Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = CCAAT/enhancer-binding protein beta

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 12084 KB  
Article
Profiles of Monocyte Subsets and Fibrosis-Related Genes in Patients with Muscular Dystrophy Undergoing Intermittent Prednisone Therapy
by Asma Chikhaoui, Dorra Najjar, Sami Bouchoucha, Rim Boussetta, Nadia Ben Achour, Kalthoum Tizaoui, Ichraf Kraoua, Ilhem Turki and Houda Yacoub-Youssef
Int. J. Mol. Sci. 2025, 26(13), 5992; https://doi.org/10.3390/ijms26135992 - 22 Jun 2025
Viewed by 854
Abstract
Muscle dystrophies are a group of genetic disorders characterized by progressive muscle degeneration. Prednisone is a glucocorticoid drug widely used to prevent muscle weakness in these diseases. Despite its known beneficial role, the effect of intermittent delivery on monocytes’ polarization and on dystrophic [...] Read more.
Muscle dystrophies are a group of genetic disorders characterized by progressive muscle degeneration. Prednisone is a glucocorticoid drug widely used to prevent muscle weakness in these diseases. Despite its known beneficial role, the effect of intermittent delivery on monocytes’ polarization and on dystrophic muscle microenvironment has not yet been thoroughly investigated. In this study, our aim was to identify the phenotype of monocyte subsets in blood and the expression of fibrosis-related genes in dystrophic muscle biopsies in patients receiving intermittent prednisone therapy. We found an increased rate of classical monocytes and a decreased rate of non-classical monocytes that expressed anti-inflammatory marker CD206 in treated patients. In dystrophic muscles, 21 fibrosis-related genes were altered, among which we identified CCAAT/enhancer-binding protein beta CEBPB. Both classical monocytes and CEBPB are known for their roles in stimulating collagen 1 production, a probable marker hampering monocyte/macrophage function. Hence, in some patients with muscular dystrophy, intermittent prednisone treatment could shift the monocytes’ phenotype toward an M2, senescent-like profile. This seems to decrease the inflammatory infiltrate in muscle tissue, an observation that needs to be further confirmed. Full article
(This article belongs to the Special Issue Pathophysiology and Treatment of Congenital Neuromuscular Disorders)
Show Figures

Figure 1

17 pages, 2539 KB  
Article
C/EBPβ Regulates HIF-1α-Driven Invasion of Non-Small-Cell Lung Cancer Cells
by Seung Hee Seo, Ji Hae Lee, Eun Kyung Choi, Seung Bae Rho and Kyungsil Yoon
Biomolecules 2025, 15(1), 36; https://doi.org/10.3390/biom15010036 - 30 Dec 2024
Cited by 1 | Viewed by 1357
Abstract
Metastatic cancer accounts for most cancer-related deaths, and identifying specific molecular targets that contribute to metastatic progression is crucial for the development of effective treatments. Hypoxia, a feature of solid tumors, plays a role in cancer progression by inducing resistance to therapy and [...] Read more.
Metastatic cancer accounts for most cancer-related deaths, and identifying specific molecular targets that contribute to metastatic progression is crucial for the development of effective treatments. Hypoxia, a feature of solid tumors, plays a role in cancer progression by inducing resistance to therapy and accelerating metastasis. Here, we report that CCAAT/enhancer-binding protein beta (C/EBPβ) transcriptionally regulates hypoxia-inducible factor 1 subunit alpha (HIF1A) and thus promotes migration and invasion of non-small-cell lung cancer (NSCLC) cells under hypoxic conditions. Our results show that knockdown or forced expression of C/EBPβ was correlated with HIF-1α expression and that C/EBPβ directly bound to the promoter region of HIF1A. Silencing HIF1A inhibited the enhanced migration and invasion induced by C/EBPβ overexpression in NSCLC cells under hypoxia. Expression of the HIF-1α target gene, SLC2A1, was also altered in a C/EBPβ-dependent manner, and knockdown of SLC2A1 reduced migration and invasion enhanced by C/EBPβ overexpression. These results indicate that C/EBPβ is a critical regulator for the invasion of NSCLC cells in the hypoxic tumor microenvironment. Collectively, the C/EBPβ-HIF-1α-GLUT1 axis represents a potential therapeutic target for preventing metastatic progression of NSCLC and improving patient outcomes. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

10 pages, 2235 KB  
Article
CCAAT/Enhancer-Binding Protein β (C/EBPβ) Regulates Calcium Deposition in Smooth Muscle Cells
by Nakwon Choe, Sera Shin, Young-Kook Kim, Hyun Kook and Duk-Hwa Kwon
Int. J. Mol. Sci. 2024, 25(24), 13667; https://doi.org/10.3390/ijms252413667 - 20 Dec 2024
Cited by 1 | Viewed by 1144
Abstract
Calcium deposition in vascular smooth muscle cells (VSMCs), a form of ectopic ossification in blood vessels, can result in rigidity of the vasculature and an increase in cardiac events. Here, we report that CCAAT/enhancer-binding protein beta (C/EBPβ) potentiates calcium deposition in VSMCs and [...] Read more.
Calcium deposition in vascular smooth muscle cells (VSMCs), a form of ectopic ossification in blood vessels, can result in rigidity of the vasculature and an increase in cardiac events. Here, we report that CCAAT/enhancer-binding protein beta (C/EBPβ) potentiates calcium deposition in VSMCs and mouse aorta induced by inorganic phosphate (Pi) or vitamin D3. Based on cDNA microarray and RNA sequencing data of Pi-treated rat VSMCs, C/EBPβ was found to be upregulated and thus selected for further evaluation. Quantitative RT-PCR and Western blot analysis confirmed that C/EBPβ was upregulated in Pi-treated A10 cells, a rat VSMC line, as well as vitamin D3-treated mouse aorta. The overexpression of C/EBPβ in A10 cells increased bone runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), and osteopontin (OPN) mRNA in the presence of Pi, as well as potentiating the Pi-induced increase in calcium contents. The Runx2 expression was increased by C/EBPβ through Runx2 P2 promotor. Our results suggest that a Pi-induced increase in C/EBPβ is a critical step in vascular calcification. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

15 pages, 2286 KB  
Article
Difenoconazole Induced Damage of Bovine Mammary Epithelial Cells via ER Stress and Inflammatory Response
by Myoung-Jun Na, Won-Young Lee and Hyun-Jung Park
Cells 2024, 13(20), 1715; https://doi.org/10.3390/cells13201715 - 17 Oct 2024
Cited by 2 | Viewed by 1670
Abstract
Difenoconazole (DIF) is a fungicide used to control various fungi. It is absorbed on the surface of different plants and contributes significantly to increased crop production. However, DIF is reported to exhibit toxicity to fungi and to aquatic plants, fish, and mammals, including [...] Read more.
Difenoconazole (DIF) is a fungicide used to control various fungi. It is absorbed on the surface of different plants and contributes significantly to increased crop production. However, DIF is reported to exhibit toxicity to fungi and to aquatic plants, fish, and mammals, including humans, causing adverse effects. However, research on the impact of DIF on the mammary epithelial cells of herbivorous bovines is limited. DIF-induced damage and accumulation in the mammary glands can have direct and indirect effects on humans. Therefore, we investigated the effects and mechanisms of DIF toxicity in MAC-T cells. The current study revealed that DIF reduces cell viability and proliferation while triggering apoptotic cell death through the upregulation of pro-apoptotic proteins, including cleaved caspase 3 and Bcl-2-associated X protein (BAX), and the downregulation of leukemia type 2 (BCL-2). DIF also induced endoplasmic reticulum (ER) stress by increasing the expression of genes or proteins of Bip/GRP78, protein disulfide isomerase (PDI), activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP), and endoplasmic reticulum oxidoreductase 1 Alpha (ERO1-Lα). We demonstrated that DIF induces mitochondria-mediated apoptosis in MAC-T cells by activating ER stress pathways. This cellular damage resulted in a significant increase in the expression of inflammatory response genes and proteins, including cyclooxygenase 2 (COX2), transforming growth factor beta 3 (TGFB3), CCAAT enhancer binding protein delta (CEBPD), and iNOS, in DIF-treated groups. In addition, spheroid formation by MAC-T cells was suppressed by DIF treatment. Our findings suggest that DIF exposure in dairy cows may harm mammary gland function and health and may indirectly affect human consumption of milk. Full article
Show Figures

Graphical abstract

17 pages, 3180 KB  
Article
Transcriptome Analysis Reveals the Early Development in Subcutaneous Adipose Tissue of Laiwu Piglets
by Liwen Bian, Zhaoyang Di, Mengya Xu, Yuhan Tao, Fangyuan Yu, Qingyan Jiang, Yulong Yin and Lin Zhang
Animals 2024, 14(20), 2955; https://doi.org/10.3390/ani14202955 - 14 Oct 2024
Viewed by 1663
Abstract
Adipose tissue plays an important role in pig production efficiency. Studies have shown that postnatal development has a vital impact on adipose tissue; however, the mechanisms behind pig adipose tissue early-life programming remain unknown. In this study, we analyzed the transcriptomes of the [...] Read more.
Adipose tissue plays an important role in pig production efficiency. Studies have shown that postnatal development has a vital impact on adipose tissue; however, the mechanisms behind pig adipose tissue early-life programming remain unknown. In this study, we analyzed the transcriptomes of the subcutaneous adipose tissue (SAT) of 1-day and 21-day old Laiwu piglets. The results showed that the SAT of Laiwu piglets significantly increased from 1-day to 21-day, and transcriptome analysis showed that there were 2352 and 2596 differentially expressed genes (DEGs) between 1-day and 21-day SAT in male and female piglets, respectively. Expression of genes in glycolysis, gluconeogenesis, and glycogen metabolism such as pyruvate kinase M1/2 (PKM), phosphoenolpyruvate carboxy kinase 1 (PCK1) and amylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase (AGL) were significantly different between 1-day and 21-day SAT. Genes in lipid uptake, synthesis and lipolysis such as lipase E (LIPE), acetyl-CoA carboxylase alpha (ACACA), Stearoyl-CoA desaturase (SCD), and 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) were also differentially expressed. Functional analysis showed enrichment of DEGs in transcriptional regulation, protein metabolism and cellular signal transduction. The protein–protein interaction (PPI) networks of these DEGs were analyzed and potential hub genes in these pathways were identified, such as transcriptional factors forkhead box O4 (FOXO4), CCAAT enhancer binding protein beta (CEBPB) and CCAAT enhancer binding protein delta (CEBPD), signal kinases BUB1 mitotic checkpoint serine/threonine kinase (BUB1) and cyclin-dependent kinase 1 (CDK1), and proteostasis-related factors ubiquitin conjugating enzyme E2 C (UBE2C) and cathepsin D (CTSD). Moreover, we further analyzed the transcriptomes of SAT between genders and the results showed that there were 54 and 72 DEGs in 1-day and 21-day old SAT, respectively. Genes such as KDM5D and KDM6C showed gender-specific expression in 1-day and 21-day SAT. These results showed the significant changes in SAT between 1-day and 21-day in male and female Laiwu pigs, which would provide information to comprehensively understand the programming of adipose tissue early development and to regulate adipose tissue function. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

16 pages, 5371 KB  
Article
The SIRT5-Mediated Upregulation of C/EBPβ Promotes White Adipose Tissue Browning by Enhancing UCP1 Signaling
by Xiangyun Zhai, Liping Dang, Shiyu Wang and Chao Sun
Int. J. Mol. Sci. 2024, 25(19), 10514; https://doi.org/10.3390/ijms251910514 - 29 Sep 2024
Cited by 2 | Viewed by 1975
Abstract
Sirtuin 5 (SIRT5) plays an important role in the maintenance of lipid metabolism and in white adipose tissue browning. In this study, we established a mouse model for diet-induced obesity and the browning of white fat; combined with gene expression intervention, transcriptome sequencing, [...] Read more.
Sirtuin 5 (SIRT5) plays an important role in the maintenance of lipid metabolism and in white adipose tissue browning. In this study, we established a mouse model for diet-induced obesity and the browning of white fat; combined with gene expression intervention, transcriptome sequencing, and cell molecular biology methods, the regulation and molecular mechanisms of SIRT5 on fat deposition and beige fat formation were studied. The results showed that the loss of SIRT5 in obese mice exacerbated white adipose tissue deposition and metabolic inflexibility. Furthermore, the deletion of SIRT5 in a white-fat-browning mouse increased the succinylation of uncoupling protein 1 (UCP1), resulting in a loss of the beiging capacity of the subcutaneous white adipose tissue and impaired cold tolerance. Mechanistically, the inhibition of SIRT5 results in impaired CCAAT/enhancer binding protein beta (C/EBPβ) expression in brown adipocytes, which in turn reduces the UCP1 transcriptional pathway. Thus, the transcription of UCP1 mediated by the SIRT5-C/EBPβ axis is critical in regulating energy balance and obesity-related metabolism. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

17 pages, 4681 KB  
Article
Hydrogen Sulfide-Releasing Indomethacin-Derivative (ATB-344) Prevents the Development of Oxidative Gastric Mucosal Injuries
by Urszula Głowacka, Marcin Magierowski, Zbigniew Śliwowski, Jakub Cieszkowski, Małgorzata Szetela, Dagmara Wójcik-Grzybek, Anna Chmura, Tomasz Brzozowski, John L. Wallace and Katarzyna Magierowska
Antioxidants 2023, 12(8), 1545; https://doi.org/10.3390/antiox12081545 - 2 Aug 2023
Cited by 6 | Viewed by 3187
Abstract
Hydrogen sulfide (H2S) emerged recently as an anti-oxidative signaling molecule that contributes to gastrointestinal (GI) mucosal defense and repair. Indomethacin belongs to the class of non-steroidal anti-inflammatory drugs (NSAIDs) and is used as an effective intervention in the treatment of gout- [...] Read more.
Hydrogen sulfide (H2S) emerged recently as an anti-oxidative signaling molecule that contributes to gastrointestinal (GI) mucosal defense and repair. Indomethacin belongs to the class of non-steroidal anti-inflammatory drugs (NSAIDs) and is used as an effective intervention in the treatment of gout- or osteoarthritis-related inflammation. However, its clinical use is strongly limited since indomethacin inhibits gastric mucosal prostaglandin (PG) biosynthesis, predisposing to or even inducing ulcerogenesis. The H2S moiety was shown to decrease the GI toxicity of some NSAIDs. However, the GI safety and anti-oxidative effect of a novel H2S-releasing indomethacin derivative (ATB-344) remain unexplored. Thus, we aimed here to compare the impact of ATB-344 and classic indomethacin on gastric mucosal integrity and their ability to counteract the development of oxidative gastric mucosal injuries. Wistar rats were pretreated intragastrically (i.g.) with vehicle, ATB-344 (7–28 mg/kg i.g.), or indomethacin (5–20 mg/kg i.g.). Next, animals were exposed to microsurgical gastric ischemia-reperfusion (I/R). Gastric damage was assessed micro- and macroscopically. The volatile H2S level was assessed in the gastric mucosa using the modified methylene blue method. Serum and gastric mucosal PGE2 and 8-hydroxyguanozine (8-OHG) concentrations were evaluated by ELISA. Molecular alterations for gastric mucosal barrier-specific targets such as cyclooxygenase-1 (COX)-1, COX-2, heme oxygenase-1 (HMOX)-1, HMOX-2, superoxide dismutase-1 (SOD)-1, SOD-2, hypoxia inducible factor (HIF)-1α, xanthine oxidase (XDH), suppressor of cytokine signaling 3 (SOCS3), CCAAT enhancer binding protein (C/EBP), annexin A1 (ANXA1), interleukin 1 beta (IL-1β), interleukin 1 receptor type I (IL-1R1), interleukin 1 receptor type II (IL-1R2), inducible nitric oxide synthase (iNOS), tumor necrosis factor receptor 2 (TNFR2), or H2S-producing enzymes, cystathionine γ-lyase (CTH), cystathionine β-synthase (CBS), or 3-mercaptopyruvate sulfur transferase (MPST), were assessed at the mRNA level by real-time PCR. ATB-344 (7 mg/kg i.g.) reduced the area of gastric I/R injuries in contrast to an equimolar dose of indomethacin. ATB-344 increased gastric H2S production, did not affect gastric mucosal PGE2 content, prevented RNA oxidation, and maintained or enhanced the expression of oxidation-sensitive HMOX-1 and SOD-2 in line with decreased IL-1β and XDH. We conclude that due to the H2S-releasing ability, i.g., treatment with ATB-344 not only exerts dose-dependent GI safety but even enhances gastric mucosal barrier capacity to counteract acute oxidative injury development when applied at a low dose of 7 mg/kg, in contrast to classic indomethacin. ATB-344 (7 mg/kg) inhibited COX activity on a systemic level but did not affect cytoprotective PGE2 content in the gastric mucosa and, as a result, evoked gastroprotection against oxidative damage. Full article
Show Figures

Figure 1

26 pages, 3898 KB  
Article
CEBP-β and PLK1 as Potential Mediators of the Breast Cancer/Obesity Crosstalk: In Vitro and In Silico Analyses
by Felice Maria Accattatis, Amanda Caruso, Alfonso Carleo, Piercarlo Del Console, Luca Gelsomino, Daniela Bonofiglio, Cinzia Giordano, Ines Barone, Sebastiano Andò, Laura Bianchi and Stefania Catalano
Nutrients 2023, 15(13), 2839; https://doi.org/10.3390/nu15132839 - 22 Jun 2023
Cited by 3 | Viewed by 3020
Abstract
Over the last two decades, obesity has reached pandemic proportions in several countries, and expanding evidence is showing its contribution to several types of malignancies, including breast cancer (BC). The conditioned medium (CM) from mature adipocytes contains a complex of secretes that may [...] Read more.
Over the last two decades, obesity has reached pandemic proportions in several countries, and expanding evidence is showing its contribution to several types of malignancies, including breast cancer (BC). The conditioned medium (CM) from mature adipocytes contains a complex of secretes that may mimic the obesity condition in studies on BC cell lines conducted in vitro. Here, we report a transcriptomic analysis on MCF-7 BC cells exposed to adipocyte-derived CM and focus on the predictive functional relevance that CM-affected pathways/processes and related biomarkers (BMs) may have in BC response to obesity. CM was demonstrated to increase cell proliferation, motility and invasion as well as broadly alter the transcript profiles of MCF-7 cells by significantly modulating 364 genes. Bioinformatic functional analyses unraveled the presence of five highly relevant central hubs in the direct interaction networks (DIN), and Kaplan–Meier analysis sorted the CCAAT/enhancer binding protein beta (CEBP-β) and serine/threonine-protein kinase PLK1 (PLK1) as clinically significant biomarkers in BC. Indeed, CEBP-β and PLK1 negatively correlated with BC overall survival and were up-regulated by adipocyte-derived CM. In addition to their known involvement in cell proliferation and tumor progression, our work suggests them as a possible “deus ex machina” in BC response to fat tissue humoral products in obese women. Full article
(This article belongs to the Section Nutrigenetics and Nutrigenomics)
Show Figures

Figure 1

26 pages, 2063 KB  
Review
Basic Leucine Zipper Transcription Factors as Important Regulators of Leydig Cells’ Functions
by Luc J. Martin and Ha Tuyen Nguyen
Int. J. Mol. Sci. 2022, 23(21), 12887; https://doi.org/10.3390/ijms232112887 - 25 Oct 2022
Cited by 18 | Viewed by 4159
Abstract
Transcription factors members of the basic leucine zipper (bZIP) class play important roles in the regulation of genes and functions in testicular Leydig cells. Many of these factors, such as cAMP responsive element binding protein 1 (CREB1) and CCAAT enhancer binding protein beta [...] Read more.
Transcription factors members of the basic leucine zipper (bZIP) class play important roles in the regulation of genes and functions in testicular Leydig cells. Many of these factors, such as cAMP responsive element binding protein 1 (CREB1) and CCAAT enhancer binding protein beta (CEBPB), are regulated by the cAMP/protein kinase A (PKA) pathway, the main signaling pathway activated following the activation of the luteinizing hormone/choriogonadotropin membrane receptor LHCGR by the - hormone LH. Others, such as X-box binding protein 1 (XBP1) and members of the cAMP responsive element binding protein 3 (CREB3)-like superfamily, are implicated in the endoplasmic reticulum stress by regulating the unfolded protein response. In this review, the influences of bZIP transcription factors, including CREB1, CEBPB and activator protein 1 (AP-1) family members, on the regulation of genes important for cell proliferation, steroidogenesis and Leydig cell communication will be covered. In addition, unresolved questions regarding the mechanisms of actions of bZIP members in gene regulation will be identified. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Steroid Hormone Biosynthesis and Action)
Show Figures

Figure 1

11 pages, 4089 KB  
Article
Ameliorative Effects of Lactobacillus plantarum HAC01 Lysate on 3T3-L1 Adipocyte Differentiation via AMPK Activation and MAPK Inhibition
by Jong-Yeon Kim, Eun-Jung Park and Hae-Jeung Lee
Int. J. Mol. Sci. 2022, 23(11), 5901; https://doi.org/10.3390/ijms23115901 - 24 May 2022
Cited by 5 | Viewed by 4121
Abstract
Lactobacillus plantarum HAC01 has been shown to effectively treat metabolic diseases. However, the precise pharmacological effects and molecular mechanisms of L. plantarum HAC01 remain unclear. In this study, we investigate the anti-adipogenic effects of L. plantarum HAC01 lysate and its associated mechanism of [...] Read more.
Lactobacillus plantarum HAC01 has been shown to effectively treat metabolic diseases. However, the precise pharmacological effects and molecular mechanisms of L. plantarum HAC01 remain unclear. In this study, we investigate the anti-adipogenic effects of L. plantarum HAC01 lysate and its associated mechanism of action. To induce lipid accumulation, 3T3-L1 cells were incubated in differentiation media with or without L. plantarum HAC01 lysate. Our results show that L. plantarum HAC01 lysate treatment not only reduced lipid accumulation during the differentiation of 3T3-L1 cells, but also decreased the expression of adipogenic and lipogenic genes involved in lipid metabolism in a dose-dependent manner. Additionally, L. plantarum HAC01 lysate inhibited CCAAT/enhancer-binding protein (C/EBP) beta within 4 h of differentiation induction and inhibited peroxisome proliferator-activated receptor gamma, C/EBP alpha, and sterol regulatory element-binding proteins within 2 d. Moreover, treatment with L. plantarum HAC01 lysate increased the phosphorylation of adenosine monophosphate-activated protein kinase, an important regulator of energy metabolism, and decreased the phosphorylation of mitogen-activated protein kinase. These results indicate that L. plantarum HAC01 lysate may have anti-adipogenic effects and support its potential as a useful agent for the treatment of obesity. Full article
Show Figures

Figure 1

11 pages, 2273 KB  
Article
Phytochemical Combination (p-Synephrine, p-Octopamine Hydrochloride, and Hispidulin) for Improving Obesity in Obese Mice Induced by High-Fat Diet
by Dahae Lee, Ji Hwan Lee, Byoung Ha Kim, Sanghyun Lee, Dong-Wook Kim and Ki Sung Kang
Nutrients 2022, 14(10), 2164; https://doi.org/10.3390/nu14102164 - 23 May 2022
Cited by 14 | Viewed by 3341
Abstract
Obesity treatment efficiency can be increased by targeting both central and peripheral pathways. In a previous study, we identified two natural compounds (hispidulin and p-synephrine) that affect adipocyte differentiation. We tested whether obesity treatment efficiency may be improved by adding an appetite-controlling [...] Read more.
Obesity treatment efficiency can be increased by targeting both central and peripheral pathways. In a previous study, we identified two natural compounds (hispidulin and p-synephrine) that affect adipocyte differentiation. We tested whether obesity treatment efficiency may be improved by adding an appetite-controlling agent to the treatment in the present study. Alkaloids, such as p-octopamine, are adrenergic agonists and are thus used as dietary supplements to achieve weight loss. Here, we assessed anti-obesity effects of a mixture of p-synephrine, p-octopamine HCl, and hispidulin (SOH) on murine preadipocyte cells and on mice receiving a high-fat diet (HFD). SOH showed stronger inhibition of the formation of red-stained lipid droplets than co-treatment with hispidulin and p-synephrine. Moreover, SOH reduced the expression of adipogenic marker proteins, including CCAAT/enhancer-binding protein alpha, CCAAT/enhancer-binding protein beta, and peroxisome proliferator-activated receptor gamma. In the HFD-induced obesity model, body weight and dietary intake were lower in mice treated with SOH than in the controls. Additionally, liver weight and the levels of alanine aminotransferase and total cholesterol were lower in SOH-treated mice than in the controls. In conclusion, our results suggest that consumption of SOH may be a potential alternative strategy to counteract obesity. Full article
(This article belongs to the Special Issue The Perspectives of Plant Natural Products for Mitigation of Obesity)
Show Figures

Figure 1

18 pages, 2944 KB  
Article
Epigallocatechine-3-gallate Inhibits the Adipogenesis of Human Mesenchymal Stem Cells via the Regulation of Protein Phosphatase-2A and Myosin Phosphatase
by Bálint Bécsi, Zoltán Kónya, Anita Boratkó, Katalin Kovács and Ferenc Erdődi
Cells 2022, 11(10), 1704; https://doi.org/10.3390/cells11101704 - 20 May 2022
Cited by 4 | Viewed by 3080
Abstract
Epigallocatechin-3-gallate (EGCG) has widespread effects on adipocyte development. However, the molecular mechanisms of EGCG are not fully understood. We investigate the adipogenic differentiation of human-derived mesenchymal stem cells, including lipid deposition and changes in the expression and phosphorylation of key transcription factors, myosin, [...] Read more.
Epigallocatechin-3-gallate (EGCG) has widespread effects on adipocyte development. However, the molecular mechanisms of EGCG are not fully understood. We investigate the adipogenic differentiation of human-derived mesenchymal stem cells, including lipid deposition and changes in the expression and phosphorylation of key transcription factors, myosin, protein phosphatase-2A (PP2A), and myosin phosphatase (MP). On day 6 of adipogenic differentiation, EGCG (1–20 µM) suppressed lipid droplet formation, which was counteracted by an EGCG-binding peptide for the 67 kDa laminin receptor (67LR), suggesting that EGCG acts via 67LR. EGCG decreased the phosphorylation of CCAAT-enhancer-binding protein beta via the activation of PP2A in a protein kinase A (PKA)-dependent manner, leading to the partial suppression of peroxisome proliferator-activated receptor gamma (PPARγ) and adiponectin expression. Differentiated cells exhibited a rounded shape, cortical actin filaments, and lipid accumulation. The EGCG treatment induced cell elongation, stress fiber formation, and less lipid accumulation. These effects were accompanied by the degradation of the MP target subunit-1 and increased the phosphorylation of the 20 kDa myosin light chain. Our results suggest that EGCG acts as an agonist of 67LR to inhibit adipogenesis via the activation of PP2A and suppression of MP. These events are coupled with the decreased phosphorylation and expression levels of adipogenic transcription factors and changes in cell shape, culminating in curtailed adipogenesis. Full article
Show Figures

Figure 1

12 pages, 5444 KB  
Article
In Vitro Analysis of TGF-β Signaling Modulation of Porcine Alveolar Macrophages in Porcine Circovirus Type 2b Infection
by Shunli Yang, Muhammad Umar Zafar Khan, Baohong Liu, Muhammad Humza, Shuanghui Yin and Jianping Cai
Vet. Sci. 2022, 9(3), 101; https://doi.org/10.3390/vetsci9030101 - 24 Feb 2022
Cited by 5 | Viewed by 4434
Abstract
Porcine circovirus 2 (PCV2) has been recognized as an immunosuppressive pathogen. However, the crosstalk between this virus and its host cells in related signaling pathways remains poorly understood. In this study, the expression profiles of 84 genes involved in transforming growth factor-beta (TGF-β) [...] Read more.
Porcine circovirus 2 (PCV2) has been recognized as an immunosuppressive pathogen. However, the crosstalk between this virus and its host cells in related signaling pathways remains poorly understood. In this study, the expression profiles of 84 genes involved in transforming growth factor-beta (TGF-β) signaling pathway were probed in PCV2b-infected primary porcine alveolar macrophages (PAMs) by using an RT2 profiler PCR array system. The protein expression levels of cytokines involved in the TGF-β signaling pathway were determined with a RayBiotech fluorescent Quantibody® porcine cytokine array system. Results showed that 48, 30, and 42 genes were differentially expressed at 1, 24, and 48 h after infection, respectively. A large number of genes analyzed by a co-expression network and implicated in transcriptional regulation and apoptosis were differentially expressed in PCV2b-infected PAMs. Among these genes, TGF-β, interleukin-10, CCAAT/enhancer-binding protein beta (C/EBPB), growth arrest, and DNA-damage-inducible 45 beta (GADD45B), and BCL2 were upregulated. By contrast, SMAD family member 1 (smad1) and smad3 were downregulated. These results suggested that the TGF-β signaling pathway was repressed in PAMs at the early onset of PCV2 infection. The inhibited apoptosis was indicated by the upregulated C/EBPB, GADD45B, and BCL2, and by the downregulated smad1 and smad3, which possibly increased the duration of PCV2 replication-permissive conditions and caused a persistent infection. Our study may provide insights into the underlying antiviral functional changes in the immune system of PCV2-infected pigs. Full article
(This article belongs to the Topic Animal Diseases in Agricultural Production Systems)
Show Figures

Figure 1

18 pages, 4285 KB  
Article
KRAS Affects Adipogenic Differentiation by Regulating Autophagy and MAPK Activation in 3T3-L1 and C2C12 Cells
by Wenjie Yu, Cheng-Zhen Chen, Yanxia Peng, Ze Li, Yan Gao, Shuang Liang, Bao Yuan, Nam-Hyung Kim, Hao Jiang and Jia-Bao Zhang
Int. J. Mol. Sci. 2021, 22(24), 13630; https://doi.org/10.3390/ijms222413630 - 20 Dec 2021
Cited by 14 | Viewed by 4179
Abstract
Kirsten rat sarcoma 2 viral oncogene homolog (Kras) is a proto-oncogene that encodes the small GTPase transductor protein KRAS, which has previously been found to promote cytokine secretion, cell survival, and chemotaxis. However, its effects on preadipocyte differentiation and lipid accumulation [...] Read more.
Kirsten rat sarcoma 2 viral oncogene homolog (Kras) is a proto-oncogene that encodes the small GTPase transductor protein KRAS, which has previously been found to promote cytokine secretion, cell survival, and chemotaxis. However, its effects on preadipocyte differentiation and lipid accumulation are unclear. In this study, the effects of KRAS inhibition on proliferation, autophagy, and adipogenic differentiation as well as its potential mechanisms were analyzed in the 3T3-L1 and C2C12 cell lines. The results showed that KRAS was localized mainly in the nuclei of 3T3-L1 and C2C12 cells. Inhibition of KRAS altered mammalian target of rapamycin (Mtor), proliferating cell nuclear antigen (Pcna), Myc, peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein beta (C/ebp-β), diacylglycerol O-acyltransferase 1 (Dgat1), and stearoyl-coenzyme A desaturase 1 (Scd1) expression, thereby reducing cell proliferation capacity while inducing autophagy, enhancing differentiation of 3T3-L1 and C2C12 cells into mature adipocytes, and increasing adipogenesis and the capacity to store lipids. Moreover, during differentiation, KRAS inhibition reduced the levels of extracellular regulated protein kinases (ERK), c-Jun N-terminal kinase (JNK), p38, and phosphatidylinositol 3 kinase (PI3K) activation. These results show that KRAS has unique regulatory effects on cell proliferation, autophagy, adipogenic differentiation, and lipid accumulation. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 711 KB  
Review
Findings from Studies Are Congruent with Obesity Having a Viral Origin, but What about Obesity-Related NAFLD?
by Giovanni Tarantino, Vincenzo Citro and Mauro Cataldi
Viruses 2021, 13(7), 1285; https://doi.org/10.3390/v13071285 - 1 Jul 2021
Cited by 18 | Viewed by 5046
Abstract
Infection has recently started receiving greater attention as an unusual causative/inducing factor of obesity. Indeed, the biological plausibility of infectobesity includes direct roles of some viruses to reprogram host metabolism toward a more lipogenic and adipogenic status. Furthermore, the probability that humans may [...] Read more.
Infection has recently started receiving greater attention as an unusual causative/inducing factor of obesity. Indeed, the biological plausibility of infectobesity includes direct roles of some viruses to reprogram host metabolism toward a more lipogenic and adipogenic status. Furthermore, the probability that humans may exchange microbiota components (virome/virobiota) points out that the altered response of IFN and other cytokines, which surfaces as a central mechanism for adipogenesis and obesity-associated immune suppression, is due to the fact that gut microbiota uphold intrinsic IFN signaling. Last but not least, the adaptation of both host immune and metabolic system under persistent viral infections play a central role in these phenomena. We hereby discuss the possible link between adenovirus and obesity-related nonalcoholic fatty liver disease (NAFLD). The mechanisms of adenovirus-36 (Ad-36) involvement in hepatic steatosis/NAFLD consist in reducing leptin gene expression and insulin sensitivity, augmenting glucose uptake, activating the lipogenic and pro-inflammatory pathways in adipose tissue, and increasing the level of macrophage chemoattractant protein-1, all of these ultimately leading to chronic inflammation and altered lipid metabolism. Moreover, by reducing leptin expression and secretion Ad-36 may have in turn an obesogenic effect through increased food intake or decreased energy expenditure via altered fat metabolism. Finally, Ad-36 is involved in upregulation of cAMP, phosphatidylinositol 3-kinase, and p38 signaling pathways, downregulation of Wnt10b expression, increased expression of CCAAT/enhancer binding protein-beta, and peroxisome proliferator-activated receptor gamma 2 with consequential lipid accumulation. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop