA:Glc and Pro:MA) were used to extract S. europaea, and the resulting extracts were evaluated for total phenolic content (TPC), antioxidant capacity (DPPH, ABTS, FRAP) and antibacterial activity against four ATCC bacterial strains (Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus). Among the tested extracts, Pro:MA exhibited the highest TPC (6.79 mg GAE/g) and interesting antioxidant activity (DPPH IC50 = 0.09 mg GAE/g; ABTS = 8.12 mg TE/g; FRAP = 2.41 mg TE/g). In the antibacterial assays, the Pro:MA extract demonstrated the highest activity, with minimum inhibitory concentrations (MICs) ranging from 0.1% to 0.4% v/v and minimum bactericidal concentrations (MBCs) from 0.2% to 0.8% v/v. In addition, the Pro:MA extract maintained TPC stability over a 90-day storage period. These findings support the NADES-UAE system as a green and efficient approach for the recovery of bioactive compounds and for the valorization of halophyte plants, such as S. europaea, with promising ready-to-use applications in the food, pharmaceutical and cosmeceutical sectors. Full article
Show Figures

Figure 1

18 pages, 1227 KB  
Article
Assessment of Biomethane Potential from Waste Activated Sludge in Swine Wastewater Treatment and Its Co-Digestion with Swine Slurry, Water Lily, and Lotus
by Sartika Indah Amalia Sudiarto, Hong Lim Choi, Anriansyah Renggaman and Arumuganainar Suresh
AgriEngineering 2025, 7(8), 254; https://doi.org/10.3390/agriengineering7080254 - 7 Aug 2025
Viewed by 701
Abstract
Waste activated sludge (WAS), a byproduct of livestock wastewater treatment, poses significant disposal challenges due to its low biodegradability and potential environmental impact. Anaerobic digestion (AD) offers a sustainable approach for methane recovery and sludge stabilization. This study evaluates the biomethane potential (BMP) [...] Read more.
Waste activated sludge (WAS), a byproduct of livestock wastewater treatment, poses significant disposal challenges due to its low biodegradability and potential environmental impact. Anaerobic digestion (AD) offers a sustainable approach for methane recovery and sludge stabilization. This study evaluates the biomethane potential (BMP) of WAS and its co-digestion with swine slurry (SS), water lily (Nymphaea spp.), and lotus (Nelumbo nucifera) shoot biomass to enhance methane yield. Batch BMP assays were conducted at substrate-to-inoculum (S/I) ratios of 1.0 and 0.5, with methane production kinetics analyzed using the modified Gompertz model. Mono-digestion of WAS yielded 259.35–460.88 NmL CH4/g VSadded, while co-digestion with SS, water lily, and lotus increased yields by 14.89%, 10.97%, and 16.89%, respectively, surpassing 500 NmL CH4/g VSadded. All co-digestion combinations exhibited synergistic effects (α > 1), enhancing methane production beyond individual substrate contributions. Lower S/I ratios improved methane yields and biodegradability, highlighting the role of inoculum availability. Co-digestion reduced the lag phase limitations of WAS and plant biomass, improving process efficiency. These findings demonstrate that co-digesting WAS with nutrient-rich co-substrates optimizes biogas production, supporting sustainable sludge management and renewable energy recovery in livestock wastewater treatment systems. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
Show Figures

Figure 1

22 pages, 4479 KB  
Article
MGMR-Net: Mamba-Guided Multimodal Reconstruction and Fusion Network for Sentiment Analysis with Incomplete Modalities
by Chengcheng Yang, Zhiyao Liang, Tonglai Liu, Zeng Hu and Dashun Yan
Electronics 2025, 14(15), 3088; https://doi.org/10.3390/electronics14153088 - 1 Aug 2025
Viewed by 773
Abstract
Multimodal sentiment analysis (MSA) faces key challenges such as incomplete modality inputs, long-range temporal dependencies, and suboptimal fusion strategies. To address these, we propose MGMR-Net, a Mamba-guided multimodal reconstruction and fusion network that integrates modality-aware reconstruction with text-centric fusion within an efficient state-space [...] Read more.
Multimodal sentiment analysis (MSA) faces key challenges such as incomplete modality inputs, long-range temporal dependencies, and suboptimal fusion strategies. To address these, we propose MGMR-Net, a Mamba-guided multimodal reconstruction and fusion network that integrates modality-aware reconstruction with text-centric fusion within an efficient state-space modeling framework. MGMR-Net consists of two core components: the Mamba-collaborative fusion module, which utilizes a two-stage selective state-space mechanism for fine-grained cross-modal alignment and hierarchical temporal integration, and the Mamba-enhanced reconstruction module, which employs continuous-time recurrence and dynamic gating to accurately recover corrupted or missing modality features. The entire network is jointly optimized via a unified multi-task loss, enabling simultaneous learning of discriminative features for sentiment prediction and reconstructive features for modality recovery. Extensive experiments on CMU-MOSI, CMU-MOSEI, and CH-SIMS datasets demonstrate that MGMR-Net consistently outperforms several baseline methods under both complete and missing modality settings, achieving superior accuracy, robustness, and generalization. Full article
(This article belongs to the Special Issue Application of Data Mining in Decision Support Systems (DSSs))
Show Figures

Figure 1

22 pages, 5351 KB  
Article
Hydrometallurgical Leaching of Copper and Cobalt from a Copper–Cobalt Ore by Aqueous Choline Chloride-Based Deep Eutectic Solvent Solutions
by Emmanuel Anuoluwapo Oke, Yorkabel Fedai and Johannes Hermanus Potgieter
Minerals 2025, 15(8), 815; https://doi.org/10.3390/min15080815 - 31 Jul 2025
Cited by 1 | Viewed by 1160
Abstract
The sustainable recovery of valuable metals such as Cu and Co from ores is a pressing need considering environmental and economic challenges. Therefore, this study evaluates the effectiveness of deep eutectic solvents (DESs) as alternative leaching agents for Cu and Co extraction. Four [...] Read more.
The sustainable recovery of valuable metals such as Cu and Co from ores is a pressing need considering environmental and economic challenges. Therefore, this study evaluates the effectiveness of deep eutectic solvents (DESs) as alternative leaching agents for Cu and Co extraction. Four DESs were prepared using choline chloride (ChCl) as a hydrogen bond acceptor (HBA) and oxalic acid (OA), ethylene glycol (EG), urea (U) and thiourea (TU) as hydrogen bond donors (HBDs). Leaching experiments were conducted with DESs supplemented with 30 wt.% water at varying temperatures, various solid-to-liquid ratios, and time durations. The ChCl:OA DES demonstrated the highest leaching efficiencies among the DESs tested on pure CuO and CoO, achieving 89.2% for Cu and 92.4% for Co (60 °C, 400 rpm, 6 h, −75 + 53 µm particle size, and 1:10 solid-to-liquid ratio). In addition, the dissolution kinetics, analysed using the shrinking core model (SCM), showed that the leaching process was mainly controlled by surface chemical reactions. The activation energy values for Cu and Co leaching were 46.8 kJ mol−1 and 51.4 kJ mol−1, respectively, supporting a surface chemical control mechanism. The results highlight the potential of ChCl:OA as a sustainable alternative for metal recovery. Full article
Show Figures

Graphical abstract

28 pages, 4562 KB  
Article
A Capacity-Constrained Weighted Clustering Algorithm for UAV Self-Organizing Networks Under Interference
by Siqi Li, Peng Gong, Weidong Wang, Jinyue Liu, Zhixuan Feng and Xiang Gao
Drones 2025, 9(8), 527; https://doi.org/10.3390/drones9080527 - 25 Jul 2025
Viewed by 516
Abstract
Compared to traditional ad hoc networks, self-organizing networks of unmanned aerial vehicle (UAV) are characterized by high node mobility, vulnerability to interference, wide distribution range, and large network scale, which make network management and routing protocol operation more challenging. Cluster structures can be [...] Read more.
Compared to traditional ad hoc networks, self-organizing networks of unmanned aerial vehicle (UAV) are characterized by high node mobility, vulnerability to interference, wide distribution range, and large network scale, which make network management and routing protocol operation more challenging. Cluster structures can be used to optimize network management and mitigate the impact of local topology changes on the entire network during collaborative task execution. To address the issue of cluster structure instability caused by the high mobility and vulnerability to interference in UAV networks, we propose a capacity-constrained weighted clustering algorithm for UAV self-organizing networks under interference. Specifically, a capacity-constrained partitioning algorithm based on K-means++ is developed to establish the initial node partitions. Then, a weighted cluster head (CH) and backup cluster head (BCH) selection algorithm is proposed, incorporating interference factors into the selection process. Additionally, a dynamic maintenance mechanism for the clustering network is introduced to enhance the stability and robustness of the network. Simulation results show that the algorithm achieves efficient node clustering under interference conditions, improving cluster load balancing, average cluster head maintenance time, and cluster head failure reconstruction time. Furthermore, the method demonstrates fast recovery capabilities in the event of node failures, making it more suitable for deployment in complex emergency rescue environments. Full article
(This article belongs to the Special Issue Unmanned Aerial Vehicles for Enhanced Emergency Response)
Show Figures

Figure 1

18 pages, 2688 KB  
Article
Eco-Friendly Leaching of Spent Lithium-Ion Battery Black Mass Using a Ternary Deep Eutectic Solvent System Based on Choline Chloride, Glycolic Acid, and Ascorbic Acid
by Furkan Nazlı, Işıl Hasdemir, Emircan Uysal, Halide Nur Dursun, Utku Orçun Gezici, Duygu Yesiltepe Özçelik, Fırat Burat and Sebahattin Gürmen
Minerals 2025, 15(8), 782; https://doi.org/10.3390/min15080782 - 25 Jul 2025
Viewed by 1323
Abstract
Lithium-ion batteries (LiBs) are utilized in numerous applications due to advancements in technology, and the recovery of end-of-life (EoL) LiBs is imperative for environmental and economic reasons. Pyrometallurgical and hydrometallurgical methods have been used in the recovery of metals such as Li, Co, [...] Read more.
Lithium-ion batteries (LiBs) are utilized in numerous applications due to advancements in technology, and the recovery of end-of-life (EoL) LiBs is imperative for environmental and economic reasons. Pyrometallurgical and hydrometallurgical methods have been used in the recovery of metals such as Li, Co, and Ni in the EoL LiBs. Hydrometallurgical methods, which have been demonstrated to exhibit higher recovery efficiency and reduced energy consumption, have garnered increased attention in recent research. Inorganic acids, including HCl, HNO3, and H2SO4, as well as organic acids such as acetic acid and citric acid, are employed in the hydrometallurgical recovery of these metals. It is imperative to acknowledge the environmental hazards posed by these acids. Consequently, solvometallurgical processes, which involve the use of organic solvents with minimal or no water, are gaining increasing attention as alternative or complementary techniques to conventional hydrometallurgical processes. In the context of solvent systems that have been examined for a range of solvometallurgical methods, deep eutectic solvents (DESs) have garnered particular interest due to their low toxicity, biodegradable nature, tunable properties, and efficient metal recovery potential. In this study, the leaching process of black mass containing graphite, LCO, NMC, and LMO was carried out in a short time using the ternary DES system. The ternary DES system consists of choline chloride (ChCl), glycolic acid (GLY), and ascorbic acid (AA). As a result of the leaching process of cathode powders in the black mass without any pre-enrichment process, Li, Co, Ni, and Mn elements passed into solution with an efficiency of over 95% at 60 °C and within 1 h. Moreover, the kinetics of the leaching process was investigated, and Density Functional Theory (DFT) calculations were used to explain the leaching mechanism. Full article
Show Figures

Figure 1

36 pages, 3682 KB  
Article
Enhancing s-CO2 Brayton Power Cycle Efficiency in Cold Ambient Conditions Through Working Fluid Blends
by Paul Tafur-Escanta, Luis Coco-Enríquez, Robert Valencia-Chapi and Javier Muñoz-Antón
Entropy 2025, 27(7), 744; https://doi.org/10.3390/e27070744 - 11 Jul 2025
Viewed by 418
Abstract
Supercritical carbon dioxide (s-CO2) Brayton cycles have emerged as a promising technology for high-efficiency power generation, owing to their compact architecture and favorable thermophysical properties. However, their performance degrades significantly under cold-climate conditions—such as those encountered in Greenland, Russia, Canada, Scandinavia, [...] Read more.
Supercritical carbon dioxide (s-CO2) Brayton cycles have emerged as a promising technology for high-efficiency power generation, owing to their compact architecture and favorable thermophysical properties. However, their performance degrades significantly under cold-climate conditions—such as those encountered in Greenland, Russia, Canada, Scandinavia, and Alaska—due to the proximity to the fluid’s critical point. This study investigates the behavior of the recompression Brayton cycle (RBC) under subzero ambient temperatures through the incorporation of low-critical-temperature additives to create CO2-based binary mixtures. The working fluids examined include methane (CH4), tetrafluoromethane (CF4), nitrogen trifluoride (NF3), and krypton (Kr). Simulation results show that CH4- and CF4-rich mixtures can achieve thermal efficiency improvements of up to 10 percentage points over pure CO2. NF3-containing blends yield solid performance in moderately cold environments, while Kr-based mixtures provide modest but consistent efficiency gains. At low compressor inlet temperatures, the high-temperature recuperator (HTR) becomes the dominant performance-limiting component. Optimal distribution of recuperator conductance (UA) favors increased HTR sizing when mixtures are employed, ensuring effective heat recovery across larger temperature differentials. The study concludes with a comparative exergy analysis between pure CO2 and mixture-based cycles in RBC architecture. The findings highlight the potential of custom-tailored working fluids to enhance thermodynamic performance and operational stability of s-CO2 power systems under cold-climate conditions. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

16 pages, 761 KB  
Article
Combined Continuous Resin Adsorption and Anaerobic Digestion of Olive Mill Wastewater for Polyphenol and Energy Recovery
by Chaimaa Hakim, Mounsef Neffa, Abdessadek Essadek, Audrey Battimelli, Renaud Escudie, Diana García-Bernet, Jérôme Harmand and Hélène Carrère
Energies 2025, 18(13), 3226; https://doi.org/10.3390/en18133226 - 20 Jun 2025
Viewed by 736
Abstract
Olive mill wastewater (OMWW) has high energetic potential due to its organic load, but its complex composition and toxicity limit efficient energy recovery. This study proposes an innovative integrated process combining continuous resin adsorption with anaerobic digestion to detoxify OMWW and recover renewable [...] Read more.
Olive mill wastewater (OMWW) has high energetic potential due to its organic load, but its complex composition and toxicity limit efficient energy recovery. This study proposes an innovative integrated process combining continuous resin adsorption with anaerobic digestion to detoxify OMWW and recover renewable energy simultaneously. It studies the recovery of polyphenols, methane production, and substrate degradation efficiency using resin column bed heights (C1: 5.7 cm, C2: 12.1 cm, C3: 18.5 cm), as well as kinetic modeling of organic matter degradation. Adsorption reduced chemical oxygen demand (COD) by up to 80% and polyphenols by up to 64%, which significantly improved substrate biodegradability from 34% to 82%, corresponding to a methane yield of 287 mL CH4/g COD. Organic matter was fractioned into rapid (S1), moderate (S2), and slow (S3) biodegradable fractions. The highest degradation kinetics was C3, with methane production rates of K1 = 23.86, K2 = 2.47, and K3 = 2.92 mL CH4/d. However, this condition produced the lowest volumetric methane production due to excessive COD removal, including readily biodegradable matter. These results highlight the importance of optimizing the adsorption step in order to find to a balance between detoxification and energy recovery from OMWW, thus supporting the principles of circular economy and promoting renewable energy production. Full article
(This article belongs to the Special Issue Sustainable Biomass Conversion: Innovations and Environmental Impacts)
Show Figures

Figure 1

19 pages, 289 KB  
Review
Solvometallurgy as Alternative to Pyro- and Hydrometallurgy for Lithium, Cobalt, Nickel, and Manganese Extraction from Black Mass Processing: State of the Art
by Alessandra Zanoletti, Alberto Mannu and Antonella Cornelio
Materials 2025, 18(12), 2761; https://doi.org/10.3390/ma18122761 - 12 Jun 2025
Cited by 1 | Viewed by 1162
Abstract
The rapid growth in lithium-ion battery (LIB) demand has underscored the urgent need for sustainable recycling methods to recover critical metals such as lithium, cobalt, nickel, and manganese. Traditional pyrometallurgical and hydrometallurgical approaches often suffer from high energy consumption, environmental impact, and limited [...] Read more.
The rapid growth in lithium-ion battery (LIB) demand has underscored the urgent need for sustainable recycling methods to recover critical metals such as lithium, cobalt, nickel, and manganese. Traditional pyrometallurgical and hydrometallurgical approaches often suffer from high energy consumption, environmental impact, and limited metal selectivity. As an emerging alternative, solvometallurgy, and in particular the use of low-melting mixtures solvents, including deep eutectic solvents, offers a low-temperature, tunable, and potentially more environmentally compatible pathway for black mass processing. This review presents a comprehensive assessment of the recent advances (2020–2025) in the application of LoMMSs for metal recovery from LCO and NCM cathodes, analyzing 71 reported systems across binary, ternary, hydrated, and non-ChCl-based solvent families. Extraction efficiencies, reaction kinetics, coordination mechanisms, and solvent recyclability are critically evaluated, highlighting how solvent structure influences performance and selectivity. Particular attention is given to the challenges of lithium recovery, solvent degradation, and environmental trade-offs such as energy usage, waste generation, and chemical stability. A comparative synthesis identifies the most promising systems based on their mechanistic behavior and industrial relevance. The future outlook emphasizes the need for greener formulations, enhanced lithium selectivity, and life-cycle integration to support circular economy goals in battery recycling. Full article
(This article belongs to the Special Issue Systems and Materials for Recycling Spent Lithium-Ion Batteries)
Back to TopTop