Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = Budyko Hypothesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6711 KiB  
Article
Identification of Attribution of Runoff Variations in the Tumen River Basin Based on Budyko’s Hypothesis
by Dongqing Huo, Jiaqi Wu, Chunzi Zhao, Yongtao Yan, Weihong Zhu, Ri Jin and Jingya Zhou
Hydrology 2025, 12(5), 122; https://doi.org/10.3390/hydrology12050122 - 18 May 2025
Viewed by 1376
Abstract
The Tumen River Basin (TRB), a critical China border region, has experienced a complex evolution of runoff due to climate change and human activities. This study aims to quantify the main drivers of runoff variations in the TRB based on the Budyko framework [...] Read more.
The Tumen River Basin (TRB), a critical China border region, has experienced a complex evolution of runoff due to climate change and human activities. This study aims to quantify the main drivers of runoff variations in the TRB based on the Budyko framework to assess the relative contributions of climate change and human activities to runoff fluctuations. Results indicate pronounced warming and increased precipitation in the TRB, while runoff exhibits a declining trend with temporal variability. Runoff decreased during 1956–1980 but increased post 1980. Overall, climate change is the dominant factor driving runoff fluctuations in the TRB. A comparison across different sub-basins shows that the contribution of climate change to runoff variations is higher in the middle and upper reaches of the Tumen River, reaching up to 93.8%. In the lower basin, human activities contribute significantly to runoff variations. Higher forest cover and reservoir construction help maintain the long-term stability of watershed runoff. This study provides a scientific basis and data support for water resources development and ecological protection in the basin. Full article
Show Figures

Figure 1

16 pages, 7343 KiB  
Technical Note
Two-Stage Evapotranspiration Partitioning Under the Generalized Proportionality Hypothesis Based on the Interannual Relationship Between Precipitation and Runoff
by Changwu Cheng, Wenzhao Liu, Rui Chen, Zhaotao Mu and Xiaoyang Han
Remote Sens. 2025, 17(7), 1203; https://doi.org/10.3390/rs17071203 - 28 Mar 2025
Viewed by 453
Abstract
The generalized proportionality hypothesis (GPH) highlights the competitive relationships among hydrological components as precipitation (P) transforms into runoff (Q) and evapotranspiration (E), providing a novel perspective on E partitioning that differs from the traditional physical source-based approach. To achieve sequential partitioning of E [...] Read more.
The generalized proportionality hypothesis (GPH) highlights the competitive relationships among hydrological components as precipitation (P) transforms into runoff (Q) and evapotranspiration (E), providing a novel perspective on E partitioning that differs from the traditional physical source-based approach. To achieve sequential partitioning of E into initial (Ei) and continuing (Ec) evapotranspiration under the GPH, a P-Q relationship-based Ei estimation method was proposed for the Model Parameter Estimation Experiment (MOPEX) catchments. On this basis, we analyzed the relationship between the GPH-based E components and the physical source-based ones separated by the Penman-Monteith-Mu algorithm. Additionally, we explored the differences between the calculated and inverse Budyko-WT model parameter (Ei/E) and discussed the implications for the Budyko framework. The results showed the following: (1) A significant linear P-Q relationship (p < 0.05) prevailed in the MOPEX catchments, providing a robust data foundation for Ei estimation. Across the MOPEX catchments, Ei and Ec contributed 73% and 27% of total E, respectively. (2) The combined proportion of evaporation from canopy interception and wet soil averaged about 25%, and it was much lower than that of Ei, indicating that it was difficult to establish a connection between Ei and the physical source-based E components. (3) The potential evapotranspiration (EP) satisfying the Budyko-WT model was strictly constrained by the GPH, while the inappropriate EP estimation method largely explained the discrepancy between the calculated and inverse Ei/E. This study deepens the knowledge of the sequential partitioning of E components, uncovers the discrepancies between different E partitioning frameworks, and provides new insights into the characterization of key variables in Budyko models. Full article
Show Figures

Graphical abstract

20 pages, 12209 KiB  
Article
Evaluating the Performance of Irrigation Using Remote Sensing Data and the Budyko Hypothesis: A Case Study in Northwest China
by Dingwang Zhou, Chaolei Zheng, Li Jia, Massimo Menenti, Jing Lu and Qiting Chen
Remote Sens. 2025, 17(6), 1085; https://doi.org/10.3390/rs17061085 - 19 Mar 2025
Viewed by 542
Abstract
Evaluating the performance of irrigation water use is essential for efficient and sustainable water resource management. However, existing approaches often lack systematic quantification of irrigation water consumption and fail to differentiate between the use of precipitation and anthropogenic appropriation of water flows. Building [...] Read more.
Evaluating the performance of irrigation water use is essential for efficient and sustainable water resource management. However, existing approaches often lack systematic quantification of irrigation water consumption and fail to differentiate between the use of precipitation and anthropogenic appropriation of water flows. Building on the green–blue water concept, consumptive water use, assumed equal to actual evapotranspiration (ETa), was partitioned into green ET (GET) and blue ET (BET) using remote sensing data and the Budyko hypothesis. A novel BET metric of consumptive irrigation water use was developed and applied to the irrigated lands in northwest China to evaluate the performance of irrigation from 2001 to 2021. The results showed that in terms of total available water resources (precipitation + gross irrigation water (GIW)) compared to irrigation water demand, estimated as reference evapotranspiration (ET0), Ningxia has sufficient water supply to meet irrigation demand, while the Hexi Corridor faces increasing risks of unsustainable water use. The Hetao irrigation scheme has shifted from a fragile supply–demand balance to a situation where water demand far exceeds availability. In Xinjiang, the balance between water supply and demand is tight. Furthermore, when considering the available water (GIW) relative to the net irrigation water demand (ET0-GET), the Hexi Corridor faces significant water deficits, and Ningxia and Xinjiang are close to meeting local irrigation water demands by relying on current water availability and efficient irrigation practices. It is noteworthy that the BET remains lower than the GIW in northwest China (excluding the Hexi Corridor in recent years). The ratio of the BET to GIW is an estimate of the scheme irrigation efficiency, which was equal to 0.54 for all irrigation schemes taken together. In addition, the irrigation water use efficiency, estimated as the ratio of BET to net irrigation water, was evaluated in detail, and it was found that in the last 10 years the irrigation water use efficiency improved in Ningxia, the Hetao irrigation scheme, and Xinjiang. However, the Hexi Corridor continues to face severe net irrigation water deficits, suggesting the likelihood of groundwater use to sustain irrigated agriculture. BET innovatively separates consumptive use of precipitation (green water) and consumptive use of irrigation (blue water), a critical advancement beyond conventional approaches’ estimates that merge these distinct hydrological components to help quantifying water use efficiency. Full article
Show Figures

Graphical abstract

24 pages, 6171 KiB  
Article
Partitioning Green and Blue Evapotranspiration by Improving Budyko Equation Using Remote Sensing Observations in an Arid/Semi-Arid Inland River Basin in China
by Dingwang Zhou, Chaolei Zheng, Li Jia and Massimo Menenti
Remote Sens. 2025, 17(4), 612; https://doi.org/10.3390/rs17040612 - 11 Feb 2025
Cited by 1 | Viewed by 950
Abstract
The estimation of water requirements constitutes a critical prerequisite for delineating water scarcity hotspots and mitigating intersectoral competition, particularly in endorheic basins in arid or semi-arid regions where hydrological closure exacerbates resource allocation conflicts. Under conditions of water scarcity, water supplied locally by [...] Read more.
The estimation of water requirements constitutes a critical prerequisite for delineating water scarcity hotspots and mitigating intersectoral competition, particularly in endorheic basins in arid or semi-arid regions where hydrological closure exacerbates resource allocation conflicts. Under conditions of water scarcity, water supplied locally by precipitation and shallow groundwater bodies should be taken into account to estimate the net water requirements to be met with water conveyed from off-site sources. This concept is embodied in the distinction of blue ET (BET) and green ET (GET). In this study, the Budyko hypothesis (BH) method was optimized to partition the total ET into GET and BET during 2001–2018 in the Heihe River Basin. In this region, a better knowledge of net water requirements is even more important due to water allocation policies which reduced water supply to irrigated lands in the last 15 years. This study proposes a modified BH method based on a new vegetation-specific parameter (ωv) which was optimized for different vegetation types using precipitation and actual ET data obtained from remote sensing observations. The results show that the BH method partitioned GET and BET reasonably well, with a percent bias of 23.8% and 37.4% and a root mean square error of 84.8 mm/a and 113.6 mm/a, respectively, when compared with reported data, which are superior to that of the precipitation deficit and soil water balance methods. A sensitivity experiment showed that the BH method exhibits a low sensitivity to uncertainties of input data. The results documented differences in the contribution of GET and BET to total ET across different land cover types in the Heihe River Basin. As expected, rainfed forest and grassland ecosystems are predominantly governed by GET, with 81.3% and 87.2% of total ET, respectively. In contrast, croplands and shrublands are primarily regulated by BET, with contributions of 61.5% and 84.3% to total ET. The improved BH method developed in this study paves the way for further analyses of the net water requirements in arid and semi-arid regions. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

23 pages, 28901 KiB  
Article
Runoff Change Characteristics and Response to Climate Variability and Human Activities Under a Typical Basin of Natural Tropical Rainforest Converted to Monoculture Rubber Plantations
by Shiyu Xue, Lirong Zhu, Yanhu He, Dan Li and Changqing Ye
Forests 2024, 15(11), 1918; https://doi.org/10.3390/f15111918 - 30 Oct 2024
Cited by 1 | Viewed by 967
Abstract
Climate variability and human activities are major influences on the hydrological cycle. However, the driving characteristics of hydrological cycle changes and the potential impact on runoff in areas where natural forests have been converted to rubber plantations on a long-term scale remain unclear. [...] Read more.
Climate variability and human activities are major influences on the hydrological cycle. However, the driving characteristics of hydrological cycle changes and the potential impact on runoff in areas where natural forests have been converted to rubber plantations on a long-term scale remain unclear. Based on this, the Mann–Kendall (MK) and Pettitt breakpoint tests and the Double Mass Curve method were employed to identify the variation characteristics and breakpoints of precipitation (P), potential evapotranspiration (ET0), and runoff depth (R) in the Wanquan River Basin (WQRB) during the 1970–2016 period. The changes in runoff attributed to P, ET0, and the catchment characteristics parameter (n) were quantified using the elastic coefficient method based on the Budyko hypothesis. The results revealed that the P and R in the WQRB exhibited statistically insignificant decreasing trends, while ET0 displayed a significant increasing trend (p < 0.05). The breakpoint of runoff changes in the Jiabao and the Jiaji stations occurred in 1991 and 1983, respectively. The runoff changes show a negative correlation with both the n and ET0, while exhibiting a positive correlation with P. Moreover, it is observed that P and ET0 display higher sensitivity towards runoff changes compared to n. The decomposition analysis reveals that in the Dingan River Basin (DARB), human activities account for 53.54% of the runoff changes, while climate variability contributes to 46.46%. In the Main Wanquan River Basin (MWQRB), human activities contribute to 46.11%, whereas climate variability accounts for 53.89%. The research findings suggest that runoff is directly reduced by climate variability (due to decreased P and increased ET0), while human activities indirectly contribute to changes in runoff through n, exacerbating its effects. Rubber forest stands as the prevailing artificial vegetation community within the WQRB. The transformation of natural forests into rubber plantations constitutes the primary catalyst for the alteration of n in the WQRB. The research findings provide important reference for quantifying the driving force of hydrological changes caused by deforestation, which is of great significance for sustainable management of forests and water resources. Full article
Show Figures

Graphical abstract

24 pages, 7745 KiB  
Article
Evolution of Water–Sediment Situation and Attribution Analysis in the Upper Yangtze River, China
by Hongxiang Wang, Yinchu Ma, Fengtian Hong, Huan Yang, Lintong Huang, Xuyang Jiao and Wenxian Guo
Water 2023, 15(3), 574; https://doi.org/10.3390/w15030574 - 1 Feb 2023
Cited by 9 | Viewed by 4639
Abstract
River water and sand conditions are important factors affecting river morphology, biogeochemical processes and ecosystems. However, climate change and long-term human activities have changed the water–sediment conditions of rivers. This study combines the ecohydrological indicator range of the variation approach (IHA-RVA) and the [...] Read more.
River water and sand conditions are important factors affecting river morphology, biogeochemical processes and ecosystems. However, climate change and long-term human activities have changed the water–sediment conditions of rivers. This study combines the ecohydrological indicator range of the variation approach (IHA-RVA) and the genetic planning approach in order to dissect the water–sediment situation and its ecological response relationship in the upper Yangtze River. The synergistic effects of climate change and human activities on sediment–runoff were quantified based on the Budyko hypothesis and the sediment attribution decomposition method. The results showed that the interannual trend in sand transport decreased significantly compared to the runoff at each station in the upper Yangtze River, and that it began to change abruptly in 1985 and 1993, respectively (mean values of 56.8% and 70%, respectively); there were also different degrees of decreases in fish species diversity attributed to the combined effects of reduced rainfall and reservoir construction. The factors driving changes in watershed runoff were dominated by human activities (approximately 60%), while changes in sand transport were mainly driven by the sand production capacity in the watershed, both of which contributed more than 95%. The research process and results contribute to an in-depth understanding of the characteristics and driving mechanisms of river water and sand evolution under changing environments, and provide a scientific basis for watershed water resource management and ecological restoration. Full article
(This article belongs to the Section Ecohydrology)
Show Figures

Figure 1

18 pages, 5958 KiB  
Article
Spatiotemporal Evolution and Attribution Analysis of Water Yield in the Xiangjiang River Basin (XRB) Based on the InVEST Model
by Zongmin Wang, Qizhao Li, Lin Liu, Hongling Zhao, Hongen Ru, Jiapeng Wu and Yanli Deng
Water 2023, 15(3), 514; https://doi.org/10.3390/w15030514 - 28 Jan 2023
Cited by 16 | Viewed by 2934
Abstract
As a result of climate change and human activities, water resources in the Xiangjiang River Basin (XRB) are subject to seasonal and regional shortages. However, previous studies have lacked assessment of the spatiotemporal evolution of water yield in the XRB at seasonal and [...] Read more.
As a result of climate change and human activities, water resources in the Xiangjiang River Basin (XRB) are subject to seasonal and regional shortages. However, previous studies have lacked assessment of the spatiotemporal evolution of water yield in the XRB at seasonal and monthly scales and quantitative analysis of the driving forces of climate change and land use on water-yield change. Quantitative evaluation of water yield in the XRB is of great significance for optimizing water-resource planning and allocation and maintaining ecological balance in the basin. In this paper, the seasonal water-yield InVEST model and modified Morris sensitivity analysis were combined to study the characteristics of monthly water yield in the XRB. Seventeen attributes were identified using the Budyko framework. The results show that: (1) the water yield of the XRB showed an increase trend from northeast to southwest from 2006 to 2020; (2) the transfer-in of unused land, grassland, woodland and farmland as well as the transfer-out of water and construction land have positive effects on the increase in water yield, and the change to construction land has the greatest impact on water yield; (3) water yield is positively correlated with NDVI and precipitation and negatively correlated with potential evapotranspiration; (4) climate change and land-use change contributed to water-yield changes of 67.08% and 32.92%, respectively. Full article
(This article belongs to the Special Issue Impacts of Climate Change on Water Resources and Water Risks)
Show Figures

Figure 1

17 pages, 3492 KiB  
Article
Attribution Analysis of Runoff Variation in the Second Songhua River Based on the Non-Steady Budyko Framework
by Zan Li, Yao Wu, Ji Li, Peng Qi, Jiaxin Sun and Yingna Sun
Water 2023, 15(3), 451; https://doi.org/10.3390/w15030451 - 23 Jan 2023
Cited by 4 | Viewed by 2953
Abstract
Understanding the role of climate change and catchment characteristics in hydrological activity is important for the efficient use of water resources. In this study, a Budyko framework suitable for non-steady conditions was used to assess the impacts of climate change and catchment characteristics [...] Read more.
Understanding the role of climate change and catchment characteristics in hydrological activity is important for the efficient use of water resources. In this study, a Budyko framework suitable for non-steady conditions was used to assess the impacts of climate change and catchment characteristics on the long-term changes in annual and seasonal runoff in the Second Songhua River (SSR) basin during the last 30 years. Based on the analysis of the hydro-meteorological series of the SSR, the runoff in the SSR basin showed a non-significant increasing trend. The hydro-meteorological elements changed abruptly in 2009, and the study period was divided into a baseline period (1989–2009) and a disturbed period (2010–2018). Runoff increased during the disturbed period compared to the baseline period, with a significant increase in spring runoff in the upstream area and summer runoff in the downstream area. The attribution analysis results indicated that the annual runoff was mainly affected by climatic factors, and 66.8–99.6% of yearly runoff changes were caused by climate change. Catchment characteristics had little effect on yearly runoff but significantly affected seasonal runoff. The catchment characteristics affecting runoff were mainly increased water withdrawal, changes in snowfall, degradation of permafrost, and changes in reservoir operation. This study provides a basis for further understanding the intra-annual runoff variability for SSR and other similar rivers. Full article
(This article belongs to the Special Issue The Impact of Climate Change and Land Use on Water Resources)
Show Figures

Figure 1

11 pages, 2544 KiB  
Article
Quantitatively Computing the Influence of Vegetation Changes on Surface Discharge in the Middle-Upper Reaches of the Huaihe River, China
by Yuxin Wang, Zhipei Liu, Baowei Qian, Zongyu He and Guangxing Ji
Forests 2022, 13(12), 2000; https://doi.org/10.3390/f13122000 - 25 Nov 2022
Cited by 11 | Viewed by 1926
Abstract
Changes in meteorology, hydrology, and vegetation will have significant impacts on the ecological environment of a basin, and the middle-upper reach of Huaihe River (MUHR) is one of the key regions for vegetation restoration in China. However, less studies have quantitatively accounted for [...] Read more.
Changes in meteorology, hydrology, and vegetation will have significant impacts on the ecological environment of a basin, and the middle-upper reach of Huaihe River (MUHR) is one of the key regions for vegetation restoration in China. However, less studies have quantitatively accounted for the contribution of vegetation changes to land surface discharge in the MUHR. To quantitatively evaluate the influence of vegetation changes on land surface discharge in the MUHR, the Bernaola–Galavan (B–G) segmentation algorithm was utilized to recognize the mutation year of the Normalized Difference Vegetation Index (NDVI) time sequence data. Next, the functional relationship between the underlying surface parameter and the NDVI was quantitatively analyzed, and an adjusted Budyko formula was constructed. Finally, the effects of vegetation changes, climate factors, and mankind activities on the surface discharge in the MUHR were computed using the adjusted Budyko formula and elastic coefficient method. The results showed the following: (1) the surface runoff and precipitation from 1982 to 2015 in the MUHR presented a falling trend, yet the NDVI and potential evaporation presented an upward trend; (2) 2004 was the mutation year of the NDVI time series data, and the underlying surface parameter showed a significant linear regression relationship with the NDVI (p < 0.05); (3) the vegetation variation played a major role in the runoff variation during the changing period (2005–2015) in the MUHR. Precipitation, potential evaporation, and human activities accounted for −0.32%, −15.11%, and 18.24% of the surface runoff variation, respectively. Full article
(This article belongs to the Special Issue Modeling and Remote Sensing of Forests Ecosystem)
Show Figures

Figure 1

23 pages, 3512 KiB  
Article
Budyko-Type Models and the Proportionality Hypothesis in Long-Term Water and Energy Balances
by Fernando Paz Pellat, Jaime Garatuza Payán, Víctor Salas Aguilar, Alma Socorro Velázquez Rodríguez and Martín Alejandro Bolaños González
Water 2022, 14(20), 3315; https://doi.org/10.3390/w14203315 - 20 Oct 2022
Cited by 1 | Viewed by 2488
Abstract
In the perspective of Darwinian hydrology, Budyko hypotheses can be the foundation of approaches for developing models. Numerous Budyko-type models meeting established boundary conditions (water and energy limits) have been developed based on the Budyko hypothesis on the long-term-average annual mass and energy [...] Read more.
In the perspective of Darwinian hydrology, Budyko hypotheses can be the foundation of approaches for developing models. Numerous Budyko-type models meeting established boundary conditions (water and energy limits) have been developed based on the Budyko hypothesis on the long-term-average annual mass and energy balance. Some of these models are grounded on empirical bases, while others have been formulated on sophisticated mathematical developments. We analyze the basic hypotheses underlying some Budyko-type models; we first describe some published models and then examine their underlying hypotheses in a hydrologically intuitive space (precipitation versus runoff). The analyses show that the models studied are a consequence of assuming that two parallel straight lines (of unit slope) of different intercepts are indeed equal (proportionality hypothesis). This hypothesis gives rise to different Budyko-type models that, although mathematically correct and meeting the limits (partially) related to the Budyko hypotheses, do not yield any information about what happens between those limits. To overcome the extreme energy limit, an expolinear model is introduced. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

30 pages, 5622 KiB  
Article
Anthropic Changes in Land Use and Land Cover and Their Impacts on the Hydrological Variables of the São Francisco River Basin, Brazil
by Carlos Eduardo Sousa Lima, Marx Vinicius Maciel da Silva, Sofia Midauar Godim Rocha and Cleiton da Silva Silveira
Sustainability 2022, 14(19), 12176; https://doi.org/10.3390/su141912176 - 26 Sep 2022
Cited by 8 | Viewed by 2287
Abstract
The growing impact of human activities on the environment has increased their influence on the planet’s natural cycles, especially in relation to the hydrological cycle of watersheds. The fundamental processes for its water and energy balance have been affected, which influences water availability [...] Read more.
The growing impact of human activities on the environment has increased their influence on the planet’s natural cycles, especially in relation to the hydrological cycle of watersheds. The fundamental processes for its water and energy balance have been affected, which influences water availability and surface streamflow. This study sought to evaluate the anthropogenic impacts on the hydrological cycle of the São Francisco River Basin (SFRB), Brazil, between 1985 and 2015. The study area comprised SFRB and 10 sub-basins for general and specific analyses, respectively. Analyzed data consisted of Land Use and Land Cover (LULC), precipitation, streamflow, and temperature. The methodology incorporated: (i) assessment of LULC dynamics; (ii) trend analysis with the Mann–Kendall method and Sen’s Slope; and (iii) decomposition of total streamflow variation via Budyko’s hypothesis and climate elasticity of streamflow. As a result, it was possible to detect an anthropic modification of SFRB, which is the main component of its streamflow variation, in addition to increased streamflow sensitivity to climate variations. In addition, the divergent behavior in the trends of hydrological variables suggests a change in the streamflow response to precipitation. Therefore, the results allowed us to identify and quantify the impacts of anthropic modifications on the hydrological cycle of the SFRB. Full article
Show Figures

Figure 1

12 pages, 3122 KiB  
Article
Quantitatively Calculating the Contribution of Vegetation Variation to Runoff in the Middle Reaches of Yellow River Using an Adjusted Budyko Formula
by Guangxing Ji, Junchang Huang, Yulong Guo and Dan Yan
Land 2022, 11(4), 535; https://doi.org/10.3390/land11040535 - 7 Apr 2022
Cited by 17 | Viewed by 2235
Abstract
The middle reaches of the Yellow River (MRYR) are a key area for carrying out China’s vegetation restoration project. However, the impact of vegetation variation on runoff in the MRYR is still unclear. For quantitatively evaluating the contribution rate of vegetation variation to [...] Read more.
The middle reaches of the Yellow River (MRYR) are a key area for carrying out China’s vegetation restoration project. However, the impact of vegetation variation on runoff in the MRYR is still unclear. For quantitatively evaluating the contribution rate of vegetation variation to runoff in the MRYR, this paper quantified the relationship between Normalized Difference Vegetation Index (NDVI) and Budyko parameters (w). Then, we used multiple linear regression to quantitatively calculate the contribution rate of different factors on vegetation variation. Finally, an adjusted Budyko formula was constructed to quantitatively calculate the influence of vegetation variation on runoff. The results showed that there is a linear relationship between NDVI and Budyko parameters (w) (p < 0.05); the fitting parameter and constant term were 12.327 and −0.992, respectively. Vegetation change accounted for 33.37% in the MRYR. The contribution of climatic and non-climatic factors on vegetation change is about 1:99. The contribution of precipitation, potential evaporation, anthropogenic activities on the runoff variation in the MRYR are 23.07%, 13.85% and 29.71%, respectively. Full article
Show Figures

Figure 1

16 pages, 2334 KiB  
Article
Analysis of Alterations of the Hydrological Situation and Causes of River Runoff in the Min River, China
by Wenxian Guo, Haotong Zhou, Xuyang Jiao, Lintong Huang and Hongxiang Wang
Water 2022, 14(7), 1093; https://doi.org/10.3390/w14071093 - 30 Mar 2022
Cited by 20 | Viewed by 3220
Abstract
Construction of water conservancy projects has changed the hydrological situation of rivers and has an essential impact on river ecosystems. The influence modes of different factors on runoff alterations are discussed to improve the development and utilization of water resources and promote ecological [...] Read more.
Construction of water conservancy projects has changed the hydrological situation of rivers and has an essential impact on river ecosystems. The influence modes of different factors on runoff alterations are discussed to improve the development and utilization of water resources and promote ecological benefits. The ecological hydrological indicator change range method (IHA–RVA) and the hydrological alteration degree method were integrated to evaluate the hydrological situation of the Min River in China. Based on six Budyko hypothesis formulas, the rates of contribution of climate change and human activities to runoff change are quantitatively analyzed. The results show that (1) the runoff of the Min River basin showed a significant decreasing trend from 1960 to 2019 and a sudden alteration around 1993; (2) the overall alteration in runoff conditions was 45% moderate and the overall alteration in precipitation was 37% moderate; (3) precipitation and potential evapotranspiration also showed a decreasing trend within the same period but the overall trend was not significant; (4) the contribution of climate variability to runoff alterations is 30.2% and the contribution of human activities to runoff alterations is 69.8%; human activities are the dominant factor affecting the alteration of the runoff situation in the Min River basin. Full article
(This article belongs to the Special Issue The Role of Dam to the River Water Environment)
Show Figures

Figure 1

14 pages, 2119 KiB  
Article
Characteristic and Attribution of Runoff Variation in the Yanhe River Basin, Loess Plateau, Based on the Budyko Hypothesis
by Kun Hou, Jiping Wang and Xiuru Wang
Water 2022, 14(3), 495; https://doi.org/10.3390/w14030495 - 7 Feb 2022
Cited by 12 | Viewed by 2731
Abstract
The ecological restoration projects in the Loess Plateau (LP) has significantly altered the underlying surface conditions, coupled with a warming–wetting climate, which has profoundly affected the regional water cycle. Evaluating the response of runoff to external environmental change and quantitatively identifying the contribution [...] Read more.
The ecological restoration projects in the Loess Plateau (LP) has significantly altered the underlying surface conditions, coupled with a warming–wetting climate, which has profoundly affected the regional water cycle. Evaluating the response of runoff to external environmental change and quantitatively identifying the contribution of anthropogenic interference and climate change are prerequisites for efficient utilization of water resources in arid/semi-arid regions. Daily recorded data of hydrological and meteorological elements between 1969 and 2019 and the elasticity coefficient method based on Budyko hypothesis were used for attribution analysis of runoff change in the Yanhe River basin. The results show the following: (1) the measured runoff decreased significantly (p < 0.05, –0.2845 mm year−1), and suggested substantial difference before and after 2000; (2) the area of woodland and grassland had a sharp increase from 2000, while the elasticity of runoff to precipitation, potential evapotranspiration (ET0), and vegetation all decreased; (3) the improvement of underlying surface conditions has become the leading factor of runoff reduction with a contribution of 96.78%; (4) the impact of vegetation restoration on runoff reduction is effective within a certain threshold. We consider that more attention should be paid to the afforestation scale and its possible negative eco-hydrological effects in future ecological restoration. Full article
(This article belongs to the Topic Water Management in the Era of Climatic Change)
Show Figures

Figure 1

16 pages, 5676 KiB  
Article
Analysis of Runoff Variation Characteristics and Influencing Factors in the Wujiang River Basin in the Past 30 Years
by Wenxian Guo, Jianwen Hu and Hongxiang Wang
Int. J. Environ. Res. Public Health 2022, 19(1), 372; https://doi.org/10.3390/ijerph19010372 - 30 Dec 2021
Cited by 17 | Viewed by 2681
Abstract
Changes in climate and the underlying surface are the main factors affecting runoff. Quantitative assessment of runoff characteristics, and determination of the climate and underlying surface contribution to changes in runoff are critical to water resources management and protection. Based on the runoff [...] Read more.
Changes in climate and the underlying surface are the main factors affecting runoff. Quantitative assessment of runoff characteristics, and determination of the climate and underlying surface contribution to changes in runoff are critical to water resources management and protection. Based on the runoff data from the Wulong Hydrological Station, combined with the Mann-Kendall test, Indicators of Hydrologic Alteration (IHA), Budyko hypothesis, and changes in climate and the underlying surface, this study comprehensively analyzed the runoff in the Wujiang River Basin (WRB). The results showed that: (1) The annual runoff of Wujiang River showed a downward trend, and an abrupt change occurred in 2005. (2) The overall hydrological change in WRB is 46%, reaching a moderate change. (3) The contribution rates of precipitation (P), potential evaporation (ET0), and underlying surface to runoff changes are 61.5%, 11.4%, and 26.9%, respectively. (4) After 2005, the WRB has become more arid, human activities have become more active, vegetation coverage has increased, and the built-up land has increased significantly. Full article
Show Figures

Figure 1

Back to TopTop