Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = C-X3-C motif chemokine receptor 1 (CX3CR1)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 259 KiB  
Review
CX3CL1 Regulation of Gliosis in Neuroinflammatory and Neuroprotective Processes
by Irene L. Gutiérrez, David Martín-Hernández, Karina S. MacDowell, Borja García-Bueno, Javier R. Caso, Juan C. Leza and José L. M. Madrigal
Int. J. Mol. Sci. 2025, 26(3), 959; https://doi.org/10.3390/ijms26030959 - 23 Jan 2025
Viewed by 1323
Abstract
Among the different chemokines, C-X3-C motif chemokine ligand 1 or CX3CL1, also named fractalkine, is one of the most interesting due to its characteristics, including its unique structure, not shared by any other chemokine, and its ability to function both in a membrane-bound [...] Read more.
Among the different chemokines, C-X3-C motif chemokine ligand 1 or CX3CL1, also named fractalkine, is one of the most interesting due to its characteristics, including its unique structure, not shared by any other chemokine, and its ability to function both in a membrane-bound form and in a soluble form, among others. However, undoubtedly, its most relevant characteristic from the neuroscientific point of view is its role as a messenger used by neurons to communicate with microglia. The study of the interaction between both cell types and the key role that CX3CL1 seems to play has facilitated the identification of CX3CL1 as a crucial modulator of microglial activation and a promising target in the fight against neuroinflammation. As a result, numerous studies have contributed to elucidate the involvement of CX3CL1 and its specific receptor CCX3CR1 in the progression of different neuroinflammatory and neurodegenerative processes, with Alzheimer’s and Parkinson’s diseases being the most studied ones. However, the different animal and cellular models used to reproduce the pathological conditions to be analyzed, as well as the difficulties inherent to studies performed on human samples, have hindered the collection of compatible results in many cases. In this review, we summarize some of the most relevant data describing the alterations found for the CX3CL1/CX3CR1 signaling axis in different neurodegenerative conditions in which neuroinflammation is known to play a relevant role. Full article
22 pages, 3132 KiB  
Article
Neurosteroid [3α,5α]-3-Hydroxy-pregnan-20-one Enhances the CX3CL1-CX3CR1 Pathway in the Brain of Alcohol-Preferring Rats with Sex-Specificity
by Irina Balan, Adelina Grusca, Samantha Lucenell Chéry, Baylee R. Materia, Todd K. O’Buckley and A. Leslie Morrow
Life 2024, 14(7), 860; https://doi.org/10.3390/life14070860 - 9 Jul 2024
Cited by 1 | Viewed by 1539
Abstract
This study investigates the impact of allopregnanolone ([3α,5α]3-hydroxypregnan-20-one or 3α,5α-tetrahydroprogesterone (3α,5α-THP); 10 mg/kg, IP) on fractalkine/CX3-C motif chemokine ligand 1 (CX3CL1) levels, associated signaling components, and markers for microglial and astrocytic cells in the nucleus accumbens (NAc) of male and female alcohol-preferring (P) [...] Read more.
This study investigates the impact of allopregnanolone ([3α,5α]3-hydroxypregnan-20-one or 3α,5α-tetrahydroprogesterone (3α,5α-THP); 10 mg/kg, IP) on fractalkine/CX3-C motif chemokine ligand 1 (CX3CL1) levels, associated signaling components, and markers for microglial and astrocytic cells in the nucleus accumbens (NAc) of male and female alcohol-preferring (P) rats. Previous research suggested that 3α,5α-THP enhances anti-inflammatory interleukin-10 (IL-10) cytokine production in the brains of male P rats, with no similar effect observed in females. This study reveals that 3α,5α-THP elevates CX3CL1 levels by 16% in the NAc of female P rats, with no significant changes observed in males. The increase in CX3CL1 levels induced by 3α,5α-THP was observed in females across multiple brain regions, including the NAc, amygdala, hypothalamus, and midbrain, while no significant effect was noted in males. Additionally, female P rats treated with 3α,5α-THP exhibited notable increases in CX3CL1 receptor (CX3CR1; 48%) and transforming growth factor-beta 1 (TGF-β1; 24%) levels, along with heightened activation (phosphorylation) of signal transducer and activator of transcription 1 (STAT1; 85%) in the NAc. Conversely, no similar alterations were observed in male P rats. Furthermore, 3α,5α-THP decreased glial fibrillary acidic protein (GFAP) levels by 19% in both female and male P rat NAc, without affecting microglial markers ionized calcium-binding adaptor molecule 1 (IBA1) and transmembrane protein 119 (TMEM119). These findings indicate that 3α,5α-THP enhances the CX3CL1/CX3CR1 pathway in the female P rat brain but not in males, primarily influencing astrocyte reactivity, with no observed effect on microglial activation. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

14 pages, 2628 KiB  
Article
m6A Reader YTHDC1 Impairs Respiratory Syncytial Virus Infection by Downregulating Membrane CX3CR1 Expression
by Lucas W. Picavet, Ellen C. N. van Vroonhoven, Rianne C. Scholman, Yesper T. H. Smits, Rupa Banerjee, Sjanna B. Besteman, Mattheus C. Viveen, Michiel M. van der Vlist, Marvin E. Tanenbaum, Robert J. Lebbink, Sebastiaan J. Vastert and Jorg van Loosdregt
Viruses 2024, 16(5), 778; https://doi.org/10.3390/v16050778 - 14 May 2024
Cited by 6 | Viewed by 2209
Abstract
Respiratory syncytial virus (RSV) is the most prevalent cause of acute lower respiratory infection in young children. Currently, the first RSV vaccines are approved by the FDA. Recently, N6-methyladenosine (m6A) RNA methylation has been implicated in the regulation of the viral [...] Read more.
Respiratory syncytial virus (RSV) is the most prevalent cause of acute lower respiratory infection in young children. Currently, the first RSV vaccines are approved by the FDA. Recently, N6-methyladenosine (m6A) RNA methylation has been implicated in the regulation of the viral life cycle and replication of many viruses, including RSV. m6A methylation of RSV RNA has been demonstrated to promote replication and prevent anti-viral immune responses by the host. Whether m6A is also involved in viral entry and whether m6A can also affect RSV infection via different mechanisms than methylation of viral RNA is poorly understood. Here, we identify m6A reader YTH domain-containing protein 1 (YTHDC1) as a novel negative regulator of RSV infection. We demonstrate that YTHDC1 abrogates RSV infection by reducing the expression of RSV entry receptor CX3C motif chemokine receptor 1 (CX3CR1) on the cell surface of lung epithelial cells. Altogether, these data reveal a novel role for m6A methylation and YTHDC1 in the viral entry of RSV. These findings may contribute to the development of novel treatment options to control RSV infection. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Graphical abstract

19 pages, 4900 KiB  
Article
Discrepant Phenotyping of Monocytes Based on CX3CR1 and CCR2 Using Fluorescent Reporters and Antibodies
by Katrin Sommer, Hilal Garibagaoglu, Eva-Maria Paap, Maximilian Wiendl, Tanja M. Müller, Imke Atreya, Gerhard Krönke, Markus F. Neurath and Sebastian Zundler
Cells 2024, 13(10), 819; https://doi.org/10.3390/cells13100819 - 10 May 2024
Cited by 3 | Viewed by 2458
Abstract
Monocytes, as well as downstream macrophages and dendritic cells, are essential players in the immune system, fulfilling key roles in homeostasis as well as in inflammatory conditions. Conventionally, driven by studies on reporter models, mouse monocytes are categorized into a classical and a [...] Read more.
Monocytes, as well as downstream macrophages and dendritic cells, are essential players in the immune system, fulfilling key roles in homeostasis as well as in inflammatory conditions. Conventionally, driven by studies on reporter models, mouse monocytes are categorized into a classical and a non-classical subset based on their inversely correlated surface expression of Ly6C/CCR2 and CX3CR1. Here, we aimed to challenge this concept by antibody staining and reporter mouse models. Therefore, we took advantage of Cx3cr1GFP and Ccr2RFP reporter mice, in which the respective gene was replaced by a fluorescent reporter protein gene. We analyzed the expression of CX3CR1 and CCR2 by flow cytometry using several validated fluorochrome-coupled antibodies and compared them with the reporter gene signal in these reporter mouse strains. Although we were able to validate the specificity of the fluorochrome-coupled flow cytometry antibodies, mouse Ly6Chigh classical and Ly6Clow non-classical monocytes showed no differences in CX3CR1 expression levels in the peripheral blood and spleen when stained with these antibodies. On the contrary, in Cx3cr1GFP reporter mice, we were able to reproduce the inverse correlation of the CX3CR1 reporter gene signal and Ly6C surface expression. Furthermore, differential CCR2 surface expression correlating with the expression of Ly6C was observed by antibody staining, but not in Ccr2RFP reporter mice. In conclusion, our data suggest that phenotyping strategies for mouse monocyte subsets should be carefully selected. In accordance with the literature, the suitability of CX3CR1 antibody staining is limited, whereas for CCR2, caution should be applied when using reporter mice. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Figure 1

15 pages, 4807 KiB  
Article
Computational Insights into the Interaction of the Conserved Cysteine-Noose Domain of the Human Respiratory Syncytial Virus G Protein with the Canonical Fractalkine Binding site of Transmembrane Receptor CX3CR1 Isoforms
by João Victor Piloto, Raphael Vinicius Rodrigues Dias, Wan Suk Augusto Mazucato, Marcelo Andres Fossey, Fernando Alves de Melo, Fabio Ceneviva Lacerda Almeida, Fatima Pereira de Souza and Icaro Putinhon Caruso
Membranes 2024, 14(4), 84; https://doi.org/10.3390/membranes14040084 - 4 Apr 2024
Cited by 2 | Viewed by 2350
Abstract
The human Respiratory Syncytial Virus (hRSV) stands as one of the most common causes of acute respiratory diseases. The infectivity of this virus is intricately linked to its membrane proteins, notably the attachment glycoprotein (G protein). The latter plays a key role in [...] Read more.
The human Respiratory Syncytial Virus (hRSV) stands as one of the most common causes of acute respiratory diseases. The infectivity of this virus is intricately linked to its membrane proteins, notably the attachment glycoprotein (G protein). The latter plays a key role in facilitating the attachment of hRSV to respiratory tract epithelial cells, thereby initiating the infection process. The present study aimed to characterize the interaction of the conserved cysteine-noose domain of hRSV G protein (cndG) with the transmembrane CX3C motif chemokine receptor 1 (CX3CR1) isoforms using computational tools of molecular modeling, docking, molecular dynamics simulations, and binding free energy calculations. From MD simulations of the molecular system embedded in the POPC lipid bilayer, we showed a stable interaction of cndG with the canonical fractalkine binding site in the N-terminal cavity of the CX3CR1 isoforms and identified that residues in the extracellular loop 2 (ECL2) region and Glu279 of this receptor are pivotal for the stabilization of CX3CR1/cndG binding, corroborating what was reported for the interaction of the chemokine fractalkine with CX3CR1 and its structure homolog US28. Therefore, the results presented here contribute by revealing key structural points for the CX3CR1/G interaction, allowing us to better understand the biology of hRSV from its attachment process and to develop new strategies to combat it. Full article
Show Figures

Figure 1

15 pages, 1894 KiB  
Article
CX3CR1-Expressing Immune Cells Infiltrate the Tumor Microenvironment and Promote Radiation Resistance in a Mouse Model of Lung Cancer
by Tamar Ben-Mordechai, Yaacov R. Lawrence, Zvi Symon, Ariel Shimoni-Sebag and Uri Amit
Cancers 2023, 15(22), 5472; https://doi.org/10.3390/cancers15225472 - 19 Nov 2023
Cited by 1 | Viewed by 4476
Abstract
Introduction: Chemokine (C-X3-C Motif) Receptor 1 (CX3CR1) is present in a subset of the immune cells in the tumor microenvironment (TME) and plays an essential and diverse role in cancer progression. However, its potential function in the irradiated TME remains unknown. Materials and [...] Read more.
Introduction: Chemokine (C-X3-C Motif) Receptor 1 (CX3CR1) is present in a subset of the immune cells in the tumor microenvironment (TME) and plays an essential and diverse role in cancer progression. However, its potential function in the irradiated TME remains unknown. Materials and Methods: A mouse lung cancer model was performed by subcutaneously inoculating Lewis Lung Carcinoma (LLC) cells expressing luciferase (Luc-2) and mCherry cells in CX3CR1GFP/GFP, CX3CR1DTR/+, and wild–type (WT) mice. Bioluminescence imaging, clonogenic assay, and flow cytometry were used to assess tumor progression, proliferation, and cell composition after radiation. Results: Radiation provoked a significant influx of CX3CR1-expressing immune cells, notably monocytes and macrophages, into the TME. Co-culturing irradiated LLC cells with CX3CR1-deficient monocytes, and macrophages resulted in reduced clonogenic survival and increased apoptosis of the cancer cells. Interestingly, deficiency of CX3CR1 in macrophages led to a redistribution of the irradiated LLC cells in the S-phase, parallel to increased expression of cyclin E1, required for cell cycle G1/S transition. In addition, the deficiency of CX3CR1 expression in macrophages altered the cytokine secretion with a decrease in interleukin 6, a crucial mediator of cancer cell survival and proliferation. Next, LLC cells were injected subcutaneously into CX3CR1DTR/+ mice, sensitive to diphtheria toxin (DT), and WT mice. After injection, tumors were irradiated with 8 Gy, and mice were treated with DT, leading to conditional ablation of CX3CR1-expressing cells. After three weeks, CX3CR1-depleted mice displayed reduced tumor progression. Furthermore, combining the S-phase-specific chemotherapeutic gemcitabine with CX3CR1 cell ablation resulted in additional attenuation of tumor progression. Conclusions: CX3CR1-expressing mononuclear cells invade the TME after radiation therapy in a mouse lung cancer model. CX3CR1 cell depletion attenuates tumor progression following radiation and sensitizes the tumor to S–phase-specific chemotherapy. Thus, we propose a novel strategy to improve radiation sensitivity by targeting the CX3CR1-expressing immune cells. Full article
Show Figures

Figure 1

18 pages, 4763 KiB  
Article
Opposing Roles of Blood-Borne Monocytes and Tissue-Resident Macrophages in Limbal Stem Cell Damage after Ocular Injury
by Chengxin Zhou, Fengyang Lei, Mirja Mittermaier, Bruce Ksander, Reza Dana, Claes H. Dohlman, Demetrios G. Vavvas, James Chodosh and Eleftherios I. Paschalis
Cells 2023, 12(16), 2089; https://doi.org/10.3390/cells12162089 - 18 Aug 2023
Cited by 2 | Viewed by 2014
Abstract
Limbal stem cell (LSC) deficiency is a frequent and severe complication after chemical injury to the eye. Previous studies have assumed this is mediated directly by the caustic agent. Here we show that LSC damage occurs through immune cell mediators, even without direct [...] Read more.
Limbal stem cell (LSC) deficiency is a frequent and severe complication after chemical injury to the eye. Previous studies have assumed this is mediated directly by the caustic agent. Here we show that LSC damage occurs through immune cell mediators, even without direct injury to LSCs. In particular, pH elevation in the anterior chamber (AC) causes acute uveal stress, the release of inflammatory cytokines at the basal limbal tissue, and subsequent LSC damage and death. Peripheral C-C chemokine receptor type 2 positive/CX3C motif chemokine receptor 1 negative (CCR2+ CX3CR1) monocytes are the key mediators of LSC damage through the upregulation of tumor necrosis factor-alpha (TNF-α) at the limbus. In contrast to peripherally derived monocytes, CX3CR1+ CCR2 tissue-resident macrophages have a protective role, and their depletion prior to injury exacerbates LSC loss and increases LSC vulnerability to TNF-α-mediated apoptosis independently of CCR2+ cell infiltration into the tissue. Consistently, repopulation of the tissue by new resident macrophages not only restores the protective M2-like phenotype of macrophages but also suppresses LSC loss after exposure to inflammatory signals. These findings may have clinical implications in patients with LSC loss after chemical burns or due to other inflammatory conditions. Full article
(This article belongs to the Special Issue Cell Biology of the Cornea and Ocular Surface)
Show Figures

Graphical abstract

14 pages, 1278 KiB  
Review
The Role of Cytokines in the Metastasis of Solid Tumors to the Spine: Systematic Review
by Wojciech Łabędź, Anna Przybyla, Agnieszka Zimna, Mikołaj Dąbrowski and Łukasz Kubaszewski
Int. J. Mol. Sci. 2023, 24(4), 3785; https://doi.org/10.3390/ijms24043785 - 14 Feb 2023
Cited by 6 | Viewed by 3514
Abstract
Although many studies have investigated the role of cytokines in bone metastases, our knowledge of their function in spine metastasis is limited. Therefore, we performed a systematic review to map the available evidence on the involvement of cytokines in spine metastasis in solid [...] Read more.
Although many studies have investigated the role of cytokines in bone metastases, our knowledge of their function in spine metastasis is limited. Therefore, we performed a systematic review to map the available evidence on the involvement of cytokines in spine metastasis in solid tumors. A PubMed search identified 211 articles demonstrating a functional link between cytokines/cytokine receptors and bone metastases, including six articles confirming the role of cytokines/cytokine receptors in spine metastases. A total of 68 cytokines/cytokine receptors were identified to mediate bone metastases; 9 (mostly chemokines) played a role in spine metastases: CXC motif chemokine ligand (CXCL) 5, CXCL12, CXC motif chemokine receptor (CXCR) 4, CXCR6, interleukin (IL) 10 in prostate cancer, CX3C motif chemokine ligand (CX3CL) 1 and CX3C motif chemokine receptor (CX3CR) 1 in liver cancer, CC motif chemokine ligand (CCL) 2 in breast cancer, and transforming growth factor (TGF) β in skin cancer. Except for CXCR6, all cytokines/cytokine receptors were shown to operate in the spine, with CX3CL1, CX3CR1, IL10, CCL2, CXCL12, and CXCR4 mediating bone marrow colonization, CXCL5 and TGFβ promoting tumor cell proliferation, and TGFβ additionally driving bone remodeling. The number of cytokines/cytokine receptors confirmed to mediate spinal metastasis is low compared with the vast spectrum of cytokines/cytokine receptors participating in other parts of the skeleton. Therefore, further research is needed, including validation of the role of cytokines mediating metastases to other bones, to precisely address the unmet clinical need associated with spine metastases. Full article
(This article belongs to the Special Issue Role of Cytokines in Cancer Metastasis Studies)
Show Figures

Figure 1

20 pages, 3029 KiB  
Article
Altered Immunomodulatory Responses in the CX3CL1/CX3CR1 Axis Mediated by hMSCs in an Early In Vitro SOD1G93A Model of ALS
by Anastasia Sarikidi, Ekaterini Kefalakes, Christine S. Falk, Ruth Esser, Arnold Ganser, Nadine Thau-Habermann and Susanne Petri
Biomedicines 2022, 10(11), 2916; https://doi.org/10.3390/biomedicines10112916 - 14 Nov 2022
Cited by 1 | Viewed by 2408
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron (MN) disease characterized by progressive MN loss and muscular atrophy resulting in rapidly progressive paralysis and respiratory failure. Human mesenchymal stem/stromal cell (hMSC)-based therapy has been suggested to prolong MN survival via secretion of [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron (MN) disease characterized by progressive MN loss and muscular atrophy resulting in rapidly progressive paralysis and respiratory failure. Human mesenchymal stem/stromal cell (hMSC)-based therapy has been suggested to prolong MN survival via secretion of growth factors and modulation of cytokines/chemokines. We investigated the effects of hMSCs and a hMSC-conditioned medium (CM) on Cu/Zn superoxidase dismutase 1G93A (SOD1G93A) transgenic primary MNs. We found that co-culture of hMSCs and MNs resulted in slightly higher MN numbers, but did not protect against staurosporine (STS)-induced toxicity, implying marginal direct trophic effects of hMSCs. Aiming to elucidate the crosstalk between hMSCs and MNs in vitro, we found high levels of vascular endothelial growth factor (VEGF) and C-X3-C motif chemokine 1 (CX3CL1) in the hMSC secretome. Co-culture of hMSCs and MNs resulted in altered gene expression of growth factors and cytokines/chemokines in both MNs and hMSCs. hMSCs showed upregulation of CX3CL1 and its receptor CX3CR1 and downregulation of interleukin-1 β (IL1β) and interleukin-8 (IL8) when co-cultured with SOD1G93A MNs. MNs, on the other hand, showed upregulation of growth factors as well as CX3CR1 upon hMSC co-culture. Our results indicate that hMSCs only provide moderate trophic support to MNs by growth factor gene regulation and may mediate anti-inflammatory responses through the CX3CL1/CX3CR1 axis, but also increase expression of pro-inflammatory cytokines, which limits their therapeutic potential. Full article
(This article belongs to the Special Issue 10th Anniversary of Biomedicines—Advances in Mesenchymal Stem Cells)
Show Figures

Graphical abstract

13 pages, 2946 KiB  
Article
Treatment with an Anti-CX3CL1 Antibody Suppresses M1 Macrophage Infiltration in Interstitial Lung Disease in SKG Mice
by Satoshi Mizutani, Junko Nishio, Kanoh Kondo, Kaori Motomura, Zento Yamada, Shotaro Masuoka, Soichi Yamada, Sei Muraoka, Naoto Ishii, Yoshikazu Kuboi, Sho Sendo, Tetuo Mikami, Toshio Imai and Toshihiro Nanki
Pharmaceuticals 2021, 14(5), 474; https://doi.org/10.3390/ph14050474 - 17 May 2021
Cited by 13 | Viewed by 4388
Abstract
CX3C Motif Chemokine Ligand 1 (CX3CL1; fractalkine) has been implicated in the pathogenesis of rheumatoid arthritis (RA) and its inhibition was found to attenuate arthritis in mice as well as in a clinical trial. Therefore, we investigated the effects of an anti-CX3CL1 monoclonal [...] Read more.
CX3C Motif Chemokine Ligand 1 (CX3CL1; fractalkine) has been implicated in the pathogenesis of rheumatoid arthritis (RA) and its inhibition was found to attenuate arthritis in mice as well as in a clinical trial. Therefore, we investigated the effects of an anti-CX3CL1 monoclonal antibody (mAb) on immune-mediated interstitial lung disease (ILD) in SKG mice, which exhibit similar pathological and clinical features to human RA-ILD. CX3CL1 and CX3C chemokine receptor 1 (CX3CR1), the receptor for CX3CL1, were both expressed in the fibroblastic foci of lung tissue and the number of bronchoalveolar fluid (BALF) cells was elevated in ILD in SKG mice. No significant changes were observed in lung fibrosis or the number of BALF cells by the treatment with anti-CX3CL1 mAb. However, significantly greater reductions were observed in the number of M1 macrophages than in M2 macrophages in the BALF of treated mice. Furthermore, CX3CR1 expression levels were significantly higher in M1 macrophages than in M2 macrophages. These results suggest the stronger inhibitory effects of the anti-CX3CL1 mAb treatment against the alveolar infiltration of M1 macrophages than M2 macrophages in ILD in SKG mice. Thus, the CX3CL1-CX3CR1 axis may be involved in the infiltration of inflammatory M1 macrophages in RA-ILD. Full article
Show Figures

Figure 1

15 pages, 4397 KiB  
Article
Targeting CX3CR1 Suppresses the Fanconi Anemia DNA Repair Pathway and Synergizes with Platinum
by Jemina Lehto, Anna Huguet Ninou, Dimitrios Chioureas, Jos Jonkers and Nina M. S. Gustafsson
Cancers 2021, 13(6), 1442; https://doi.org/10.3390/cancers13061442 - 22 Mar 2021
Cited by 7 | Viewed by 8007
Abstract
The C-X3-C motif chemokine receptor 1 (CX3CR1, fractalkine receptor) is associated with neoplastic transformation, inflammation, neurodegenerative diseases and aging, and the small molecule inhibitor KAND567 targeting CX3CR1 (CX3CR1i) is evaluated in clinical trials for acute systemic inflammation upon SARS-CoV-2 infections. Here we identify [...] Read more.
The C-X3-C motif chemokine receptor 1 (CX3CR1, fractalkine receptor) is associated with neoplastic transformation, inflammation, neurodegenerative diseases and aging, and the small molecule inhibitor KAND567 targeting CX3CR1 (CX3CR1i) is evaluated in clinical trials for acute systemic inflammation upon SARS-CoV-2 infections. Here we identify a hitherto unknown role of CX3CR1 in Fanconi anemia (FA) pathway mediated repair of DNA interstrand crosslinks (ICLs) in replicating cells. FA pathway activation triggers CX3CR1 nuclear localization which facilitates assembly of the key FA protein FANCD2 into foci. Interfering with CX3CR1 function upon ICL-induction results in inability of replicating cells to progress from S phase, replication fork stalling and impaired chromatin recruitment of key FA pathway factors. Consistent with defective FA repair, CX3CR1i results in increased levels of residual cisplatin-DNA adducts and decreased cell survival. Importantly, CX3CR1i synergizes with platinum agents in a nonreversible manner in proliferation assays including platinum resistant models. Taken together, our results reveal an unanticipated interplay between CX3CR1 and the FA pathway and show for the first time that a clinical-phase small molecule inhibitor targeting CX3CR1 might show benefit in improving responses to DNA crosslinking chemotherapeutics. Full article
Show Figures

Graphical abstract

16 pages, 7223 KiB  
Article
Uric Acid Has Direct Proinflammatory Effects on Human Macrophages by Increasing Proinflammatory Mediators and Bacterial Phagocytosis Probably via URAT1
by Camilo P. Martínez-Reyes, Aarón N. Manjarrez-Reyna, Lucia A. Méndez-García, José A. Aguayo-Guerrero, Beatriz Aguirre-Sierra, Rafael Villalobos-Molina, Yolanda López-Vidal, Karen Bobadilla and Galileo Escobedo
Biomolecules 2020, 10(4), 576; https://doi.org/10.3390/biom10040576 - 9 Apr 2020
Cited by 30 | Viewed by 4897
Abstract
The relationship of uric acid with macrophages has not been fully elucidated. We investigated the effect of uric acid on the proinflammatory ability of human macrophages and then examined the possible molecular mechanism involved. Primary human monocytes were differentiated into macrophages for subsequent [...] Read more.
The relationship of uric acid with macrophages has not been fully elucidated. We investigated the effect of uric acid on the proinflammatory ability of human macrophages and then examined the possible molecular mechanism involved. Primary human monocytes were differentiated into macrophages for subsequent exposure to 0, 0.23, 0.45, or 0.9 mmol/L uric acid for 12 h, in the presence or absence of 1 mmol/L probenecid. Flow cytometry was used to measure proinflammatory marker production and phagocytic activity that was quantified as a percentage of GFP-labeled Escherichia coli positive macrophages. qPCR was used to measure the macrophage expression of the urate anion transporter 1 (URAT1). As compared to control cells, the production of tumor necrosis factor-alpha (TNF-alpha), toll-like receptor 4 (TLR4), and cluster of differentiation (CD) 11c was significantly increased by uric acid. In contrast, macrophages expressing CD206, CX3C-motif chemokine receptor 1 (CX3CR1), and C-C chemokine receptor type 2 (CCR2) were significantly reduced. Uric acid progressively increased macrophage phagocytic activity and downregulated URAT1 expression. Probenecid—a non-specific blocker of URAT1-dependent uric acid transport—inhibited both proinflammatory cytokine production and phagocytic activity in macrophages that were exposed to uric acid. These results suggest that uric acid has direct proinflammatory effects on macrophages possibly via URAT1. Full article
(This article belongs to the Special Issue Inflammation as Target treatment for Chronic Diseases)
Show Figures

Graphical abstract

17 pages, 2933 KiB  
Article
Bone Marrow CX3CL1/Fractalkine is a New Player of the Pro-Angiogenic Microenvironment in Multiple Myeloma Patients
by Valentina Marchica, Denise Toscani, Anna Corcione, Marina Bolzoni, Paola Storti, Rosanna Vescovini, Elisa Ferretti, Benedetta Dalla Palma, Emanuela Vicario, Fabrizio Accardi, Cristina Mancini, Eugenia Martella, Domenico Ribatti, Angelo Vacca, Vito Pistoia and Nicola Giuliani
Cancers 2019, 11(3), 321; https://doi.org/10.3390/cancers11030321 - 6 Mar 2019
Cited by 29 | Viewed by 4601
Abstract
C-X3-C motif chemokine ligand 1 (CX3CL1)/fractalkine is a chemokine released after cleavage by two metalloproteases, ADAM metallopeptidase domain 10 (ADAM10) and ADAM metallopeptidase domain 17 (ADAM17), involved in inflammation and angiogenesis in the cancer microenvironment. The role of the CX3CL1/ C-X3-C motif chemokine [...] Read more.
C-X3-C motif chemokine ligand 1 (CX3CL1)/fractalkine is a chemokine released after cleavage by two metalloproteases, ADAM metallopeptidase domain 10 (ADAM10) and ADAM metallopeptidase domain 17 (ADAM17), involved in inflammation and angiogenesis in the cancer microenvironment. The role of the CX3CL1/ C-X3-C motif chemokine receptor 1(CX3CR1) axis in the multiple myeloma (MM) microenvironment is still unknown. Firstly, we analyzed bone marrow (BM) plasma levels of CX3CL1 in 111 patients with plasma cell disorders including 70 with active MM, 25 with smoldering myeloma (SMM), and 16 with monoclonal gammopathy of undetermined significance (MGUS). We found that BM CX3CL1 levels were significantly increased in MM patients compared to SMM and MGUS and correlated with BM microvessel density. Secondly, we explored the source of CX3CL1 in MM and BM microenvironment cells. Primary CD138+ cells did not express CXC3L1 but up-regulated its production by endothelial cells (ECs) through the involvement of tumor necrosis factor alpha (TNFα). Lastly, we demonstrated the presence of CX3CR1 on BM CD14+CD16+ monocytes of MM patients and on ECs, but not on MM cells. The role of CX3CL1 in MM-induced angiogenesis was finally demonstrated in both in vivo chick embryo chorioallantoic membrane and in vitro angiogenesis assays. Our data indicate that CX3CL1, present at a high level in the BM of MM patients, is a new player of the MM microenvironment involved in MM-induced angiogenesis. Full article
Show Figures

Figure 1

Back to TopTop