Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = Brown Norway rats

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1664 KB  
Article
Biological Safety and Efficacy of the Novel Preservation Solution Ecosol in a Rat Liver Transplantation Model
by Kerim Yildirim, Hirokazu Tanaka, Benedict M. Doorschodt, Kenji Fukushima, Shintaro Yagi, Felix Oldhafer, Oliver Beetz, Christian Bleilevens, Zoltan Czigany and Rene H. Tolba
Int. J. Mol. Sci. 2026, 27(1), 144; https://doi.org/10.3390/ijms27010144 - 23 Dec 2025
Viewed by 384
Abstract
Static cold storage remains the most widely used method for organ preservation in transplantation. Over time, preservation solutions have undergone continuous optimization. Ecosol is a novel extracellular-type, colloid-based preservation solution. In this study, we evaluated the safety and efficacy of Ecosol in comparison [...] Read more.
Static cold storage remains the most widely used method for organ preservation in transplantation. Over time, preservation solutions have undergone continuous optimization. Ecosol is a novel extracellular-type, colloid-based preservation solution. In this study, we evaluated the safety and efficacy of Ecosol in comparison to the gold standard University of Wisconsin (UW) solution using both allogeneic and syngeneic rat orthotopic liver transplantation models. Liver function parameters were assessed and compared to baseline values of the respective rat strains. In the syngeneic setting, alanine transaminase (ALT) levels were significantly higher in the UW group than in the Ecosol group on day 1 post-transplantation (p < 0.05). Lactate dehydrogenase (LDH) levels were significantly elevated in the UW group compared to Ecosol in both allogeneic and syngeneic models on day 1 (p < 0.001). Gamma-glutamyl transferase (GGT) and total bilirubin were also significantly higher in the UW syngeneic group on day 1 (p < 0.05). In the allogeneic setting, aspartate aminotransferase (AST) and ALT levels were significantly elevated in both the UW (p < 0.0001) and Ecosol (p < 0.0001 and p < 0.001, respectively) groups on day 1 compared to the baseline values of Brown Norway (BN) rats. On day 7, these elevations persisted in the UW group, whereas no significant differences were observed in the Ecosol group compared to the baseline BN values (UW vs. Ecosol: p < 0.0001). In syngeneic transplants, AST and ALT levels were significantly elevated in both groups on day 1 compared to the baseline values of Lewis rats (p < 0.0001). By day 7, AST levels remained significantly elevated in the UW group, while Ecosol showed no significant difference from baseline (p < 0.0001). Organ viability, assessed via non-invasive imaging after 8 h of cold storage, was improved with Ecosol. Overall, Ecosol demonstrated biological safety and non-inferiority to the UW solution for liver preservation in a rat orthotopic liver transplantation model. Full article
(This article belongs to the Special Issue Advancing Liver Health: State of the Art and Recent Research Advances)
Show Figures

Figure 1

20 pages, 4840 KB  
Article
The Function of Transforming Growth Factor 2 in Facilitating Inflammasome Activation to Enhance the Development of Myopia via Complement System
by Sheng-Chun Lin, Yu-An Hsu, Chi-Fong Lin, Chih-Sheng Chen, Peng-Tai Tien, Yao-Chien Wang, Ching-Yao Chang, En-Shyh Lin, Jamie Jiin-Yi Chen, Ming-Yen Wu, Hui-Ju Lin and Lei Wan
Cells 2025, 14(16), 1295; https://doi.org/10.3390/cells14161295 - 20 Aug 2025
Viewed by 1576
Abstract
Myopia is one of the major public health conditions with significant complications. This study investigates the role of transforming growth factor (TGF)-β2, complement activation, and inflammasome pathways in myopia progression using a Brown Norway rat model. Myopia was induced, and complement regulation was [...] Read more.
Myopia is one of the major public health conditions with significant complications. This study investigates the role of transforming growth factor (TGF)-β2, complement activation, and inflammasome pathways in myopia progression using a Brown Norway rat model. Myopia was induced, and complement regulation was manipulated using gene therapy via adeno-associated virus (AAV) vectors delivering CD55 or CD55 siRNA. Results showed that TGF-β2 exacerbated myopia by upregulating complement components C3 and C5, suppressing CD55, and activating inflammasome pathways through nuclear factor (NF)-κB signaling, leading to axial elongation and increased refractive errors. Overexpression of CD55 via AAV gene therapy effectively counteracted these effects, reducing axial length elongation and inflammation by suppressing inflammasome markers interleukin (IL)-1β and NLR family pyrin domain containing 3 (NLRP3), as confirmed by real-time quantitative PCR and immunofluorescence analyses. Conversely, silencing CD55 intensified TGF-β2-induced effects, further promoting axial elongation and inflammation. These findings highlight the critical role of CD55 in modulating TGF-β2-driven complement and inflammasome activation during myopia progression. The study suggests that gene therapy targeting CD55 could serve as a novel therapeutic strategy to mitigate myopia and related inflammatory processes, offering a promising avenue for managing this significant public health challenge. Full article
Show Figures

Graphical abstract

21 pages, 6566 KB  
Article
Retina-Targeted 17β-Estradiol by the DHED Prodrug Rescues Visual Function and Actuates Neuroprotective Protein Networks After Optic Nerve Crush in a Rat Model of Surgical Menopause
by Katalin Prokai-Tatrai, Khadiza Zaman, Ammar Kapic, Kelleigh Hogan, Gabriela Sanchez-Rodriguez, Anna E. Silverio, Vien Nguyen, Laszlo Prokai and Andrew J. Feola
Int. J. Mol. Sci. 2025, 26(5), 1846; https://doi.org/10.3390/ijms26051846 - 21 Feb 2025
Cited by 1 | Viewed by 1793
Abstract
The association between 17β-estradiol (E2) deprivation, seen in menopause, and a risk for developing glaucoma has been shown. Thus, exogenous supplementation of E2 may protect against retinal ganglion cell (RGC) degradation and vision loss. Here, we investigated the utility of topical 10β,17β-dihydroxyestra-1,4-dien-3-one (DHED), [...] Read more.
The association between 17β-estradiol (E2) deprivation, seen in menopause, and a risk for developing glaucoma has been shown. Thus, exogenous supplementation of E2 may protect against retinal ganglion cell (RGC) degradation and vision loss. Here, we investigated the utility of topical 10β,17β-dihydroxyestra-1,4-dien-3-one (DHED), a prodrug of E2 that selectively produces the neuroprotective hormone in the retina, on visual function after optic nerve crush (ONC) and ovariectomy (OVX). We used female Brown Norway rats that underwent either Sham or OVX surgeries. After ONC, OVX animals received DHED or vehicle eye drops for 12 weeks. Visual function, via the optomotor reflex, and retinal thickness, via optical coherence tomography, were followed longitudinally. Afterward, we performed mass spectrometry-based label-free retina proteomics to survey retinal protein interaction networks in our selected animal model and to identify E2-responsive proteins after OVX on neurodegeneration. We found that ONC with OVX caused a significant decline in visual functions that were ameliorated by DHED treatments. Discovery-driven retina proteomics identified numerous proteins associated with neurodegenerative processes due to ONC that were remediated by DHED eye drops. Altogether, our three-pronged phenotypic preclinical evaluation of the topical DHED in the OVX + ONC model of glaucoma reveals the therapeutic potential of the prodrug to prevent visual deficits after glaucomatous retinal injury. Full article
(This article belongs to the Special Issue Neuroprotective Strategies 2024)
Show Figures

Figure 1

17 pages, 2583 KB  
Article
A Neuroprotective Peptide Modulates Retinal cAMP Response Element-Binding Protein (CREB), Synapsin I (SYN1), and Growth-Associated Protein 43 (GAP43) in Rats with Silicone Oil-Induced Ocular Hypertension
by Gretchen A. Johnson, Raghu R. Krishnamoorthy, Ram H. Nagaraj and Dorota L. Stankowska
Biomolecules 2025, 15(2), 219; https://doi.org/10.3390/biom15020219 - 3 Feb 2025
Viewed by 1792
Abstract
This study evaluated the neuroprotective potential of peptain-1 conjugated to a cell-penetrating peptide (CPP-P1) in an ocular hypertension model of glaucoma. Brown Norway (BN) rats were subjected to intraocular pressure (IOP) elevation via intracameral injection of silicone oil (SO), with concurrent intravitreal injections [...] Read more.
This study evaluated the neuroprotective potential of peptain-1 conjugated to a cell-penetrating peptide (CPP-P1) in an ocular hypertension model of glaucoma. Brown Norway (BN) rats were subjected to intraocular pressure (IOP) elevation via intracameral injection of silicone oil (SO), with concurrent intravitreal injections of either CPP-P1 or a vehicle. Retinal cross-sections were analyzed for markers of neuroprotection, including cAMP response element-binding protein (CREB), phosphorylated CREB (p-CREB), growth-associated protein-43 (GAP43), synapsin-1 (SYN1), and superoxide dismutase 2 (SOD2). Hematoxylin and eosin staining was used to assess retinal-layer thickness. SO-treated rats exhibited significant reductions in the thickness of the inner nuclear layer (INL, 41%, p = 0.016), inner plexiform layer (IPL, 52%, p = 0.0002), and ganglion cell layer (GCL, 57%, p = 0.001). CPP-P1 treatment mitigated these reductions, preserving INL thickness by 32% (p = 0.059), IPL by 19% (p = 0.119), and GCL by 31% (p = 0.057). Increased levels of CREB (p = 0.17) and p-CREB (p = 0.04) were observed in IOP-elevated, CPP-P1-treated retinas compared to IOP-elevated, vehicle-treated retinas. Although overall GAP43 levels were low, there was a modest increase in expression within the IPL and GCL in SO- and CPP-P1-treated retinas (p = 0.15 and p = 0.09, respectively) compared to SO- and vehicle-treated retinas. SO injection reduced SYN1 expression in both IPL and GCL (p = 0.01), whereas CPP-P1 treatment significantly increased SYN1 levels in the IPL (p = 0.03) and GCL (p = 0.002). While SOD2 expression in the GCL was minimal across all groups, a trend toward increased expression was observed in CPP-P1-treated animals (p = 0.16). The SO model was replicated with SO removal after 7 days and monitored for 21 days followed by retinal flat-mount preparation to assess retinal ganglion cell (RGC) survival. A 42% loss in RGCs (p = 0.009) was observed in SO-injected eyes, which were reduced by approximately 37% (p = 0.03) with CPP-P1 treatment. These findings suggest that CPP-P1 is a promising neuroprotective agent that promotes retinal ganglion cell survival and the preservation of other retinal neurons, potentially through enhanced CREB signaling in a rat model of SO-induced ocular hypertension. Full article
(This article belongs to the Special Issue Retinal Diseases: Molecular Mechanisms and Therapies)
Show Figures

Figure 1

17 pages, 4126 KB  
Article
In Vivo Induction of Leukemia-Specific Adaptive and Innate Immune Cells by Treatment of AML-Diseased Rats and Therapy-Refractory AML Patients with Blast Modulating Response Modifiers
by Michael Atzler, Tobias Baudrexler, Daniel Christoph Amberger, Nicole Rogers, Alexander Rabe, Joerg Schmohl, Ruixiao Wang, Andreas Rank, Olga Schutti, Klaus Hirschbühl, Marit Inngjerdingen, Diana Deen, Britta Eiz-Vesper, Christoph Schmid and Helga Maria Schmetzer
Int. J. Mol. Sci. 2024, 25(24), 13469; https://doi.org/10.3390/ijms252413469 - 16 Dec 2024
Cited by 5 | Viewed by 1928
Abstract
There is a high medical need to develop new strategies for the treatment of patients with acute myeloid leukemia (AML) refractory to conventional therapy. In vitro, the combinations of the blast-modulatory response modifiers GM-CSF + Prostaglandin E1, (summarized as Kit M) have been [...] Read more.
There is a high medical need to develop new strategies for the treatment of patients with acute myeloid leukemia (AML) refractory to conventional therapy. In vitro, the combinations of the blast-modulatory response modifiers GM-CSF + Prostaglandin E1, (summarized as Kit M) have been shown to convert myeloid leukemic blasts into antigen-presenting dendritic cells of leukemic origin (DCleu) that were able to (re-)activate the innate and adaptive immune system, direct it specifically against leukemic blasts, and induce memory cells. This study aimed to investigate the immune modulatory capacity and antileukemic efficacy of Kit M in vivo. Brown Norway rats suffering from AML were treated with Kit M (twofold application). Blasts and immune cells were monitored in peripheral blood (PB) and spleen. Upon the observation of promising immune modulatory effects in the treated animals, two patients with AML refractory to multiple lines of therapy were offered treatment with Kit M on an individualized basis. Safety, as well as immunological and clinical effects, were monitored. Samples obtained from a third patient in similar clinical conditions not receiving Kit M were used as controls for immune monitoring tests. Animal experiments: Drugs were well tolerated by the treated animals. After 9 days of treatment, DCleu and memory-like T cells increased in the peripheral blood, whereas regulatory T cells, especially blasts, decreased in treated as compared to untreated control animals. Clinical courses: No severe side effects were observed. In patient 1482, PB blasts remained under the detection threshold during 27 days of treatment, thrombocytes were normalized, and (leukemia specific) immune effector cells of the adaptive and innate immune system increased up to 800-fold compared to the start of treatment. Patient 1601 responded with a 12% reduction in blasts in PB immediately after Kit M treatment. Several subtypes of (leukemia-specific) immune effector cells in PB increased up to four-fold during the 19 days of treatment. In contrast, immune-reactive cells decreased under mild chemotherapy in the PB of control patient 1511 with comparably refractory AML. Within the limitation of low numbers in both animal experiments and clinical applications, our data suggest that Kit M treatment of AML-diseased rats and patients is feasible and may induce leukemia-specific immune reactions and clinical improvement. A larger series and a prospective clinical trial will be required to confirm our observations. Beyond optimized doses and schedules of the applied compounds, the combination with other antileukemic strategies or the application of Kit M in less proliferative stages of the myeloid diseases need to be discussed. If effects are confirmed, the concept may add to the armamentarium of treatments for highly aggressive blood cancer. Full article
(This article belongs to the Special Issue Drug-Induced Modulation and Immunotherapy of Leukemia)
Show Figures

Figure 1

14 pages, 1520 KB  
Article
Proteomics-Based Identification of Retinal Protein Networks Impacted by Elevated Intraocular Pressure in the Hypertonic Saline Injection Model of Experimental Glaucoma
by Khadiza Zaman, Vien Nguyen, Katalin Prokai-Tatrai and Laszlo Prokai
Int. J. Mol. Sci. 2023, 24(16), 12592; https://doi.org/10.3390/ijms241612592 - 9 Aug 2023
Cited by 4 | Viewed by 2111
Abstract
Elevated intraocular pressure is considered a major cause of glaucomatous retinal neurodegeneration. To facilitate a better understanding of the underlying molecular processes and mechanisms, we report a study focusing on alterations of the retina proteome by induced ocular hypertension in a rat model [...] Read more.
Elevated intraocular pressure is considered a major cause of glaucomatous retinal neurodegeneration. To facilitate a better understanding of the underlying molecular processes and mechanisms, we report a study focusing on alterations of the retina proteome by induced ocular hypertension in a rat model of the disease. Glaucomatous processes were modeled through sclerosing the aqueous outflow routes of the eyes by hypertonic saline injections into an episcleral vein. Mass spectrometry-based quantitative retina proteomics using a label-free shotgun methodology identified over 200 proteins significantly affected by ocular hypertension. Various facets of glaucomatous pathophysiology were revealed through the organization of the findings into protein interaction networks and by pathway analyses. Concentrating on retinal neurodegeneration as a characteristic process of the disease, elevated intraocular pressure-induced alterations in the expression of selected proteins were verified by targeted proteomics based on nanoflow liquid chromatography coupled with nano-electrospray ionization tandem mass spectrometry using the parallel reaction monitoring method of data acquisition. Acquired raw data are shared through deposition to the ProteomeXchange Consortium (PXD042729), making a retina proteomics dataset on the selected animal model of glaucoma available for the first time. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

11 pages, 1246 KB  
Article
Effect of Chronically Suppressed Plasma Angiotensin II on Regulation of the CYP4A/20-HETE Pathway in the Dahl Salt-Sensitive Rat
by Kathleen Lukaszewicz, John R. Falck and Julian Lombard
Antioxidants 2023, 12(4), 783; https://doi.org/10.3390/antiox12040783 - 23 Mar 2023
Cited by 1 | Viewed by 1859
Abstract
In Dahl salt-sensitive (SS) rats, impaired vascular relaxation can be restored by: (1) minipump infusion of a low (sub-pressor) dose of angiotensin II (ANG II) to restore physiological levels of plasma ANG II, (2) inhibition of 20-HETE production, and [...] Read more.
In Dahl salt-sensitive (SS) rats, impaired vascular relaxation can be restored by: (1) minipump infusion of a low (sub-pressor) dose of angiotensin II (ANG II) to restore physiological levels of plasma ANG II, (2) inhibition of 20-HETE production, and (3) introgression of a normally functioning renin allele from the Brown Norway rat (SS-13BN consomic rat). Unlike SS rats, SS-13BN rats have normal levels of ANG II on a normal-salt diet and suppressed ANG II on a high-salt (HS) diet. This study tested whether chronically low ANG II levels in SS rats upregulate cytochrome P450-4A (CYP4A) increasing the production of the vasoconstrictor 20-HETE. Although salt-induced suppression of ANG II levels increased reactive oxygen species (ROS) in basilar arteries from SS-13BN rats in previous studies, this study showed no change in vascular 20-HETE levels in response to ANGII suppression. CYP4A inhibition significantly reduced vascular ROS levels and restored endothelium-dependent relaxation in response to acetylcholine in the middle cerebral artery (MCA) of SS rats and HS-fed SS-13BN rats. These data demonstrate that both the renin–angiotensin system and the CYP4A/20-HETE pathway play a direct role in the vascular dysfunction of the Dahl SS rat but are independent of each other, even though they may both contribute to vascular dysfunction through ROS production. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

18 pages, 2983 KB  
Article
In Vitro and In Vivo Biological Assays of Dextran Coated Iron Oxide Aqueous Magnetic Fluids
by Silviu-Adrian Predoi, Simona Liliana Iconaru and Daniela Predoi
Pharmaceutics 2023, 15(1), 177; https://doi.org/10.3390/pharmaceutics15010177 - 4 Jan 2023
Cited by 15 | Viewed by 3186
Abstract
The iron oxide nanoparticles coated with different surface coatings were studied and characterized by multiple physicochemical and biological methods. The present paper aims at estimating the toxicity in vitro and in vivo of dextran coated iron oxide aqueous magnetic fluids. The in vitro [...] Read more.
The iron oxide nanoparticles coated with different surface coatings were studied and characterized by multiple physicochemical and biological methods. The present paper aims at estimating the toxicity in vitro and in vivo of dextran coated iron oxide aqueous magnetic fluids. The in vitro studies were conducted by quantifying the viability of HeLa cells after their incubation with the samples (concentrations of 62.5–125–250–500 μg/mL at different time intervals). The estimation of the toxicity in vivo of administering dextran coated iron oxide aqueous magnetic fluids (DIO-AMF) with hydrodynamic diameter of 25.73 ± 4 nm to Male Brown Norway rats has been made. Different concentrations (62.5–125–250–500 μg/mL) of dextran coated iron oxide aqueous magnetic fluids were administered for 7 consecutive days. Hematology and biochemistry of the Male Brown Norway rats assessment was performed at various time intervals (24–72 h and 21–28 days) after intra-peritoneal injection. The results showed that high concentrations of DIO-AMF (250 and 500 μg/mL) significantly increased white blood cells, red blood cells, hemoglobin and hematocrit compared to the values obtained for the control group (p < 0.05). Moreover, following the administration of DIO-AMF, the levels of alkaline phosphatase and aspartate aminotransferase increased compared to the control group (p < 0.05). After DIO-AMF administration, no significant difference was observed in the levels of alanine aminotransferase, gamma-glutamyl transpeptidase, urea and creatinine compared to the control group (p < 0.05). The results of the present study showed that dextran coated iron oxide aqueous magnetic fluids in concentrations lower than 250 μg/mL are reliable for medical and pharmaceutical applications. Full article
(This article belongs to the Special Issue Carbohydrate-Based Carriers for Drug Delivery)
Show Figures

Figure 1

17 pages, 7475 KB  
Article
IL-18BP Improves Early Graft Function and Survival in Lewis–Brown Norway Rat Orthotopic Liver Transplantation Model
by Qiang Meng, Weikang Wu, Wenjie Zhang, Juzheng Yuan, Long Yang, Xuan Zhang and Kaishan Tao
Biomolecules 2022, 12(12), 1801; https://doi.org/10.3390/biom12121801 - 1 Dec 2022
Cited by 4 | Viewed by 3205
Abstract
Interleukin-18 (IL-18) can effectively activate natural killer (NK) cells and induce large concentrations of interferon-γ (IFN-γ). In healthy humans, IL-18 binding protein (IL-18BP) can inhibit the binding of IL-18 to IL-18R and counteract the biological action of IL-18 due to its high concentration [...] Read more.
Interleukin-18 (IL-18) can effectively activate natural killer (NK) cells and induce large concentrations of interferon-γ (IFN-γ). In healthy humans, IL-18 binding protein (IL-18BP) can inhibit the binding of IL-18 to IL-18R and counteract the biological action of IL-18 due to its high concentration and high affinity, thus preventing the production of IFN-γ and inhibiting NK-cell activation. Through previous studies and the phenomena observed by our group in pig–non-human primates (NHPs) liver transplantation experiments, we proposed that the imbalance in IL-18/IL-18BP expression upon transplantation encourages the activation, proliferation, and cytotoxic effects of NK cells, ultimately causing acute vascular rejection of the graft. In this research, we used Lewis–Brown Norway rat orthotopic liver transplantation (OLTx) as a model of acute vascular rejection. AAV8-Il18bp viral vectors as gene delivery vehicles were constructed for gene therapy to overexpress IL-18BP and alleviate NK-cell rejection of the graft after transplantation. The results showed that livers overexpressing IL-18BP had reduced damage and could function longer after transplantation, effectively improving the survival time of the recipients. Full article
(This article belongs to the Special Issue Targets and Treatment Approaches for End-Stage Liver Diseases)
Show Figures

Figure 1

14 pages, 2425 KB  
Article
Long Non-Coding RNAs Expressed in the Peanut Allergy for Understanding the Pathophysiology of Peanut Allergy Rat Model
by Manman Liu, Sen Li, Boya Li, Shanfeng Sun, Guirong Liu, Junjuan Wang, Mengzhen Hao and Huilian Che
Foods 2022, 11(23), 3760; https://doi.org/10.3390/foods11233760 - 22 Nov 2022
Cited by 1 | Viewed by 2238
Abstract
Background: Peanut allergy (PA) has become a clinical and public health problem, which is mainly regulated by genetics, immune responses, and environmental factors. Diagnosis and treatment for PA have always remained huge challenges due to its multiple triggers. Studies have shown that long [...] Read more.
Background: Peanut allergy (PA) has become a clinical and public health problem, which is mainly regulated by genetics, immune responses, and environmental factors. Diagnosis and treatment for PA have always remained huge challenges due to its multiple triggers. Studies have shown that long non-coding RNAs (lncRNAs) play a critical role in the development of allergic diseases. Method and Results: In the current study, we examined the plasma lncRNA expression profiles of peanut allergy Brown Norway rats and healthy controls and 496 differently expressed lncRNAs were identified, including 411 up-regulated genes and 85 down-regulated genes. We screened 8 lncRNAs based on the candidate principle and the candidates were verified in individual samples by quantitative real-time PCR. Then, the four lncRNA-based diagnostic model was established by least absolute shrinkage and selection operator (LASSO) and logistic regression, which was proved by area under the receiver operating characteristic curve (AUC). Conclusions: In summary, we assessed the correlation between lncRNA expression levels and the diagnosis of peanut allergy, which may perform a vital role in guiding the management of peanut allergy. Full article
(This article belongs to the Special Issue Food Allergen Detection and Characterisation)
Show Figures

Figure 1

19 pages, 2807 KB  
Article
Alpha-Lipoic Acid Supplementation Restores Early Age-Related Sensory and Endothelial Dysfunction in the Skin
by Anne-France de Bengy, Johanna Decorps, Lisa S. Martin, Aurélie Pagnon, Fabien P. Chevalier, Dominique Sigaudo-Roussel and Bérengère Fromy
Biomedicines 2022, 10(11), 2887; https://doi.org/10.3390/biomedicines10112887 - 10 Nov 2022
Cited by 6 | Viewed by 6167
Abstract
Many changes characterize skin aging, and the resulting dysfunctions still constitute a real challenge for our society. The aim of this study was to compare the skin aging of two rat strains, Wistar and Brown Norway (BN), considered as “poorly aging” and “healthy [...] Read more.
Many changes characterize skin aging, and the resulting dysfunctions still constitute a real challenge for our society. The aim of this study was to compare the skin aging of two rat strains, Wistar and Brown Norway (BN), considered as “poorly aging” and “healthy aging” models, respectively, and to assess the effect of alpha-lipoic acid (LPA), especially on skin microcirculation. To this purpose, various skin characteristics were studied at 6, 12, and 24 months and compared to the results of LPA treatment performed at 12 or 24 months. Skin aging occurred in both strains, but we showed an early occurrence of different age-related disorders in the Wistar strain compared to BN strain, especially regarding weight gain, glycemia dysregulation, basal skin perfusion, endothelial function, and skin resistance to low pressure. LPA treatment tended to improve skin resistance to low pressure in BN but not in Wistar despite the improvement of basal skin perfusion, endothelial function, and skin sensory sensitivity. Overall, this study confirmed the healthier aging of BN compared to Wistar strain and the positive effect of LPA on both general state and skin microcirculation. Full article
(This article belongs to the Special Issue Vascular Function in Chronic Non-communicable Diseases)
Show Figures

Figure 1

12 pages, 2268 KB  
Article
Formulation of Solid Lipid Nanoparticles Loaded with Nociceptin/Orphanin FQ (N/OFQ) and Characterization in a Murine Model of Airway Hyperresponsiveness
by Davida Mirra, Giuseppe Spaziano, Renata Esposito, Debora Santonocito, Rosanna Filosa, Fiorentina Roviezzo, Gaetano Malgieri, Gianluca D’Abrosca, Pasquale Iovino, Luca Gallelli, Roberto Fattorusso, Carmelo Puglia and Bruno D’Agostino
Pharmaceuticals 2022, 15(10), 1210; https://doi.org/10.3390/ph15101210 - 29 Sep 2022
Cited by 4 | Viewed by 2488
Abstract
Asthma is characterized by chronic inflammation and a variable degree of airway hyperresponsiveness (AHR). Our previous papers documented a role for Nociceptin/Orphanin FQ (N/OFQ) and its receptor N/OFQ peptide (NOP) in AHR. Therefore, the aim of this study was to improve the bioavailability [...] Read more.
Asthma is characterized by chronic inflammation and a variable degree of airway hyperresponsiveness (AHR). Our previous papers documented a role for Nociceptin/Orphanin FQ (N/OFQ) and its receptor N/OFQ peptide (NOP) in AHR. Therefore, the aim of this study was to improve the bioavailability of N/OFQ by developing solid lipid nanoparticles (SLNs). N/OFQ-loaded SLNs were prepared by the Quasi Emulsion Solvent Diffusion (QESD) technique and then characterized. Brown Norway rats were sensitized to ovalbumin (OVA) and treated with an intratracheal administration of saline solution or N/OFQ-SLN. Then, 24 h after the last challenge, functional histological and molecular evaluations were performed. SLNs showed a mean diameter of 233 ± 0.03 nm, a polydispersity index (PDI) value around 0.28 ± 0.02 and a drug release percentage of 84.3. The in vitro release of N/OFQ from SLNs showed that the release of the peptide starts already after two hours of incubation. Animals receiving N/OFQ-SLN showed a significative decrease in allergen-induced AHR compared to the control group. These results showed the positive effects of N/OFQ-SLNs on the inflammatory process and on the mechanical properties of the airways, suggesting that the innovative nanotechnological approach may be therapeutically beneficial for asthmatic patients. Full article
Show Figures

Figure 1

8 pages, 435 KB  
Communication
No Evidence for the Presence of SARS-CoV-2 in Bank Voles and Other Rodents in Germany, 2020–2022
by Kerstin Wernike, Stephan Drewes, Calvin Mehl, Christin Hesse, Christian Imholt, Jens Jacob, Rainer G. Ulrich and Martin Beer
Pathogens 2022, 11(10), 1112; https://doi.org/10.3390/pathogens11101112 - 28 Sep 2022
Cited by 14 | Viewed by 2479
Abstract
Rodentia is the most speciose mammalian order, found across the globe, with some species occurring in close proximity to humans. Furthermore, rodents are known hosts for a variety of zoonotic pathogens. Among other animal species, rodents came into focus when the severe acute [...] Read more.
Rodentia is the most speciose mammalian order, found across the globe, with some species occurring in close proximity to humans. Furthermore, rodents are known hosts for a variety of zoonotic pathogens. Among other animal species, rodents came into focus when the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) spread through human populations across the globe, initially as laboratory animals to study the viral pathogenesis and to test countermeasures. Under experimental conditions, some rodent species including several cricetid species are susceptible to SARS-CoV-2 infection and a few of them can transmit the virus to conspecifics. To investigate whether SARS-CoV-2 is also spreading in wild rodent populations in Germany, we serologically tested samples of free-ranging bank voles (Myodes glareolus, n = 694), common voles (Microtus arvalis, n = 2), house mice (Mus musculus, n = 27), brown or Norway rats (Rattus norvegicus, n = 97) and Apodemus species (n = 8) for antibodies against the virus. The samples were collected from 2020 to 2022 in seven German federal states. All but one sample tested negative by a multispecies ELISA based on the receptor-binding domain (RBD) of SARS-CoV-2. The remaining sample, from a common vole collected in 2021, was within the inconclusive range of the RBD-ELISA, but this result could not be confirmed by a surrogate virus neutralization test as the sample gave a negative result in this test. These results indicate that SARS-CoV-2 has not become highly prevalent in wild rodent populations in Germany. Full article
(This article belongs to the Special Issue 10th Anniversary of Pathogens—Feature Papers)
Show Figures

Figure 1

11 pages, 1405 KB  
Article
Nutrigenetic Interaction of Spontaneously Hypertensive Rat Chromosome 20 Segment and High-Sucrose Diet Sensitizes to Metabolic Syndrome
by Ondřej Šeda, Kristýna Junková, Hana Malinska, Adéla Kábelová, Martina Hüttl, Michaela Krupková, Irena Markova, František Liška and Lucie Šedová
Nutrients 2022, 14(16), 3428; https://doi.org/10.3390/nu14163428 - 20 Aug 2022
Cited by 2 | Viewed by 2890
Abstract
Several corresponding regions of human and mammalian genomes have been shown to affect sensitivity to the manifestation of metabolic syndrome via nutrigenetic interactions. In this study, we assessed the effect of sucrose administration in a newly established congenic strain BN.SHR20, in which a [...] Read more.
Several corresponding regions of human and mammalian genomes have been shown to affect sensitivity to the manifestation of metabolic syndrome via nutrigenetic interactions. In this study, we assessed the effect of sucrose administration in a newly established congenic strain BN.SHR20, in which a limited segment of rat chromosome 20 from a metabolic syndrome model, spontaneously hypertensive rat (SHR), was introgressed into Brown Norway (BN) genomic background. We mapped the extent of the differential segment and compared the genomic sequences of BN vs. SHR within the segment in silico. The differential segment of SHR origin in BN.SHR20 spans about 9 Mb of the telomeric portion of the short arm of chromosome 20. We identified non-synonymous mutations e.g., in ApoM, Notch4, Slc39a7, Smim29 genes and other variations in or near genes associated with metabolic syndrome in human genome-wide association studies. Male rats of BN and BN.SHR20 strains were fed a standard diet for 18 weeks (control groups) or 16 weeks of standard diet followed by 14 days of high-sucrose diet (HSD). We assessed the morphometric and metabolic profiles of all groups. Adiposity significantly increased only in BN.SHR20 after HSD. Fasting glycemia and the glucose levels during the oral glucose tolerance test were higher in BN.SHR20 than in BN groups, while insulin levels were comparable. The fasting levels of triacylglycerols were the highest in sucrose-fed BN.SHR20, both compared to the sucrose-fed BN and the control BN.SHR20. The non-esterified fatty acids and total cholesterol concentrations were higher in BN.SHR20 compared to their respective BN groups, and the HSD elicited an increase in non-esterified fatty acids only in BN.SHR20. In a new genetically defined model, we have isolated a limited genomic region involved in nutrigenetic sensitization to sucrose-induced metabolic disturbances. Full article
(This article belongs to the Special Issue Nutritional Genomics—Fundamental and Clinical Aspects)
Show Figures

Figure 1

17 pages, 2613 KB  
Article
Long-Term Effect of a Single Dose of Caffeine on Sleep, the Sleep EEG and Neuronal Activity in the Peduncular Part of the Lateral Hypothalamus under Constant Dark Conditions
by Yumeng Wang and Tom Deboer
Clocks & Sleep 2022, 4(2), 260-276; https://doi.org/10.3390/clockssleep4020023 - 25 May 2022
Cited by 6 | Viewed by 9616
Abstract
Background: Caffeine is a central nervous system stimulant that influences both the sleep–wake cycle and the circadian clock and is known to influence neuronal activity in the lateral hypothalamus, an important area involved in sleep–wake regulation. Light is a strong zeitgeber and it [...] Read more.
Background: Caffeine is a central nervous system stimulant that influences both the sleep–wake cycle and the circadian clock and is known to influence neuronal activity in the lateral hypothalamus, an important area involved in sleep–wake regulation. Light is a strong zeitgeber and it is known to interact with the effect of caffeine on the sleep–wake cycle. We therefore wanted to investigate the long-term effects of a single dose of caffeine under constant dark conditions. Methods: We performed long-term (2 days) electroencephalogram (EEG)/electromyogram recordings combined with multi-unit neuronal activity recordings in the peduncular part of the lateral hypothalamus (PLH) under constant darkness in Brown Norway rats, and investigated the effect of a single caffeine treatment (15 mg/kg) or saline control given 1 h after the onset of the endogenous rest phase. Results: After a reduction in sleep and an increase in waking and activity in the first hours after administration, also on the second recording day after caffeine administration, rapid eye movement (REM) sleep was still reduced. Analysis of the EEG showed that power density in the theta range during waking and REM sleep was increased for at least two days. Neuronal activity in PLH was also increased for two days after the treatment, particularly during non-rapid eye movement sleep. Conclusion: Surprisingly, the data reveal long-term effects of a single dose of caffeine on vigilance states, EEG, and neuronal activity in the PLH. The absence of a light–dark cycle may have enabled the expression of these long-term changes. It therefore may be that caffeine, or its metabolites, have a stronger and longer lasting influence, particularly on the expression of REM sleep, than acknowledged until now. Full article
(This article belongs to the Section Animal Basic Research)
Show Figures

Figure 1

Back to TopTop