Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (203)

Search Parameters:
Keywords = Brown’s gas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 7859 KB  
Article
Itaconate Promotes Cold Adaptation and Myocardial Protection by Enhancing Brown Adipose Tissue Metabolism
by Zilong Geng, Xing Liu, Xiao Cheng, Shizhan Xu, Jin Zhang, Ao Tan, Shun Song and Shasha Zhang
Metabolites 2026, 16(1), 66; https://doi.org/10.3390/metabo16010066 - 12 Jan 2026
Viewed by 206
Abstract
Background/Objectives: Itaconic acid (ITA) is an immunometabolite with anti-inflammatory and metabolic regulatory functions, but its cellular source and role in brown adipose tissue (BAT) remain unclear. This study aims to reveal the expression patterns of the key ITA synthesis gene Irg1 in BAT [...] Read more.
Background/Objectives: Itaconic acid (ITA) is an immunometabolite with anti-inflammatory and metabolic regulatory functions, but its cellular source and role in brown adipose tissue (BAT) remain unclear. This study aims to reveal the expression patterns of the key ITA synthesis gene Irg1 in BAT at different developmental stages and to investigate the effects of cold exposure and exogenous ITA on BAT metabolic function and cardioprotection. Methods: Single-cell RNA sequencing was used to analyze the gene expression profiles of stromal vascular fraction (SVF) cells in BAT from P7 neonatal and adult mice. Bioinformatic methods were applied to identify cell types expressing Irg1. Cold exposure (4 °C) and exogenous ITA treatment were employed to evaluate BAT morphology, and the ITA content in BAT was detected using gas chromatography–triple quadrupole mass spectrometry, UCP1 protein expression, and body temperature changes. A transverse aortic constriction (TAC) surgery model was established to induce cardiac dysfunction, and BAT excision was performed to explore the BAT-dependent effects of ITA on myocardial hypertrophy, fibrosis, and cardiac function. Results: In P7 neonatal mouse BAT, Irg1 was predominantly expressed in a subset of interferon-responsive activated macrophages (macrophage27), while in adult mice, it was mainly expressed in neutrophils and a functionally similar macrophage subset (macrophage25). Cold exposure significantly suppressed Irg1 expression in neutrophils but did not affect its expression in macrophages, also resulting in a significant decrease in ITA content in BAT. Exogenous ITA significantly enhanced BAT thermogenesis under cold conditions, which manifested as reduced lipid droplets, upregulated UCP1 expression, and increased body temperature. In the TAC model, ITA treatment markedly improved cardiac function, attenuated myocardial hypertrophy and fibrosis, and these protective effects were significantly diminished after BAT excision. Conclusions: ITA promotes cold adaptation and ameliorates cardiac injury by enhancing BAT metabolic function, and its effects depend on the presence of BAT. This study provides new insights for the treatment of metabolic cardiovascular diseases. Full article
Show Figures

Figure 1

24 pages, 4846 KB  
Review
Analysis of Fuel Gasification Using Solar Technology: A Patent Review
by Mikhail Zhumagulov, Aizhan Omirbayeva and Davide Papurello
Gases 2026, 6(1), 3; https://doi.org/10.3390/gases6010003 - 7 Jan 2026
Viewed by 239
Abstract
Solar energy enhances the energy and environmental performance of coal gasification by lowering carbon emissions and increasing the yield and quality of synthesis gas. This patent review surveys recent global advances in solar thermochemical reactors for coal gasification, focusing on key innovations disclosed [...] Read more.
Solar energy enhances the energy and environmental performance of coal gasification by lowering carbon emissions and increasing the yield and quality of synthesis gas. This patent review surveys recent global advances in solar thermochemical reactors for coal gasification, focusing on key innovations disclosed in patent applications and grants, with particular attention to technologies that improve process efficiency and sustainability. The novelty of the review is that unlike most patent reviews that focus primarily on statistical indicators such as application counts, geography, and classification, this work integrates qualitative analysis of specific technical solutions alongside statistical evaluation. This combined approach enables a deeper assessment of technological maturity and practical applicability. Fifteen patents from different countries were reviewed. The largest number (8, 53%) belongs to the United States. China has the second place with 4 (27%). The remaining countries (the EU, Korea, and Russia) hold 1 patent (7% each). The present work emphasises the technological and engineering solutions associated with the integration of solar energy into gasification processes. The author’s design is free of the disadvantages of its counterparts and is a simplified design with a high degree of adaptability to various types of fuel, including brown coal, biomass, and other carbon-containing materials. Full article
(This article belongs to the Special Issue Bio-Energy: Biogas, Biomethane and Green-Hydrogen)
Show Figures

Graphical abstract

23 pages, 9458 KB  
Article
Experimental Study on the Co-Combustion Characteristics of Brown Gas (HHO) and Bituminous Coal/Anthracite with Different Injection Modes in a One-Dimensional Furnace
by Kaihong Huo, Yunlong Cai, Yong He, Shiyan Liu, Chaoqun Xu, Siyu Liu, Wubin Weng, Yanqun Zhu and Zhihua Wang
Reactions 2026, 7(1), 2; https://doi.org/10.3390/reactions7010002 - 2 Jan 2026
Viewed by 373
Abstract
As the energy structure evolves, low-load operation of coal-fired boilers is becoming common, posing challenges to combustion stability. This study explored the co-combustion of brown gas (HHO) with bituminous coal and anthracite in a one-dimensional furnace. Results indicate that introducing HHO significantly elevated [...] Read more.
As the energy structure evolves, low-load operation of coal-fired boilers is becoming common, posing challenges to combustion stability. This study explored the co-combustion of brown gas (HHO) with bituminous coal and anthracite in a one-dimensional furnace. Results indicate that introducing HHO significantly elevated combustion temperatures, with maximum increases of 158 °C and 207 °C, respectively. In the premixed mode, the flame front shifted upstream, indicating advanced ignition timing. Moreover, HHO co-combustion notably enhanced the combustion stability of anthracite, as reflected in stabilized furnace temperatures. With increasing HHO flow rate, CO concentrations from both bituminous coal and anthracite were reduced by over 80%. The combustion efficiency of bituminous coal reached 98%, while the combustion efficiency of anthracite increased by 19% (premixed) and 13% (staged), confirming the premixed mode’s superiority in promoting complete combustion. HHO co-combustion increased SO2 emissions but had a complex effect on NOX emissions due to the competition between NOX reduction caused by HHO and NOX formation caused by the increased combustion temperature. HHO co-combustion changed the melting point of fly ash, increased the content of Al2O3, and reduced the content of Na2O, K2O, and MgO, influencing the slagging behavior of the boiler and the subsequent management of fly ash. Full article
Show Figures

Figure 1

18 pages, 1961 KB  
Article
Valorization of Brown Seaweed (Lessonia spicata): Cellulosic Saccharification for the Development of a Functional Fermented Beverage
by Sebastián Pizarro-Oteíza, Romina Cea, Millaray Aranda, Jéssica López, Pedro Valencia, Erasmo C. Macaya, Fernando Salazar, Oscar Cavieres, Agustín Zavala, Santiago P. Aubourg, Karlo Guerrero, Wladimir Silva-Vera and Paulina Aguirre
Foods 2026, 15(1), 5; https://doi.org/10.3390/foods15010005 - 19 Dec 2025
Viewed by 452
Abstract
This study explored the production of a fermented beverage using Huiro negro (Lessonia spicata), a brown seaweed, as a substrate. The cellulosic saccharification (CS) process was optimized via response surface methodology, identifying that the best conditions were 60 U/g of enzyme [...] Read more.
This study explored the production of a fermented beverage using Huiro negro (Lessonia spicata), a brown seaweed, as a substrate. The cellulosic saccharification (CS) process was optimized via response surface methodology, identifying that the best conditions were 60 U/g of enzyme at 60 °C for 1.9 h, yielding 2.5 g/100 g of reducing sugars. The resulting hydrolysate was fermented with Lactobacillus spp. for 48 h at 30 °C and compared with a non-saccharified control. The beverage’s proximate composition, total phenolic content (TPC), flavonoid content (TFC), antioxidant capacity (AC), and Lactobacillus spp. viability over 16 days of storage at 4 °C were assessed. CS-treated samples showed a progressive increase in TPC, reaching 126.59 ± 5.58 mg GA/L, which correlated with higher AC. However, no significant differences (p > 0.05) were observed in TPC and AC between saccharified and non-saccharified beverages. Notably, the CS-treated beverage achieved significantly higher (p < 0.05) Lactobacillus spp. counts (109 CFU/mL) compared to the control (107 CFU/mL), maintaining viability throughout storage. While further research is needed to confirm bioavailability and gut health effects, these findings shows that enzymatic saccharification substantially improves fermentation performance and functional properties in Lessonia spicata-based beverages. Full article
(This article belongs to the Special Issue Nutrition, Safety and Storage of Seafoods)
Show Figures

Graphical abstract

17 pages, 829 KB  
Article
Foliar Application of Aqueous Extracts from the Algal Biomass of Laminaria digitata and Phaeodactylum tricornutum as Strategy to Mitigate Boron Toxicity in Tomato (Solanum lycopersicum L.)
by Ulises Navarro-Zapata, Valeria Navarro-Pérez, Ijaz Ahmad, Rafael Perez-Millan, Francisco García-Sánchez and Silvia Simón-Grao
Horticulturae 2025, 11(11), 1398; https://doi.org/10.3390/horticulturae11111398 - 19 Nov 2025
Viewed by 546
Abstract
Boron (B) toxicity is a relevant problem in Mediterranean regions, where irrigation water may present high concentrations of this micronutrient. In this study, the potential of aqueous extracts from the brown macroalga Laminaria digitata and the diatom Phaeodactylum tricornutum, applied alone or [...] Read more.
Boron (B) toxicity is a relevant problem in Mediterranean regions, where irrigation water may present high concentrations of this micronutrient. In this study, the potential of aqueous extracts from the brown macroalga Laminaria digitata and the diatom Phaeodactylum tricornutum, applied alone or in combination with metalloids (Se, Si) and micronutrients (Mn, Fe, Zn), was evaluated to improve the tolerance of tomato plants (Solanum lycopersicum L.) grown under excess B (15 mg L−1). The extracts were applied foliarly, and growth parameters, gas exchange, chlorophyll content, mineral composition, B accumulation, oxidative stress, and metabolic profile were analyzed. Excess B significantly reduced root development, net photosynthesis, and metabolic balance, evidencing a strong physiological impact. The application of algal extracts partially mitigated these adverse effects, mainly through improvements in photosynthesis, water use efficiency, and the accumulation of osmoprotective metabolites (proline, tryptophan, glucose). In particular, L. digitata promoted a significant increase in total biomass and greater physiological recovery compared with P. tricornutum. Conversely, formulations enriched with metalloids and micronutrients did not provide consistent additional benefits and even induced metabolic imbalances. Multivariate analysis (PCA) confirmed that relative tolerance was associated with physiological and metabolic variables rather than nutritional changes. Overall, these results highlight the potential of algal extracts, especially L. digitata, as effective biostimulants to mitigate boron toxicity in tomato. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Graphical abstract

20 pages, 3763 KB  
Article
Impacts of Roasting Intensity and Cultivar on Date Seed Beverage Quality Traits and Volatile Compounds Using Digital Technologies
by Linghong Shi, Hanjing Wu, Kashif Ghafoor, Claudia Gonzalez Viejo, Sigfredo Fuentes, Farhad Ahmadi and Hafiz A. R. Suleria
Foods 2025, 14(22), 3902; https://doi.org/10.3390/foods14223902 - 14 Nov 2025
Viewed by 809
Abstract
Roasting intensity and cultivar shape the physicochemical composition and sensory characteristics of date seed-based coffee alternatives. This study evaluated quality traits among eight date seed cultivars (Zahidi, Medjool, Deglet nour, Thoory, Halawi, Barhee, Khadrawy, Bau Strami) roasted at three intensities (light: 180 °C; [...] Read more.
Roasting intensity and cultivar shape the physicochemical composition and sensory characteristics of date seed-based coffee alternatives. This study evaluated quality traits among eight date seed cultivars (Zahidi, Medjool, Deglet nour, Thoory, Halawi, Barhee, Khadrawy, Bau Strami) roasted at three intensities (light: 180 °C; medium: 200 °C; dark: 220 °C) using digital technologies, including near-infrared spectroscopy (NIR), electronic nose (e-nose), and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS), supported by machine learning (ML) modeling. NIR spectra showed distinct chemical fingerprints for date seed powders and beverages, with key absorption bands from 1673–2396 nm and 1720–1927/2238–2396 nm, respectively. E-nose outputs showed higher volatile emissions in dark-roasted samples, particularly for ethanol and NH3. GC-MS identified 25 volatile compounds, mainly pyrazines and furanic compounds. Pyrazine concentration was greatest in Bau Strami and Medjool cultivars, whereas Halawi and Thoory cultivars had greater content of furfural. Two ML classification models achieved high accuracy in classifying cultivars (NIR inputs: 99%; e-nose inputs: 98%) and roasting levels, while regression models (NIR inputs: R = 0.88; e-nose inputs: R = 0.90) effectively predicted volatile aromatic compounds obtained using GC-MS. Dark roasting resulted in a significant pH reduction and intensified browning, with furfural persisting as a stable aroma contributor. These findings highlight the potential of date seeds as a coffee alternative, with roasting level and cultivar selection influencing flavor profiles. The findings also demonstrate the utility of digital sensing technologies as an efficient, low-cost tool for rapid quality assessment and process optimization in the development of novel beverages. Full article
Show Figures

Graphical abstract

24 pages, 1493 KB  
Article
Compositional and Functional Analysis of Golden and Brown Flaxseed: Nutrients, Bioactive Phytochemicals, Antioxidant Activity, and Cellular Responses
by Mariola Drozdowska, Ewelina Piasna-Słupecka, Klaudia Kmiecik, Ivo Doskocil, Barbora Lampova, Petr Smid, Barbara Domagała and Kinga Dziadek
Nutrients 2025, 17(21), 3407; https://doi.org/10.3390/nu17213407 - 29 Oct 2025
Viewed by 1293
Abstract
Background: Flaxseed (Linum usitatissimum L.) represents a unique source of bioactive compounds with demonstrated health benefits. The main aim of the research was to investigate the chemical composition, content of bioactive compounds and biological activities of various types of flaxseed and their [...] Read more.
Background: Flaxseed (Linum usitatissimum L.) represents a unique source of bioactive compounds with demonstrated health benefits. The main aim of the research was to investigate the chemical composition, content of bioactive compounds and biological activities of various types of flaxseed and their defatted forms. Methods: Proximate composition (crude fat, protein, ash, digestible carbohydrates, fiber) was determined, and fatty acid profiles were analyzed via GC-MS (gas chromatography–mass spectrometry). Mineral content was measured by atomic absorption spectrometry, while total and individual polyphenols were quantified spectrophotometrically and by HPLC (high-performance liquid chromatography). Antioxidant activity was assessed using three assays. In vitro functional assays evaluated the effects of flaxseed extracts on lactic acid bacteria adhesion in two cellular models, nitric oxide production in liposaccharide (LPS)-stimulated RAW 264.7 macrophages, proliferation and apoptosis of MCF-7 breast cancer cells. Results: Significant differences (p ≤ 0.05) were observed in the proximate composition: brown flaxseed exhibited the highest crude fat content, whereas defatted seeds had higher levels of digestible carbohydrates and ash. α-Linolenic acid was the dominant fatty acid, with the highest concentration in defatted golden flaxseed. Defatted forms generally displayed increased mineral concentrations, particularly calcium, magnesium, potassium, and iron. The polyphenolic content and antioxidant activity were highest in defatted brown flaxseed, which also exhibited the greatest diversity of individual polyphenols. Flaxseed extracts modulated the adhesion of lactic acid bacteria, reduced the production of nitric oxide in RAW 264.7 macrophages, inhibited the proliferation of MCF-7 breast cancer cells in a dose- and time-dependent manner, and induced apoptosis of the mentioned cells. Conclusions: Flaxseed, especially the brown type, could be a promising source of bioactive compounds with antioxidant, anti-inflammatory and anticancer potential, supporting its use in nutritional and functional applications. Full article
Show Figures

Figure 1

12 pages, 1523 KB  
Article
Methodological Approach to the Characterization of Single-Photon Sources Using a Hanbury Brown–Twiss Interferometer in a Laser-Excited Fluorescence Microscope
by Sergey Mikushev and Aleksei Kalinichev
Quantum Beam Sci. 2025, 9(4), 30; https://doi.org/10.3390/qubs9040030 - 13 Oct 2025
Viewed by 941
Abstract
The development of quantum-enhanced technologies requires single-photon sources, as well as methods for their characterization and verification. Here, we describe a methodology for measuring the correlation function of a single-photon source using an experimental setup that comprises a laser-excited fluorescence microscope equipped with [...] Read more.
The development of quantum-enhanced technologies requires single-photon sources, as well as methods for their characterization and verification. Here, we describe a methodology for measuring the correlation function of a single-photon source using an experimental setup that comprises a laser-excited fluorescence microscope equipped with a Hanbury Brown–Twiss intensity interferometer as one of the detection systems. Measurements of the response function of the device and the reference samples are performed. The second-order autocorrelation function of the exciton state of GaAs quantum dots in AlGaAs nanowires is obtained and reveals a single-photon emission. Full article
(This article belongs to the Section Spectroscopy Technique)
Show Figures

Figure 1

22 pages, 5183 KB  
Article
Effect of Hydrogen-Containing Fuel on the Mechanical Properties of an Aluminum Alloy ICE Piston
by Jelena Škamat, Olegas Černašėjus, Saugirdas Pukalskas and Raimonda Černašėjienė
J. Mar. Sci. Eng. 2025, 13(10), 1889; https://doi.org/10.3390/jmse13101889 - 2 Oct 2025
Viewed by 850
Abstract
The transition to cleaner, hydrogen-containing fuels is critical for reducing the environmental impact of marine infrastructure, yet their potential effects on the durability and mechanical reliability of engine components remain a significant engineering challenge. Although aluminum alloys are generally regarded as less susceptible [...] Read more.
The transition to cleaner, hydrogen-containing fuels is critical for reducing the environmental impact of marine infrastructure, yet their potential effects on the durability and mechanical reliability of engine components remain a significant engineering challenge. Although aluminum alloys are generally regarded as less susceptible to hydrogen-induced degradation and are widely applied in internal combustion engine components, experimental data obtained under real operating conditions with hydrogen-containing fuel mixtures remain insufficient to fully assess all potential risks. In the present study, two identical low-power gasoline engine–generators were operated for 220 h on fuels with and without hydrogen. Post-test analysis included mechanical testing and microstructural characterization of aluminum alloy pistons for comparative assessment. The measured values of ultimate tensile strength, elongation and deflection, maximum bending force, and effective stress concentration factor revealed pronounced property degradation in the piston operated on the gasoline–hydrogen mixture compared to both the new piston and the one run on pure gasoline. Microstructural analysis provided a plausible explanation for this degradation. The results of this preliminary study provide insights into the effects of hydrogen-containing fuel on the mechanical performance of engine component alloys, contributing to the development of safer and more reliable marine energy systems. Full article
(This article belongs to the Special Issue Ship Performance and Emission Prediction)
Show Figures

Figure 1

18 pages, 10242 KB  
Article
Toxicity of Volatile Organic Compounds Produced by Pathogens Ewingella americana and Cedecea neteri Associated with Pleurotus pulmonarius
by Zhiyuan Wei, Yifan Wang, Jieheng Qiu, Yulu Nie, Lian Wang and Bin Liu
Toxins 2025, 17(9), 449; https://doi.org/10.3390/toxins17090449 - 5 Sep 2025
Viewed by 1238
Abstract
Bacterial diseases of Pleurotus pulmonarius, caused by diverse pathogens and associated with a range of symptoms, reduce its commercial value and lead to substantial economic losses. While most research has focused on Pseudomonas tolaasii and its non-volatile toxin tolaasin, little is known [...] Read more.
Bacterial diseases of Pleurotus pulmonarius, caused by diverse pathogens and associated with a range of symptoms, reduce its commercial value and lead to substantial economic losses. While most research has focused on Pseudomonas tolaasii and its non-volatile toxin tolaasin, little is known about other bacterial pathogens and their volatile metabolites. In this study, two bacterial pathogens were isolated from symptomatic P. pulmonarius fruiting bodies in Guangxi, China, and identified as Ewingella americana and Cedecea neteri. Using headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME-GC-MS), we identified 16 volatile organic compounds (VOCs) produced by these two species, seven of which exhibited toxicity-inducing sunken lesions, discoloration, and inhibition of mycelial growth. Symptom severity was quantified by colorimetric analysis. Among the toxic VOCs, 2,4-di-tert-butylphenol was the most potent, inducing sunken lesions and slight discoloration at concentrations as low as 0.5 mg/mL, and causing significant inhibition of mycelial growth at 5 μg/L. The remaining VOCs also caused varying degrees of sunken lesions, yellowing or browning, and suppression of mycelial growth. This study is the first to demonstrate the pathogenic potential of VOCs produced by bacterial pathogens in P. pulmonarius, underscoring their role as important virulence factors and providing a foundation for further investigation into their mechanisms and control strategies. Full article
Show Figures

Figure 1

25 pages, 2907 KB  
Article
Benchmarking ML Algorithms Against Traditional Correlations for Dynamic Monitoring of Bottomhole Pressure in Nitrogen-Lifted Wells
by Samuel Nashed and Rouzbeh Moghanloo
Processes 2025, 13(9), 2820; https://doi.org/10.3390/pr13092820 - 3 Sep 2025
Viewed by 801
Abstract
Proper estimation of flowing bottomhole pressure at coiled tubing depth (BHP-CTD) is crucial in optimization of nitrogen lifting operations in oil wells. Conventional estimation techniques such as empirical correlations and mechanistic models may be characterized by poor generalizability, low accuracy, and inapplicability in [...] Read more.
Proper estimation of flowing bottomhole pressure at coiled tubing depth (BHP-CTD) is crucial in optimization of nitrogen lifting operations in oil wells. Conventional estimation techniques such as empirical correlations and mechanistic models may be characterized by poor generalizability, low accuracy, and inapplicability in real time. This study overcomes these shortcomings by developing and comparing sixteen machine learning (ML) regression models, such as neural networks and genetic programming-based symbolic regression, in order to predict BHP-CTD with field data collected on 518 oil wells. Operational parameters that were used to train the models included fluid flow rate, gas–oil ratio, coiled tubing depth, and nitrogen rate. The best performance was obtained with the neural network with the L-BFGS optimizer (R2 = 0.987) and the low error metrics (RMSE = 0.014, MAE = 0.011). An interpretable equation with R2 = 0.94 was also obtained through a symbolic regression model. The robustness of the model was confirmed by both k-fold and random sampling validation, and generalizability was also confirmed using blind validation on data collected on 29 wells not included in the training set. The ML models proved to be more accurate, adaptable, and real-time applicable as compared to empirical correlations such as Hagedorn and Brown, Beggs and Brill, and Orkiszewski. This study does not only provide a cost-efficient alternative to downhole pressure gauges but also adds an interpretable, data-driven framework to increase the efficiency of nitrogen lifting in various operational conditions. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

12 pages, 220 KB  
Article
Impact of Betaine Supplementation on Growth Performance, Nutrient Digestibility, Egg Quality, Gas Emissions, and Blood Profile in Laying Hens Under Heat Stress Conditions
by Zhenyu Ding and In Ho Kim
Animals 2025, 15(17), 2565; https://doi.org/10.3390/ani15172565 - 31 Aug 2025
Viewed by 1733
Abstract
A total of 216 Hy-Line brown laying hens (28 week old) were utilized for this experiment. The laying hens were randomly divided into three treatments. Each treatment had six replications, and there were 12 hens in each replication. The ambient temperature was 32 [...] Read more.
A total of 216 Hy-Line brown laying hens (28 week old) were utilized for this experiment. The laying hens were randomly divided into three treatments. Each treatment had six replications, and there were 12 hens in each replication. The ambient temperature was 32 ± 1 °C from 9:00 am to 5:00 pm, and 26 ± 1 °C otherwise. Treatments included a basal diet (CON), basal diet +0.075% betaine (TRT1), and basal diet +0.15% betaine (TRT2). The results indicated that incorporating betaine into the diets of laying hens led to a significant improvement in egg production between weeks 6 and 8 (p < 0.05). HU height showed a linear improvement in week 8 alongside betaine supplementation. At week 8 of the experiment, there were significant increase in the digestibility of DM, nitrogen (p < 0.05). Moreover, there was a linear decrease in gas emission of NH3, H2S (p < 0.05), and Methyl mercaptans (p = 0.05) in week 8 in hens whose diet was supplemented with betaine. Betaine also linearly reduced blood cortisol (p < 0.01). In summary, increasing betaine supplementation in the diet of laying hens during the summer season enhanced egg production, egg quality, gas emission, and blood profile. Full article
(This article belongs to the Special Issue Novel Feed Additives in Livestock and Poultry Nutrition)
20 pages, 9076 KB  
Article
Effects of Sugar Impregnation Methods on Physicochemical Properties and Flavor Profiles of Prune Preserves Using GC-IMS and Electronic Tongue
by Qingping Du, Rui Yang, Wei Wang, Wei Li, Tongle Sun, Shihao Huang, Xinyao Han and Mingxun Ai
Foods 2025, 14(16), 2852; https://doi.org/10.3390/foods14162852 - 18 Aug 2025
Viewed by 1041
Abstract
Thermal impregnation (TI) is a traditional method of sugar infusion, but it has disadvantages such as long processing time and uneven sugar distribution. Therefore, developing sugar impregnation methods to enhance product flavor, nutritional value, and processing efficiency is critical for addressing potential quality [...] Read more.
Thermal impregnation (TI) is a traditional method of sugar infusion, but it has disadvantages such as long processing time and uneven sugar distribution. Therefore, developing sugar impregnation methods to enhance product flavor, nutritional value, and processing efficiency is critical for addressing potential quality loss and efficiency bottlenecks in traditional preserve processing technologies. This study took the TI process widely adopted in Xinjiang over the long term as a reference and systematically compared the effects of vacuum impregnation (VI) and ultrasonic-assisted impregnation (UI) on the flavor characteristics and physicochemical properties of plum preserves. Volatile organic compounds (VOCs) were identified using gas chromatography–ion mobility spectrometry (GC-IMS) coupled with multivariate analysis, while taste attributes were quantified via electronic tongue (E-tongue). Physicochemical parameters, including titratable acidity (TA), browning index (BI), color parameters (L*, a*, b*), total polyphenol content (TPC), total flavonoid content (TFC), and texture profile analysis (TPA), were also evaluated. GC-IMS identified 60 VOCs, predominantly comprising aldehydes (20), alcohols (10), ketones (6), acids (4), esters (3), furans (3), ketols (2), and unidentified compounds (12). The VI-treated samples exhibited distinct aromatic profiles, retaining a higher proportion of key volatile compounds. E-tongue results showed that VI significantly enhanced sourness, umami, and aftertaste complexity compared with UI and TI (p < 0.05). Physicochemical analyses showed that VI maximally preserved bioactive compounds, with a TPC of 1.23 ± 0.07 mg GAE/g and TFC of 17.55 ± 0.81 mg RE/g. Additionally, VI minimized enzymatic browning (BI: 0.37 ± 0.03), maintained color brightness (L*: 31.85 ± 1.56), maintained favorable textural properties (hardness: 187.63 ± 4.04 N), and retained the highest TA content (0.77 ± 0.05%). In contrast, UI and TI led to significant quality degradation, characterized by pronounced browning and texture deterioration: the BI values were 0.61 ± 0.02 (UI) and 0.83 ± 0.03 (TI), and hardness values were 176.53 ± 5.81 N (UI) and 156.25 ± 4.55 N (TI). These findings provide critical references for sugar impregnation techniques and a scientific basis for flavor regulation in prune preserve production. Full article
Show Figures

Figure 1

22 pages, 1215 KB  
Article
Gas Atmosphere Innovation Applied to Prolong the Shelf Life of ‘Regina’ Sweet Cherries
by Rodrigo Neira-Ojeda, Sebastián Rodriguez, Cristian Hernández-Adasme, Violeta Muñoz, Dakary Delgadillo, Bo Sun, Xiao Yang and Victor Hugo Escalona
Plants 2025, 14(15), 2440; https://doi.org/10.3390/plants14152440 - 6 Aug 2025
Cited by 1 | Viewed by 1345
Abstract
In this study, the impact of moderate and high CO2 and O2 levels was compared to low and moderate gas combinations during prolonged storage on the quality of Regina sweet cherries harvested in different maturity stages, particularly in terms of decreasing [...] Read more.
In this study, the impact of moderate and high CO2 and O2 levels was compared to low and moderate gas combinations during prolonged storage on the quality of Regina sweet cherries harvested in different maturity stages, particularly in terms of decreasing internal browning. Fruits were harvested in two different maturity stages (Light and Dark Mahogany skin color) and stored in CA of 15% CO2 + 10% O2; 10% CO2 + 10% O2; 10% CO2 + 5% O2; 5% CO2 + 5% O2 and MA of 4 to 5% CO2 + 16 to 17% O2 for 30 and 40 days at 0 °C and 90% RH, followed by a marketing period. After the storage, both maturity stages significantly reduced internal browning, decay, and visual quality losses in CA with 10–15% CO2 and 10% O2. In addition, it preserved luminosity, total soluble solids (TSSs), titratable acidity (TA), and bioactive compounds such as anthocyanins and phenols. This treatment also maintained the visual appearance of the sweet cherries, favoring their market acceptance. At the same time, the light red fruits showed a better general quality compared to darker color after the storage. In conclusion, a controlled atmosphere with optimized CO2 and O2 concentrations, together with harvesting with a Light Mahogany external color, represents an effective strategy to extend the shelf life of Regina sweet cherries up to 40 days plus the marketing period, maintaining their physical and sensory quality for export markets. Full article
(This article belongs to the Special Issue Postharvest Quality and Physiology of Vegetables and Fruits)
Show Figures

Figure 1

26 pages, 1613 KB  
Article
Olive Oil-Based Lipid Coating as a Precursor Organogel for Postharvest Preservation of Lychee: Efficacy Combined with Polyamide/Polyethylene Packaging Under Passive Atmosphere
by Alessandra Culmone, Roberta Passafiume, Pasquale Roppolo, Ilenia Tinebra, Vincenzo Naselli, Alfonso Collura, Antonino Pirrone, Luigi Botta, Alessandra Carrubba, Nicola Francesca, Raimondo Gaglio and Vittorio Farina
Gels 2025, 11(8), 608; https://doi.org/10.3390/gels11080608 - 2 Aug 2025
Viewed by 3372
Abstract
Lychee (Lychee chinensis Sonn.) is a tropical fruit highly appreciated for its vivid red color, sweet flavor, and nutritional properties. However, it is highly perishable, with postharvest losses often due to oxidative browning and dehydration. This study evaluated the organic olive oil [...] Read more.
Lychee (Lychee chinensis Sonn.) is a tropical fruit highly appreciated for its vivid red color, sweet flavor, and nutritional properties. However, it is highly perishable, with postharvest losses often due to oxidative browning and dehydration. This study evaluated the organic olive oil coating (OC), a natural lipidic system with the potential to act as a precursor for organogel development, combined with polyamide/polyethylene (PA/PE) packaging under passive modified atmosphere. Fruits were harvested at commercial maturity and divided into two groups: OC-treated and untreated control (CTR). Both groups were stored at 5 ± 1 °C and 90 ± 5% relative humidity and analyzed on days 0, 3, 6, and 9. The OC-treated fruits showed significantly better retention of physical, chemical, microbiological, and sensory qualities. The coating reduced oxidative stress and enzymatic browning, preserving color and firmness. The PA/PE packaging regulated gas exchange, lowering oxygen levels and delaying respiration and ripening. As a result, OC fruits had lower weight loss, a slower increase in browning index and maturity index, and better visual and sensory scores than the CTR group. This dual strategy proved effective in extending shelf life while maintaining the fruit’s appearance, flavor, and nutritional value. It represents a sustainable and natural approach to enhancing the postharvest stability of lychee. Full article
(This article belongs to the Special Issue Edible Coatings and Film: Gel-Based Innovations)
Show Figures

Figure 1

Back to TopTop