Compositional and Functional Analysis of Golden and Brown Flaxseed: Nutrients, Bioactive Phytochemicals, Antioxidant Activity, and Cellular Responses
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Proximate Composition
2.3. Fatty Acid Profile
2.4. Minerals Content
2.5. Extracts Preparation
2.6. Determination of Selected Bioactive Compounds
2.7. HPLC Analysis of Polyphenols
2.8. Determination of Antioxidant Activity
2.9. Cell Culture
2.10. Extraction for Cell Culture Preparation
2.11. Adhesion of Lactic Acid Bacteria
2.12. In Vitro Anti-Inflammatory Activity
2.13. Cell Proliferation
2.14. The Muse® Flow Cytometer Analysis
2.15. Statistical Analysis
3. Results
3.1. Proximate Composition
3.2. Mineral Content
3.3. Selected Bioactive Compounds Content
3.4. Antioxidant Capacity
3.5. Adhesion of Lactic Acid Bacteria
3.6. Anti-Inflammatory Response in Murine Macrophages on Their Produce Nitric Oxide (NO)
3.7. Impact on Cancer Cell Proliferation and Apoptosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sarfraz, H.; Ahmad, I.Z. A systematic review on the pharmacological potential of Linum usitatissimum L.: A significant nutraceutical plant. J. Herb. Med. 2023, 42, 100755. [Google Scholar] [CrossRef]
- Al-Madhagy, S.; Ashmawy, N.S.; Mamdouh, A.; Eldahsha, O.A.; Farag, M.A. A comprehensive review of the health benefits of flaxseed oil in relation to its chemical composition and comparison with other omega-3-rich oils. Eur. J. Med. Res. 2023, 28, 240. [Google Scholar] [CrossRef]
- Noreen, S.; Tufail, T.; Khalid, Z.; Khan, A.U.; Pane, Y.S. Health benefit of flaxseed (Linum usitatissimum): A mini review. Food Res. 2024, 8, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Silska, G.; Walkowiak, M. Comparative analysis of fatty acid composition in 84 accessions of flax (Linum usitatissimum L.). J. Pre-Clin. Clin. Res. 2019, 13, 118–129. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Tannous, S.; Haykal, T.; Dhaini, J.; Hodroj, M.H.; Rizk, S. The anti-cancer effect of flaxseed lignan derivatives on different acute myeloid leukemia cancer cells. Biomed. Pharmacother. 2020, 132, 110884. [Google Scholar] [CrossRef]
- Mudgil, P.; Ajayi, F.F.; Alkaabi, A.; Alsubousi, M.; Singh, B.P.; Maqsood, S. Flaxseed- and chia seed-derived protein hydrolysates exhibiting enhanced in vitro antidiabetic, anti-obesity, and antioxidant properties. Front. Sustain. Food Syst. 2023, 7, 1223884. [Google Scholar] [CrossRef]
- Arioglu-Tuncil, S. A Comparative Assessment of Flaxseed (Linum usitatissimum L.) and Chia Seed (Salvia hispanica L.) in Modulating Fecal Microbiota Composition and Function In Vitro. Food Sci. Nutr. 2025, 13, e70243. [Google Scholar] [CrossRef]
- Sławińska, N.; Olas, B. Selected Seeds as Sources of Bioactive Compounds with Diverse Biological Activities. Nutrients 2023, 15, 187. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC International, 18th ed.; AOAC Int.: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Fortuna, T.; Rożnowski, J. Wybrane Zagadnienia z Chemii Żywności: Skrypt do Ćwiczeń; Wydawnictwo Uniwersytetu Rolniczego: Kraków, Poland, 2012. (In Polish) [Google Scholar]
- Morrison, W.R.; Smith, L.M. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride–methanol. J. Lipid Res. 1964, 5, 600–608. [Google Scholar] [CrossRef]
- PN-EN 12136:2000; β-Karotenu wg PN-90/A-75101/12; Fruit and Vegetable Juices-Determination of Total Carotenoid Content and Individual Carotenoid Fractions. Polish Committee for Standardization: Warsaw, Poland, 2013.
- Swain, T.; Hillis, W.W. The phenolic constituents of Prunus domestica. I.—The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Dziadek, K.; Kopeć, A.; Czaplicki, S. The petioles and leaves of sweet cherry (Prunus avium L.) as a potential source of natural bioactive compounds. Eur. Food Res. Technol. 2018, 244, 1415–1426. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Koçak, M.Z. Phenolic compounds, fatty acid composition, and antioxidant activities of some flaxseed (Linum usitatissimum L.) varieties: A comprehensive analysis. Processes 2024, 12, 689. [Google Scholar] [CrossRef]
- Sargi, S.C.; Silva, B.C.; Santos, H.M.C.; Montanher, P.F.; Boeing, J.S.; Santos Júnior, O.O.; Souza, N.E.; Visentainer, J.V. Antioxidant capacity and chemical composition in seeds rich in omega-3: Chia, flax, and perilla. Food Sci. Technol. 2013, 33, 541–548. [Google Scholar] [CrossRef]
- Jain, R.; Singh, V.; Sandhya. Proximate, mineral and anti-nutritional (Cyanogenic glycosides) properties of flaxseed (Linum usitatissimum). Pharma Innov. J. 2023, 12, 2513–2515. [Google Scholar]
- Yang, J.; Wen, C.; Duan, Y.; Deng, Q.; Peng, D.; Haihui, Z.; Ma, H. The composition, extraction, analysis, bioactivities, bioavailability and applications in food system of flaxseed (Linum usitatissimum L.) oil: A review. Trends Food Sci. Technol. 2021, 118, 252–260. [Google Scholar] [CrossRef]
- Teneva, M.D.; Zlatanov, O.T.; Antova, G.A.; Angelova-Romova, M.Y.; Marcheva, M.P. Lipid composition of flaxseeds. Bulg. Chem. Commun. 2014, 46, 465–472. [Google Scholar]
- Oeffner, S.P.; Qu, Y.; Just, J.; Quezada, N.; Ramsing, E.; Keller, M.; Cherian, G.; Goddick, L.; Bobe, G. Effect of flaxseed supplementation rate and processing on the production, fatty acid profile, and texture of milk, butter, and cheese. J. Dairy Sci. 2013, 96, 2153–2169. [Google Scholar] [CrossRef] [PubMed]
- Lorenc, F.; Jarošová, M.; Bedrníček, J.; Smetana, P.; Bárta, J. Recent trends in food and dietary applications of flaxseed mucilage: A mini review. Int. J. Food Sci. Technol. 2024, 59, 2111–2121. [Google Scholar] [CrossRef]
- Moerings, B.G.J.; Abbring, S.; Tomassen, M.M.M.; Schols, H.A.; Witkamp, R.F.; van Norren, K.; Govers, C.; van Bergenhenegouwen, J.; Mes, J.J. Rice-derived arabinoxylan fibers are particle size-dependent inducers of trained immunity in a human macrophage-intestinal epithelial cell co-culture model. Curr. Res. Food Sci. 2024, 8, 100666. [Google Scholar] [CrossRef]
- Meldrum, O.W.; Yakubov, G.E. Journey of dietary fiber along the gastrointestinal tract: Role of physical interactions, mucus, and biochemical transformations. Crit. Rev. Food Sci. Nutr. 2024, 65, 4264–4292. [Google Scholar] [CrossRef]
- Dzuvor, C.K.O.; Taylor, J.T.; Acquah, C.; Pan, S.; Agyei, D. Bioprocessing of functional ingredients from flaxseed. Molecules 2018, 23, 2444. [Google Scholar] [CrossRef]
- del Amo-Mateos, E.; Cáceres, B.; Coca, M.; García-Cubero, M.T.; Lucas, S. Recovering rhamnogalacturonan-I pectin from sugar beet pulp using a sequential ultrasound and microwave-assisted extraction: Study on extraction optimization and membrane purification. Bioresour. Technol. 2024, 394, 130263. [Google Scholar] [CrossRef]
- Mancharkar, H.A.; Ghatge, P.U.; Sawate, A.R. Studies on physico-chemical and mineral evaluation of flaxseed. Pharma Innov. J. 2020, 9, 476–478. [Google Scholar]
- Katare, C.; Sonali, S.; Agrawal, S.; Prasad, G.B.K.S.; Bisen, P.S. Flax seed: A potential medicinal food. J. Nutr. Food Sci. 2012, 2, 120–127. [Google Scholar] [CrossRef]
- Bernacchia, R.; Preti, R.; Vinci, G. Chemical composition and health benefits of flaxseed. Austin J. Nutr. Food Sci. 2014, 2, 1045. [Google Scholar]
- Noreen, S.; Tufail, T.; Bader Ul Ain, H.; Ali, A.; Aadil, R.M.; Nemat, A.; Manzoor, M.F. Antioxidant activity and phytochemical analysis of fennel seeds and flaxseed. Food Sci. Nutr. 2023, 11, 1309–1317. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Saini, C.S. Amino acid composition, nutritional profiling, mineral content and physicochemical properties of protein isolate from flaxseeds (Linum usitatissimum). J. Food Meas. Charact. 2022, 16, 829–839. [Google Scholar] [CrossRef]
- Obranović, M.; Škevin, D.; Kraljić, K.; Pospišil, M.; Neđeral, S.; Blekić, M.; Putnik, P. Influence of climate, variety and production process on tocopherols, plastochromanol-8 and pigments in flaxseed oil. Food Technol. Biotechnol. 2015, 53, 496–504. [Google Scholar] [CrossRef]
- Farag, M.A.; Elimam, D.M.; Afifi, S.M. Outgoing and potential trends of the omega-3 rich linseed oil quality characteristics and rancidity management: A comprehensive review for maximizing its food and nutraceutical applications. Trends Food Sci. Technol. 2021, 114, 292–309. [Google Scholar] [CrossRef]
- Nowak, W.; Jeziorek, M. The Role of Flaxseed in Improving Human Health. Healthcare 2023, 11, 395. [Google Scholar] [CrossRef] [PubMed]
- Emam, M.M.; El-Sweify, A.H.; Helal, N.M. Efficiencies of some vitamins in improving yield and quality of flax plant. Afr. J. Agric. Res. 2011, 6, 4362–4369. [Google Scholar]
- Gutte, K.B.; Sahoo, A.K.; Ranveer, R.C. Bioactive components of flaxseed and its health benefits. Int. J. Pharm. Sci. Rev. Res. 2015, 31, 42–51. [Google Scholar]
- Alturky, H.; Chameh, G.A.; Ibrahim, B. Effect of defatting and extracting solvent on the antioxidant activities in seed extracts of two species of Syrian pumpkin. J. Food Meas. Charact. 2022, 16, 18. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, R.; Wang, Z.; Wang, B.; Yang, Y.; Ju, X.; He, R. The effect of refining process on the physicochemical properties and micronutrients of rapeseed oils. PLoS ONE 2019, 14, e0212879. [Google Scholar] [CrossRef]
- Mueed, A.; Shibli, S.; Korma, S.A.; Madjirebaye, P.; Esatbeyoglu, T.; Deng, Z. Flaxseed bioactive compounds: Chemical composition, functional properties, food applications and health benefits-related gut microbes. Foods 2022, 11, 3307. [Google Scholar] [CrossRef]
- Wu, Z.; Li, Y.; Qiu, H.; Long, S.; Zhao, X.; Wang, Y.; Guo, X.; Baitelenova, A.; Qiu, C. Comparative assessment of lignan, tocopherol, tocotrienol and carotenoids in 40 selected varieties of flaxseed (Linum usitatissimum L.). Foods 2023, 12, 4250. [Google Scholar] [CrossRef]
- Zare, S.; Mirlohi, A.; Saeidi, G.; Sabzalian, M.R.; Ataii, E. Water stress intensified the relation of seed color with lignan content and seed yield components in flax (Linum usitatissimum L.). Sci. Rep. 2021, 11, 23958. [Google Scholar] [CrossRef]
- Abtahi, M.; Mirlohi, A. Quality assessment of flax advanced breeding lines varying in seed coat color and their potential use in the food and industrial applications. BMC Plant Biol. 2024, 24, 60. [Google Scholar] [CrossRef]
- Teh, S.S.; Bekhit, A.E.D.; Birch, J. Antioxidative polyphenols from defatted oilseed cakes: Effect of solvents. Antioxidants 2014, 3, 67–80. [Google Scholar] [CrossRef]
- Yadav, M.; Khatak, A.; Bishnoi, S.; Singhania, N. Comparative analysis of various processing on total phenolic content and antioxidant activity of flaxseed. Int. J. Chem. Stud. 2020, 8, 3738–3744. [Google Scholar] [CrossRef]
- Huang, X.; Wang, N.; Ma, Y.; Liu, X.; Guo, H.; Song, L.; Zhao, Q.; Hai, D.; Cheng, Y.; Bai, G.; et al. Flaxseed polyphenols: Effects of varieties on its composition and antioxidant capacity. Food Chem. X 2024, 23, 101597. [Google Scholar] [CrossRef]
- Beejmohun, V.; Fliniaux, O.; Grand, E.; Lamblin, F.; Bensaddek, L.; Christen, P.; Kovensky, J.; Fliniaux, M.A.; Mesnard, F. Microwave-assisted extraction of the main phenolic compounds in flaxseed. Phytochem. Anal. 2007, 18, 275–282. [Google Scholar] [CrossRef]
- Kasote, D.M. Flaxseed phenolics as natural antioxidants. Int. Food Res. J. 2013, 20, 27–34. [Google Scholar]
- Bekhit, A.E.-D.A.; Shavandi, A.; Jodjaja, T.; Birch, J.; Teh, S.; Ahmed, I.A.M.; Al-Juhaimi, F.Y.; Saeedi, P.; Bekhit, A.A. Flaxseed: Composition, detoxification, utilization, and opportunities. Biocatal. Agric. Biotechnol. 2018, 13, 129–152. [Google Scholar] [CrossRef]
- Wang, J.X.; Wang, Q.; Zhen, Y.Q.; Zhao, S.M.; Gao, F.; Zhou, X.L. Cytotoxic lathyrane-type diterpenes from seeds of Euphorbia lathyris. Chem. Pharm. Bull. 2018, 66, 674–677. [Google Scholar] [CrossRef]
- Loussouarn, M.; Krieger-Liszkay, A.; Svilar, L.; Bily, A.; Birtić, S.; Havaux, M. Carnosic acid and carnosol, two major antioxidants of rosemary, act through different mechanisms. Plant Physiol. 2017, 175, 1381–1394. [Google Scholar] [CrossRef]
- Mira-Sánchez, M.D.; Castillo-Sánchez, J.; Morillas-Ruiz, J.M. Comparative study of rosemary extracts and several synthetic and natural food antioxidants: Relevance of carnosic acid/carnosol ratio. Food Chem. 2020, 309, 125688. [Google Scholar] [CrossRef]
- Kusznierewicz, B.; Lewandowska, J.; Kruszyna, A.; Piasek, A.; Śmiechowska, A.; Namieśnik, J.; Bartoszek, A. The antioxidative properties of white cabbage (Brassica oleracea var. capitata f. alba) fresh and submitted to culinary processing. J. Food Biochem. 2010, 34, 262–285. [Google Scholar] [CrossRef]
- Kučka, M.; Harenčár, Ľ.; Ražná, K.; Nôžková, J.; Kowalczewski, P.Ł.; Deyholos, M.; Dziedzic, K.; Rybicka, I.; Zembrzuska, J.; Kačániová, M.; et al. Great potential of flaxseed mucilage. Eur. Food Res. Technol. 2024, 250, 877–893. [Google Scholar] [CrossRef]
- Deme, T.; Haki, G.D.; Retta, N.; Woldegiorgis, A.; Geleta, M. Fatty acid profile, total phenolic content, and antioxidant activity of niger seed (Guizotia abyssinica) and linseed (Linum usitatissimum). Front. Nutr. 2021, 8, 674882. [Google Scholar] [CrossRef]
- Kretzschmar, A.L.; Manefield, M. The role of lipids in activated sludge floc formation. AIMS Environ. Sci. 2015, 2, 122–133. [Google Scholar] [CrossRef]
- Rossi, C.; Cazzola, H.; Holden, N.J.; Rossez, Y. Bacterial adherence to plant and animal surfaces via adhesin-lipid interactions. In Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology; Goldfine, H., Ed.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Liu, Y.; Liu, Y.; Li, P.; Li, Z. Antibacterial properties of cyclolinopeptides from flaxseed oil and their application on beef. Food Chem. 2022, 385, 132715. [Google Scholar] [CrossRef] [PubMed]
- Dybka-Stępień, K.; Otlewska, A.; Góźdź, P.; Piotrowska, M. The renaissance of plant mucilage in health promotion and industrial applications: A review. Nutrients 2021, 13, 3354. [Google Scholar] [CrossRef]
- Sungatullina, A.; Petrova, T.; Kharina, M.; Mikshina, P.; Nikitina, E. Effect of flaxseed mucilage on the probiotic, antioxidant, and structural-mechanical properties of the different Lactobacillus cells. Fermentation 2023, 9, 486. [Google Scholar] [CrossRef]
- Monteagudo-Mera, A.; Rastall, R.A.; Gibson, G.R.; Charalampopoulos, D.; Chatzifragkou, A. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl. Microbiol. Biotechnol. 2019, 103, 6463–6472. [Google Scholar] [CrossRef] [PubMed]
- Łopusiewicz, Ł.; Bogusławska-Wąs, E.; Drozłowska, E.; Trocer, P.; Dłubała, A.; Mazurkiewicz-Zapałowicz, K.; Bartkowiak, A. The application of spray-dried and reconstituted flaxseed oil cake extract as encapsulating material and carrier for probiotic Lacticaseibacillus rhamnosus GG. Materials 2021, 14, 5324. [Google Scholar] [CrossRef]
- Wang, T.; Sha, L.; Li, Y.; Zhu, L.; Wang, Z.; Li, K.; Lu, H.; Bao, T.; Guo, L.; Zhang, X.; et al. Dietary α-linolenic acid-rich flaxseed oil exerts beneficial effects on polycystic ovary syndrome through sex steroid hormones–microbiota–inflammation axis in rats. Front. Endocrinol. 2020, 11, 284. [Google Scholar] [CrossRef]
- Andrejčáková, Z.; Sopková, D.; Vlčková, R.; Hertelyová, Z.; Gancarčíková, S.; Nemcová, R. The application of Lactobacillus reuteri CCM 8617 and flaxseed positively improved the health of mice challenged with enterotoxigenic E. coli O149:F4. Probiotics Antimicrob. Proteins 2020, 12, 937–951. [Google Scholar] [CrossRef]
- Omoni, A.O.; Aluko, R.E. Effect of cationic flaxseed protein hydrolysate fractions on the in vitro structure and activity of calmodulin-dependent endothelial nitric oxide synthase. Mol. Nutr. Food Res. 2006, 50, 958–966. [Google Scholar] [CrossRef] [PubMed]
- Chera, E.I.; Pop, T.I.; Pop, R.M.; Pârvu, M.; Uifălean, A.; Cătoi, F.A.; Cecan, A.D.; Mîrza, C.M.; Achimaș-Cadariu, P.; Pârvu, A.E. Flaxseed ethanol extract effect in acute experimental inflammation. Medicina 2022, 58, 582. [Google Scholar] [CrossRef] [PubMed]
- Surh, Y.J.; Chun, K.S.; Cha, H.H.; Han, S.S.; Keum, Y.S.; Park, K.K.; Lee, S.S. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: Down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat. Res. 2001, 480–481, 243–268. [Google Scholar] [CrossRef] [PubMed]
- Ratan, Z.A.; Jeong, D.; Sung, N.Y.; Shim, Y.Y.; Reaney, M.J.T.; Yi, Y.S.; Cho, J.Y. LOMIX, a mixture of flaxseed linusorbs, exerts anti-inflammatory effects through Src and Syk in the NF-κB pathway. Biomolecules 2020, 10, 859. [Google Scholar] [CrossRef]
- Ren, J.; Chung, S.H. Inhibition of nitric oxide production and inducible nitric oxide synthase gene expression via NF-κB and mitogen-activated protein kinase pathways. J. Agric. Food Chem. 2007, 55, 13. [Google Scholar] [CrossRef]
- Udenigwe, C.C.; Lu, Y.L.; Han, C.H.; Hou, W.C.; Aluko, R.E. Flaxseed protein-derived peptide fractions: Antioxidant properties and inhibition of lipopolysaccharide-induced nitric oxide production in murine macrophages. Food Chem. 2009, 116, 277–284. [Google Scholar] [CrossRef]
- Biao, Y.; Jiannan, H.; Yaolan, C.; Shujie, C.; Dechun, H.; Mcclements, D.J.; Chongjiang, C. Identification and characterization of antioxidant and immune-stimulatory polysaccharides in flaxseed hull. Food Chem. 2020, 315, 126266. [Google Scholar] [CrossRef]
- De Silva, S.F.; Alcorn, J. Flaxseed lignans as important dietary polyphenols for cancer prevention and treatment: Chemistry, pharmacokinetics, and molecular targets. Pharmaceuticals 2019, 12, 68. [Google Scholar] [CrossRef]
- Buckner, A.L.; Buckner, C.A.; Montaut, S.; Lafrenie, R.M. Treatment with flaxseed oil induces apoptosis in cultured malignant cells. Heliyon 2019, 5, e02251. [Google Scholar] [CrossRef]
- Han, J.; Lu, S.S.; Wang, Z.J.; Li, Y.L. Flax seed oil inhibits metastatic melanoma and reduces lung tumor formation in mice. J. BUON 2015, 20, 1546–1551. [Google Scholar]
- Hu, T.; Linghu, K.; Huang, S.; Battino, M.; Georgiev, M.I.; Zengin, G.; Li, D.; Deng, Y.; Wang, Y.T.; Cao, H. Flaxseed extract induces apoptosis in human breast cancer MCF-7 cells. Food Chem. Toxicol. 2019, 127, 188–196. [Google Scholar] [CrossRef]
- Lee, J.; Cho, K. Flaxseed sprouts induce apoptosis and inhibit growth in MCF-7 and MDA-MB-231 human breast cancer cells. Vitr. Cell. Dev. Biol. Anim. 2012, 48, 244–250. [Google Scholar] [CrossRef]
- Thompson, L.U.; Chen, J.M.; Li, T.; Strasser-Weippl, K.; Goss, P.E. Dietary flaxseed alters tumor biological markers in postmenopausal breast cancer. Clin. Cancer Res. 2005, 11, 3828–3835. [Google Scholar] [CrossRef]
- Ezzat, S.M.; Shouman, S.A.; Elkhoely, A.; Attia, Y.M.; Elsesy, M.S.; El Senousy, A.S.; Choucry, M.A.; El Gayed, S.H.; El Sayed, A.A.; Sattar, E.A.; et al. Anticancer potentiality of lignan-rich fraction of six flaxseed cultivars. Sci. Rep. 2018, 8, 544. [Google Scholar] [CrossRef]
- Sung, N.Y.; Jeong, D.; Shim, Y.Y.; Ratan, Z.A.; Jang, Y.-J.; Reaney, M.J.T.; Lee, S.; Lee, B.-H.; Kim, J.-H.; Yi, Y.-S.; et al. The anti-cancer effect of linusorb B3 from flaxseed oil through the promotion of apoptosis, inhibition of actin polymerization, and suppression of Src activity in glioblastoma cells. Molecules 2020, 25, 5881. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.G.; Li, J.; Sun, P.L.; Fan, Y.W.; Yang, J.Y.; Deng, Z.Y. Orbitides isolated from flaxseed induce apoptosis against SGC-7901 adenocarcinoma cells. Int. J. Food Sci. Nutr. 2020, 71, 929–939. [Google Scholar] [CrossRef] [PubMed]
- Shim, Y.Y.; Tse, T.J.; Saini, A.K.; Kim, Y.J.; Reaney, M.J.T. Uptake of flaxseed dietary linusorbs modulates regulatory genes including induction of heat shock proteins and apoptosis. Foods 2022, 11, 3761. [Google Scholar] [CrossRef] [PubMed]
- Sunil, M.A.; Sunitha, V.S.; Santhakumaran, P.; Mohan, M.C.; Jose, M.S.; Radhakrishnan, E.K.; Mathew, J. Protective effect of (+)-catechin against lipopolysaccharide-induced inflammatory response in RAW 264.7 cells through downregulation of NF-κB and p38 MAPK. Inflammopharmacology 2021, 29, 341–353. [Google Scholar] [CrossRef]
- Mhya, D.; Mohammed, A.; Dawus, T.T. Investigation of NADPH-Oxidase’s Binding Subunit(s) for Catechin Compounds Induce Inhibition. Eur. J. Adv. Chem. Res. 2023, 4, 123–130. [Google Scholar] [CrossRef]
- Pereyra-Vergara, F.; Olivares-Corichi, I.M.; Perez-Ruiz, A.G.; Luna-Arias, J.P.; García-Sánchez, J.R. Apoptosis induced by (−)-epicatechin in human breast cancer cells is mediated by reactive oxygen species. Molecules 2020, 25, 1020. [Google Scholar] [CrossRef]
- Sirajudeen, F.; Bou Malhab, L.J.; Bustanji, Y.; Shahwan, M.; Alzoubi, K.H.; Semreen, M.H.; Taneera, J.; El-Huneidi, W.; Abu-Gharbieh, E. Exploring the Potential of Rosemary Derived Compounds (Rosmarinic and Carnosic Acids) as Cancer Therapeutics: Current Knowledge and Future Perspectives. Biomol. Ther. 2024, 32, 38–55. [Google Scholar] [CrossRef] [PubMed]
- Alsamri, H.; Alneyadi, A.; Muhammad, K.; Ayoub, M.; Eid, A.; Iratni, R. Carnosol induces p38-mediated ER stress response and autophagy in human breast cancer cells. Front. Oncol. 2022, 12, 890123. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, E.J.; Hartogh, D.J.D.; Azizi, K.; Tsiani, E. Anticancer properties of carnosol: A summary of in vitro and in vivo evidence. Antioxidants 2020, 9, 961. [Google Scholar] [CrossRef] [PubMed]




| Type of Flaxseed | Dry Matter (g) | Ash (g/100 g FW) | Crude Fat (g/100 g FW) | Protein (g/100 g FW) | Dietary Fiber (g/100 g FW) | Digestible Carbohydrates (g/100 g FW) | 
|---|---|---|---|---|---|---|
| Golden | 91.88 b ± 0.12 | 3.9 a ± 0.07 | 36.34 b ± 0.45 | 9.78 a ± 1.03 | 28.09 b ± 2.45 | 21.38 a ± 1.47 | 
| Defatted golden | 88.58 a ± 0.03 | 5.38 b ± 0.09 | 9.66 a ± 0.27 | 9.66 a ± 0.27 | 27.93 b ± 1.75 | 41.83 b ± 1.47 | 
| Brown | 92.84 b ± 0.78 | 3.12 a ± 0.11 | 40.48 c ± 1.16 | 9.79 a ± 0.47 | 22.18 a ± 2.07 | 24.42 a ± 1.47 | 
| Defatted brown | 87.99 a ± 0.08 | 5.44 b ± 0.16 | 15.12 a ± 0.19 | 9.63 a ± 0.16 | 23.53 a ± 2.08 | 46.41 b ± 2.09 | 
| Type of Flaxseed | Palmitic Acid C16:0 | Stearic Acid C18:0 | Oleic Acid C18:1 | Vaccenic Acid C18:1 | Linoleic Acid C18:2 | α-Linolenic Acid C18:2 | γ-Linolenic Acid C18:2 | 
|---|---|---|---|---|---|---|---|
| Golden | 6.4 a ± 0.01 | 6.24 b ± 0.03 | 20.59 a ± 0.06 | 0.95 a,b ± 0.03 | 21.84 d ± 0.05 | 43.97 b ± 0.07 | 0.0 a ± 0.0 | 
| Defatted golden | 7.61 b ± 0.08 | 4.31 a ± 0.01 | 23.4 b ± 0.15 | 0.77 a ± 0.2 | 14.96 b ± 0.05 | 48.96 c ± 0.2 | 0.0 a ± 0.0 | 
| Brown | 7.73 b ± 0,1 | 7.73 c ± 0.06 | 25.65 d ± 0.23 | 0.86 a,b ± 0.27 | 14.19 a ± 0.05 | 43.85 b ± 0.29 | 0.0 a ± 0.0 | 
| Defatted brown | 8.21 c ± 0.03 | 6.64 b ± 0.05 | 24.14 c ± 0.01 | 1.13 b ± 0.01 | 20.30 c ± 0.04 | 38.26 a ± 0.08 | 1.31 b ± 0.04 | 
| Type of Flaxseed | Calcium | Magnesium | Potassium | Sodium | Iron | Zinc | Manganese | Copper | 
|---|---|---|---|---|---|---|---|---|
| Golden | 98.07 b ± 0.42 | 386.14 c ± 1.3 | 853.84 c ± 3.56 | 29.5 b ± 8.47 | 19.77 c ± 0.37 | 8.17 c ± 0.39 | 3.94 b ± 0.03 | 1.38 d ± 0.01 | 
| Defatted golden | 94.96 b ± 0.84 | 521.7 a ± 7.13 | 1173.61 a ± 8.59 | 28.39 b ± 2.82 | 21.67 b ± 1.13 | 9.43 a ± 0.18 | 3.87 b ± 0.12 | 1.8 b ± 0.01 | 
| Brown | 97.63 b ± 2.02 | 313.01 d ± 0.85 | 683.46 d ± 8.38 | 15.16 c ± 0.25 | 19.62 c ± 0.55 | 5.41 d ± 0.03 | 2.85 c ± 0.21 | 1.49 c ± 0.01 | 
| Defatted brown | 153.91 a ± 3.54 | 457.43 b ± 8.01 | 1116.14 b ± 6.86 | 43.04 a ± 2.26 | 23.02 a ± 0.07 | 8.83 b ± 0.06 | 5.53 a ± 0.15 | 2.15 a ± 0.02 | 
| Type of Flaxseed | Vitamin C (mg/100 g FW) | Total Carotenoids (mg/100 g FW) | Total Polyphenols (mg ChlA eq./100 g FW) | 
|---|---|---|---|
| Golden | 5.75 b ± 0.64 | 15.57 b ± 1.39 | 398.33 b ± 15.18 | 
| Defatted golden | 5.65 a,b ± 0.63 | 13.98 b ± 0.56 | 435.3 b ± 16.48 | 
| Brown | 4.34 a,b ± 1.08 | 32.36 c ± 4.43 | 293.83 c ± 19.12 | 
| Defatted brown | 4.29 a ± 0.32 | 9.91 a ± 0.59 | 1562.56 a ± 29.83 | 
| Polyphenolic Compounds | Type of Flaxseed | |||
|---|---|---|---|---|
| Golden | Defatted Golden | Brown | Defatted Brown | |
| Gallic acid | ND | ND | ND | 17.57 a ± 0.0 H | 
| 4-Hydroxybenzoic acid | 0.5 b ± 0.0 A | 0.96 c ± 0.0 AB | 0.4 a ± 0.0 A | 1.55 d ± 0.0 CD | 
| Vanillic acid | 0.24 a ± 0.0 A | 0.38 b ± 0.0 A | 0.24 a ± 0.0 A | 0.58 c ± 0.0 AB | 
| Syringic acid | ND | ND | 0.28 a ± 0.0 A | 0.82 b ± 0.0 AB | 
| Chlorogenic acid | 0.49 a ± 0.0 A | 1.56 d ± 0.0 AB | 0.58 b ± 0.07 A | 0.84 c ± 0.0 AB | 
| Caffeic acid | ND | 0.26 a ± 0.0 A | 0.25 a ± 0.0 A | 0.47 b ± 0.0 A | 
| p-Coumaric acid | 0.35 b ± 0.0 A | 0.23 a ± 0.0 A | 0.25 a ± 0.0 A | 0.52 c ± 0.01 A | 
| Ferulic acid | 0.49 a ± 0.0 A | 1.27 d ± 0.0 AB | 0.58 b ± 0.0 A | 1.15 c ± 0.0 BC | 
| Sinapinic acid | 0.26 a ± 0.0 A | 0.31 c ± 0.0 A | ND | 0.29 b ± 0.0 A | 
| Rosmarinic acid | ND | 0.37 a ± 0.0 A | ND | 0.85 b ± 0.0 AB | 
| Catechin | ND | 5.24 a ± 0.46 C | ND | 65.6 b ± 0.12 J | 
| Epicatechin | 2.01 a ± 0.0 B | 2.89 a ± 0.0 B | 2.13 a ± 0.01 A | 11.61 b ± 0.03 G | 
| Naringin | ND | 0.78 a ± 0.0 AB | 0.91 a ± 0.0 A | 1.49 b ± 0.05 CD | 
| Rutin | ND | 0.54 a ± 0.0 AB | 0.65 b ± 0.01 A | 0.76 c ± 0.0 AB | 
| Kaempferol | 1.0 a ± 0.0 A | 0.98 a ± 0.0 AB | 9.14 b ± 0.13 B | 1.95 a ± 0.23 D | 
| Myricetin | ND | 0.83 a ± 0.0 AB | ND | 1.61 b ± 0.0 CD | 
| Hesperidin | 0.48 a ± 0.0 A | 0.66 b ± 0.0 AB | 0.48 a ± 0.0 A | 1.19 c ± 0.01 BC | 
| Apigenin | 0.28 a ± 0.0 A | 0.25 a ± 0.0 A | 8.51 b ± 0.14 B | 1.11 a ± 0.01 F | 
| Hispidulin | 2.11 b ± 0.0 B | 1.01 a ± 0.0 AB | 13.66 d ± 0.27 C | 3.55 c ± 0.09 E | 
| Acacetin | 0.52 b ± 0.0 A | 0.7 d ± 0.0 AB | 0.47 a ± 0.0 A | 0.67 c ± 0.0 AB | 
| Carnosol | 0.47 a ± 0.02 A | 29.21 c ± 1.32 E | 14.7 b ± 0.61 C | 44.13 d ± 0.26 I | 
| Carnosic acid | 11.4 a ± 0.41 C | 14.6 a ± 0.05 D | 22.01 b ± 1.31 D | 21.31 b ± 0.02 I | 
| Type of Flaxseed | ABTS●* | DPPH | FRAP | 
|---|---|---|---|
| Golden | 83.47 a ± 8.11 | 57.89 a ± 1.37 | 314.43 b ± 2.90 | 
| Defatted golden | 88.45 a ± 1.85 | 61.24 a ± 3.77 | 322.59 b ± 3.94 | 
| Brown | 73.64 a ± 4.65 | 53.31 a ± 8.78 | 258.09 a ± 0.94 | 
| Defatted brown | 414.59 b ± 34.45 | 368.09 b ± 88.83 | 1672.26 c ± 25.32 | 
| Live | Early Apoptotic | Late Apoptotic | Total Apoptotic | |
|---|---|---|---|---|
| UC | 84.81 d ± 1.59 | 3.10 a ± 0.32 | 11.07 a ± 1.41 | 14.18 a ± 1.48 | 
| STS | 8.63 a ± 3.20 | 60.97 d± 5.85 | 30.23 c ± 3.38 | 91.20 e ± 3.21 | 
| Golden flaxseed | 38.68 b ± 2.13 | 8.07 b,c ± 0.21 | 38.45 d ± 2.11 | 46.52 c,d ± 1.94 | 
| Defatted golden flaxseed | 37.87 b ± 1.13 | 6.23 a ± 0.45 | 37.37 d ± 2.03 | 43.60 c ± 2.02 | 
| Brown flaxseed | 55.35 c ± 0.87 | 11.30 c ± 0.57 | 21.48 b ± 0.55 | 32.78 b ± 0.78 | 
| Defatted brown flaxseed | 36.13 b ± 1.03 | 4.39 a,b ± 1.49 | 48.58 e ± 2.82 | 52.97 d ± 4.19 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drozdowska, M.; Piasna-Słupecka, E.; Kmiecik, K.; Doskocil, I.; Lampova, B.; Smid, P.; Domagała, B.; Dziadek, K. Compositional and Functional Analysis of Golden and Brown Flaxseed: Nutrients, Bioactive Phytochemicals, Antioxidant Activity, and Cellular Responses. Nutrients 2025, 17, 3407. https://doi.org/10.3390/nu17213407
Drozdowska M, Piasna-Słupecka E, Kmiecik K, Doskocil I, Lampova B, Smid P, Domagała B, Dziadek K. Compositional and Functional Analysis of Golden and Brown Flaxseed: Nutrients, Bioactive Phytochemicals, Antioxidant Activity, and Cellular Responses. Nutrients. 2025; 17(21):3407. https://doi.org/10.3390/nu17213407
Chicago/Turabian StyleDrozdowska, Mariola, Ewelina Piasna-Słupecka, Klaudia Kmiecik, Ivo Doskocil, Barbora Lampova, Petr Smid, Barbara Domagała, and Kinga Dziadek. 2025. "Compositional and Functional Analysis of Golden and Brown Flaxseed: Nutrients, Bioactive Phytochemicals, Antioxidant Activity, and Cellular Responses" Nutrients 17, no. 21: 3407. https://doi.org/10.3390/nu17213407
APA StyleDrozdowska, M., Piasna-Słupecka, E., Kmiecik, K., Doskocil, I., Lampova, B., Smid, P., Domagała, B., & Dziadek, K. (2025). Compositional and Functional Analysis of Golden and Brown Flaxseed: Nutrients, Bioactive Phytochemicals, Antioxidant Activity, and Cellular Responses. Nutrients, 17(21), 3407. https://doi.org/10.3390/nu17213407
 
        

 
       