Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = Bis (indolyl) methanes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5657 KiB  
Article
Expression of Prooncogenic Nuclear Receptor 4A (NR4A)-Regulated Genes β1-Integrin and G9a Inhibited by Dual NR4A1/2 Ligands
by Lei Zhang, Victoria Gatlin, Shreyan Gupta, Michael L. Salinas, Selim Romero, James J. Cai, Robert S. Chapkin and Stephen Safe
Int. J. Mol. Sci. 2025, 26(8), 3909; https://doi.org/10.3390/ijms26083909 - 21 Apr 2025
Viewed by 838
Abstract
Bis-indole-derived compounds including 1,1-bis(3′-indolyl)-1-(3,5-disubstitutedphenyl)methane (DIM-3,5) analogs bind both orphan nuclear receptors 4A1 (NR4A1) and NR4A2, and DIM-3,5 compounds act as dual receptor inverse agonists and inhibit both NR4A1- and NR4A2-regulated responses. Chromatin immunoprecipitation assays show that β1-integrin and the methyltransferase gene G9a are [...] Read more.
Bis-indole-derived compounds including 1,1-bis(3′-indolyl)-1-(3,5-disubstitutedphenyl)methane (DIM-3,5) analogs bind both orphan nuclear receptors 4A1 (NR4A1) and NR4A2, and DIM-3,5 compounds act as dual receptor inverse agonists and inhibit both NR4A1- and NR4A2-regulated responses. Chromatin immunoprecipitation assays show that β1-integrin and the methyltransferase gene G9a are regulated by both NR4A1 and NR4A2 acting as cofactors for Sp1- and Sp4-dependent gene expression. DIM-3,5 treatment results in the loss of one or more of these nuclear factors from the β1-integrin and G9a promoters. Single-cell and RNAseq analyses show that both receptors regulate common (<10%) and unique genes in SW480 colon cancer cells; however, functional enrichment analysis of the differentially expressed genes converges to several common pathways and gene ontology terms. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 4317 KiB  
Article
Magnetic Aerogels for Room-Temperature Catalytic Production of Bis(indolyl)methane Derivatives
by Nicola Melis, Danilo Loche, Swapneel V. Thakkar, Maria Giorgia Cutrufello, Maria Franca Sini, Gianmarco Sedda, Luca Pilia, Angelo Frongia and Maria Francesca Casula
Molecules 2024, 29(10), 2223; https://doi.org/10.3390/molecules29102223 - 9 May 2024
Cited by 2 | Viewed by 1204
Abstract
The potential of aerogels as catalysts for the synthesis of a relevant class of bis-heterocyclic compounds such as bis(indolyl)methanes was investigated. In particular, the studied catalyst was a nanocomposite aerogel based on nanocrystalline nickel ferrite (NiFe2O4) dispersed on amorphous [...] Read more.
The potential of aerogels as catalysts for the synthesis of a relevant class of bis-heterocyclic compounds such as bis(indolyl)methanes was investigated. In particular, the studied catalyst was a nanocomposite aerogel based on nanocrystalline nickel ferrite (NiFe2O4) dispersed on amorphous porous silica aerogel obtained by two-step sol–gel synthesis followed by gel drying under supercritical conditions and calcination treatments. It was found that the NiFe2O4/SiO2 aerogel is an active catalyst for the selected reaction, enabling high conversions at room temperature, and it proved to be active for three repeated runs. The catalytic activity can be ascribed to both the textural and acidic features of the silica matrix and of the nanocrystalline ferrite. In addition, ferrite nanocrystals provide functionality for magnetic recovery of the catalyst from the crude mixture, enabling time-effective separation from the reaction environment. Evidence of the retention of species involved in the reaction into the catalyst is also pointed out, likely due to the porosity of the aerogel together with the affinity of some species towards the silica matrix. Our work contributes to the study of aerogels as catalysts for organic reactions by demonstrating their potential as well as limitations for the room-temperature synthesis of bis(indolyl)methanes. Full article
Show Figures

Graphical abstract

17 pages, 3659 KiB  
Article
Bis-Indole Derivatives as Dual Nuclear Receptor 4A1 (NR4A1) and NR4A2 Ligands
by Srijana Upadhyay, Amanuel Esayas Hailemariam, Fuada Mariyam, Zahin Hafiz, Gregory Martin, Jainish Kothari, Evan Farkas, Gargi Sivaram, Logan Bell, Ronald Tjalkens and Stephen Safe
Biomolecules 2024, 14(3), 284; https://doi.org/10.3390/biom14030284 - 27 Feb 2024
Cited by 6 | Viewed by 3225
Abstract
Bis-indole derived compounds such as 1,1-bis(3′-indolyl)-1-(3,5-disubstitutedphenyl) methane (DIM-3,5) and the corresponding 4-hydroxyl analogs (DIM8-3,5) are NR4A1 ligands that act as inverse NR4A1 agonists and are potent inhibitors of tumor growth. The high potency of several DIM-3,5 analogs (IC50 < 1 mg/kg/day), coupled [...] Read more.
Bis-indole derived compounds such as 1,1-bis(3′-indolyl)-1-(3,5-disubstitutedphenyl) methane (DIM-3,5) and the corresponding 4-hydroxyl analogs (DIM8-3,5) are NR4A1 ligands that act as inverse NR4A1 agonists and are potent inhibitors of tumor growth. The high potency of several DIM-3,5 analogs (IC50 < 1 mg/kg/day), coupled with the >60% similarity of the ligand-binding domains (LBDs) of NR4A1 and NR4A2 and the pro-oncogenic activities of both receptors lead us to hypothesize that these compounds may act as dual NR4A1 and NR4A2 ligands. Using a fluorescence binding assay, it was shown that 22 synthetic DIM8-3,5 and DIM-3,5 analogs bound the LBD of NR4A1 and NR4A2 with most KD values in the low µM range. Moreover, the DIM-3,5 and DIM8-3,5 analogs also decreased NR4A1- and NR4A2-dependent transactivation in U87G glioblastoma cells transfected with GAL4-NR4A1 or GAL4-NR4A2 chimeras and a UAS-luciferase reporter gene construct. The DIM-3,5 and DIM8-3,5 analogs were cytotoxic to U87 glioblastoma and RKO colon cancer cells and the DIM-3,5 compounds were more cytotoxic than the DIM8-3,5 compounds. These studies show that both DIM-3,5 and DIM8-3,5 compounds previously identified as NR4A1 ligands bind both NR4A1 and NR4A2 and are dual NR4A1/2 ligands. Full article
(This article belongs to the Special Issue Feature Papers in the Natural and Bio-Derived Molecules Section)
Show Figures

Figure 1

13 pages, 2232 KiB  
Article
Polyaromatic Bis(indolyl)methane Derivatives with Antiproliferative and Antiparasitic Activity
by Raquel C. R. Gonçalves, Pablo Peñalver, Susana P. G. Costa, Juan C. Morales and Maria Manuela M. Raposo
Molecules 2023, 28(23), 7728; https://doi.org/10.3390/molecules28237728 - 23 Nov 2023
Cited by 7 | Viewed by 2006
Abstract
Bis(indolyl)methanes (BIMs) are a class of compounds that have been recognized as an important core in the design of drugs with important pharmacological properties, such as promising anticancer and antiparasitic activities. Here, we explored the biological activity of the BIM core functionalized [...] Read more.
Bis(indolyl)methanes (BIMs) are a class of compounds that have been recognized as an important core in the design of drugs with important pharmacological properties, such as promising anticancer and antiparasitic activities. Here, we explored the biological activity of the BIM core functionalized with different (hetero)aromatic moieties. We synthesized substituted BIM derivatives with triphenylamine, N,N-dimethyl-1-naphthylamine and 8-hydroxylquinolyl groups, studied their photophysical properties and evaluated their in vitro antiproliferative and antiparasitic activities. The triphenylamine BIM derivative 2a displayed an IC50 of 3.21, 3.30 and 3.93 μM against Trypanosoma brucei, Leishmania major and HT-29 cancer cell line, respectively. The selectivity index demonstrated that compound 2a was up to eight-fold more active against the parasites and HT-29 than against the healthy cell line MRC-5. Fluorescence microscopy studies with MRC-5 cells and T. brucei parasites incubated with derivative 2a indicate that the compound seems to accumulate in the cell’s mitochondria and in the parasite’s nucleus. In conclusion, the BIM scaffold functionalized with the triphenylamine moiety proved to be the most promising antiparasitic and anticancer agent of this series. Full article
(This article belongs to the Special Issue Design and Synthesis of Bioactive Organic Molecules)
Show Figures

Graphical abstract

14 pages, 1960 KiB  
Communication
Friedel–Crafts Reaction of Acylsilanes: Highly Chemoselective Synthesis of 1-Hydroxy-bis(indolyl)methanes and 1-Silyl-bis(indolyl)methanes Derivatives
by Qi Li, Xiu-Xia Liang, Wang Zhang and Man-Yi Han
Molecules 2023, 28(15), 5685; https://doi.org/10.3390/molecules28155685 - 27 Jul 2023
Cited by 1 | Viewed by 1827
Abstract
A novel double Friedel–Crafts reaction of acylsilanes in water is described. This strategy enables synthesis of bis(indolyl)methane derivatives with 1-hydroxy or 1-silyl substituents in moderate to high yield. Compared to the 1-silyl-bis(indolyl)methane derivatives from indole substrate, 1-hydroxy-bis(indolyl)methane derivatives were synthesized from the 5-hydroxyindole, [...] Read more.
A novel double Friedel–Crafts reaction of acylsilanes in water is described. This strategy enables synthesis of bis(indolyl)methane derivatives with 1-hydroxy or 1-silyl substituents in moderate to high yield. Compared to the 1-silyl-bis(indolyl)methane derivatives from indole substrate, 1-hydroxy-bis(indolyl)methane derivatives were synthesized from the 5-hydroxyindole, and the hydrogen bonds in the 5-hydroxyindole play a crucial role in regulating the reaction selectivity. Full article
(This article belongs to the Special Issue Novel Organic Synthetic Route to Heterocyclic Compounds)
Show Figures

Scheme 1

14 pages, 2620 KiB  
Article
NR4A1 Ligands as Potent Inhibitors of Breast Cancer Cell and Tumor Growth
by Keshav Karki, Kumaravel Mohankumar, Abigail Schoeller, Gregory Martin, Rupesh Shrestha and Stephen Safe
Cancers 2021, 13(11), 2682; https://doi.org/10.3390/cancers13112682 - 29 May 2021
Cited by 23 | Viewed by 4569
Abstract
Nuclear receptor 4A1 (NR4A1, Nur77, TR3) is more highly expressed in breast and solid tumors compared to non-tumor tissues and is a pro-oncogenic factor in solid tumor-derived cancers. NR4A1 regulates cancer cell growth, survival, migration, and invasion, and bis-indole-derived compounds (CDIMs) that bind [...] Read more.
Nuclear receptor 4A1 (NR4A1, Nur77, TR3) is more highly expressed in breast and solid tumors compared to non-tumor tissues and is a pro-oncogenic factor in solid tumor-derived cancers. NR4A1 regulates cancer cell growth, survival, migration, and invasion, and bis-indole-derived compounds (CDIMs) that bind NR4A1 act as antagonists and inhibit tumor growth. Preliminary structure-binding studies identified 1,1-bis(3′-indolyl)-1-(3,5-disubstitutedphenyl)methane analogs as NR4A1 ligands with low KD values; we further investigated the anticancer activity of the four most active analogs (KD’s ≤ 3.1 µM) in breast cancer cells and in athymic mouse xenograft models. The treatment of MDA-MB-231 and SKBR3 breast cancer cells with the 3-bromo-5-methoxy, 3-chloro-5-trifluoromethoxy, 3-chloro-5-trifluoromethyl, and 3-bromo-5-trifluoromethoxy phenyl-substituted analogs decreased cell growth and the expression of epidermal of growth factor receptor (EGFR), hepatocyte growth factor receptor (cMET), and PD-L1 as well as inhibited mTOR phosphorylation. In addition, all four compounds inhibited tumor growth in athymic nude mice bearing MDA-MB-231 cells (orthotopic) at a dose of 1 mg/kg/d, which was not accompanied by changes in body weight. These 3,5-disubstituted analogs were the most potent CDIM/NR4A1 ligands reported and are being further developed for clinical applications. Full article
Show Figures

Figure 1

23 pages, 5238 KiB  
Article
Activation of COUP-TFI by a Novel Diindolylmethane Derivative
by Kyungsil Yoon, Chien-Cheng Chen, Asuka A. Orr, Patricia N. Barreto, Phanourios Tamamis and Stephen Safe
Cells 2019, 8(3), 220; https://doi.org/10.3390/cells8030220 - 7 Mar 2019
Cited by 12 | Viewed by 4651
Abstract
Chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) is an orphan receptor and member of the nuclear receptor superfamily. Among a series of methylene substituted diindolylmethanes (C-DIMs) containing substituted phenyl and heteroaromatic groups, we identified 1,1-bis(3′-indolyl)-1-(4-pyridyl)-methane (DIM-C-Pyr-4) as an activator of COUP-TFI. Structure activity [...] Read more.
Chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) is an orphan receptor and member of the nuclear receptor superfamily. Among a series of methylene substituted diindolylmethanes (C-DIMs) containing substituted phenyl and heteroaromatic groups, we identified 1,1-bis(3′-indolyl)-1-(4-pyridyl)-methane (DIM-C-Pyr-4) as an activator of COUP-TFI. Structure activity studies with structurally diverse heteroaromatic C-DIMs showed that the pyridyl substituted compound was active and the 4-pyridyl substituent was more potent than the 2- or 3-pyridyl analogs in transactivation assays in breast cancer cells. The DIM-C-Pyr-4 activated chimeric GAL4-COUP-TFI constructs containing full length, C- or N-terminal deletions, and transactivation was inhibited by phosphatidylinositol-3-kinase and protein kinase A inhibitors. However, DIM-C-Pyr-4 also induced transactivation and interactions of COUP-TFI and steroid receptor coactivators-1 and -2 in mammalian two-hybrid assays, and ligand-induced interactions of the C-terminal region of COUP-TFI were not affected by kinase inhibitors. We also showed that DIM-C-Pyr-4 activated COUP-TFI-dependent early growth response 1 (Egr-1) expression and this response primarily involved COUP-TFI interactions with Sp3 and to a lesser extent Sp1 bound to the proximal region of the Egr-1 promoter. Modeling studies showed interactions of DIM-C-Pyr-4 within the ligand binding domain of COUP-TFI. This report is the first to identify a COUP-TFI agonist and demonstrate activation of COUP-TFI-dependent Egr-1 expression. Full article
Show Figures

Figure 1

10 pages, 6731 KiB  
Article
Solvent-Free Addition of Indole to Aldehydes: Unexpected Synthesis of Novel 1-[1-(1H-Indol-3-yl) Alkyl]-1H-Indoles and Preliminary Evaluation of Their Cytotoxicity in Hepatocarcinoma Cells
by Graziella Tocco, Gloria Zedda, Mariano Casu, Gabriella Simbula and Michela Begala
Molecules 2017, 22(10), 1747; https://doi.org/10.3390/molecules22101747 - 17 Oct 2017
Cited by 16 | Viewed by 6536
Abstract
New 1-[1-(1H-indol-3-yl) alkyl]-1H-indoles, surprisingly, have been obtained from the addition of indole to a variety of aldehydes under neat conditions. CaO, present in excess, was fundamental for carrying out the reaction with paraformaldehyde. Under the same reaction conditions, aromatic [...] Read more.
New 1-[1-(1H-indol-3-yl) alkyl]-1H-indoles, surprisingly, have been obtained from the addition of indole to a variety of aldehydes under neat conditions. CaO, present in excess, was fundamental for carrying out the reaction with paraformaldehyde. Under the same reaction conditions, aromatic and heteroaromatic aldehydes afforded only classical bis (indolyl) aryl indoles. In this paper, the role of CaO, together with the regiochemistry and the mechanism of the reaction, are discussed in detail. The effect of some selected 3,3′- and 1,3′-diindolyl methane derivatives on cell proliferation of the hepatoma cell line FaO was also evaluated. Full article
(This article belongs to the Special Issue The Biomedical Importance of Indoles and Their Derivatives)
Show Figures

Graphical abstract

6 pages, 555 KiB  
Article
PEG1000-Based Dicationic Acidic Ionic Liquid/Solvent-Free Conditions: An Efficient Catalytic System for the Synthesis of Bis(Indolyl)methanes
by Yi-Ming Ren, Mao-Dong Xu and Xiong Wang
Catalysts 2017, 7(10), 300; https://doi.org/10.3390/catal7100300 - 11 Oct 2017
Cited by 15 | Viewed by 4283
Abstract
An efficient procedure has been researched for the solvent-free synthesis of bis(indolyl)methanes via a one-pot reaction of indoles and aldehydes or ketones promoted by PEG1000-based dicationic acidic ionic liquid (PEG1000-DAIL). The catalyst PEG1000-DAIL could be reused seven [...] Read more.
An efficient procedure has been researched for the solvent-free synthesis of bis(indolyl)methanes via a one-pot reaction of indoles and aldehydes or ketones promoted by PEG1000-based dicationic acidic ionic liquid (PEG1000-DAIL). The catalyst PEG1000-DAIL could be reused seven times with excellent results. Furthermore, through this method, a highly chemoselective reaction of benzaldehyde and acetophenone with indole could be achieved. Full article
(This article belongs to the Special Issue Organocatalysis in Ionic Liquids)
Show Figures

Graphical abstract

12 pages, 1590 KiB  
Article
Synthesis of Novel UV Absorbers Bisindolylmethanes and Investigation of Their Applications on Cotton-Based Textile Materials
by Hikmet Nil Ergindemir, Acelya Aker, Agamirze Hamitbeyli and Nuket Ocal
Molecules 2016, 21(6), 718; https://doi.org/10.3390/molecules21060718 - 3 Jun 2016
Cited by 11 | Viewed by 5645
Abstract
Nowadays modified textiles, especially UV-protective, antibacterial and antimicrobial ones, have become the focus of great interest. In this study, several new UV absorbers, bis(indolyl)methane derivatives, were synthesized and grafted onto polyvinyl alcohol polymer (PVA). Their application properties on cotton-based textile materials were determined; [...] Read more.
Nowadays modified textiles, especially UV-protective, antibacterial and antimicrobial ones, have become the focus of great interest. In this study, several new UV absorbers, bis(indolyl)methane derivatives, were synthesized and grafted onto polyvinyl alcohol polymer (PVA). Their application properties on cotton-based textile materials were determined; the UV protection factor values of the modified fabrics were measured (UPF); and the antibacterial features of the fabrics were tested. Full article
(This article belongs to the Collection Heterocyclic Compounds)
Show Figures

Graphical abstract

13 pages, 298 KiB  
Article
Facile Synthesis of Bis(indolyl)methanes Catalyzed by α-Chymotrypsin
by Zong-Bo Xie, Da-Zhao Sun, Guo-Fang Jiang and Zhang-Gao Le
Molecules 2014, 19(12), 19665-19677; https://doi.org/10.3390/molecules191219665 - 27 Nov 2014
Cited by 40 | Viewed by 8119
Abstract
A mild and efficient method catalyzed by α-chymotrypsin was developed for the synthesis of bis(indolyl)methanes through a cascade process between indole and aromatic aldehydes. In the ethanol aqueous solution, a green medium, a wide range of aromatic aldehydes could react with indole to [...] Read more.
A mild and efficient method catalyzed by α-chymotrypsin was developed for the synthesis of bis(indolyl)methanes through a cascade process between indole and aromatic aldehydes. In the ethanol aqueous solution, a green medium, a wide range of aromatic aldehydes could react with indole to afford the desired products with moderate to good yields (from 68% to 95%) using a little α-chymotrypsin as catalyst. Full article
(This article belongs to the Special Issue Enzyme-Catalyzed Reactions)
Show Figures

Graphical abstract

15 pages, 408 KiB  
Article
Mechanistic Studies for Synthesis of Bis(indolyl)methanes: Pd-Catalyzed C–H Activation of Indole–Carboxylic Acids with Benzyl Alcohols in Water
by Hidemasa Hikawa, Hideharu Suzuki, Yuusaku Yokoyama and Isao Azumaya
Catalysts 2013, 3(2), 486-500; https://doi.org/10.3390/catal3020486 - 16 May 2013
Cited by 35 | Viewed by 10644
Abstract
A method for synthesis without protecting groups of bis(indolyl)methanes by the (η3-benzyl)palladium system generated from a palladium catalyst and benzyl alcohol in water is developed. This domino protocol involves C3–H bond activation/benzylation of indole–carboxylic acids and benzylic C–H functionalization. Mechanistic studies [...] Read more.
A method for synthesis without protecting groups of bis(indolyl)methanes by the (η3-benzyl)palladium system generated from a palladium catalyst and benzyl alcohol in water is developed. This domino protocol involves C3–H bond activation/benzylation of indole–carboxylic acids and benzylic C–H functionalization. Mechanistic studies indicate that the (η3-benzyl)palladium(II) complex, which is formed via oxidative addition of benzyl alcohol 2 to a Pd(0) species, activates the C–H bond at the C3-position of indole 1. Notably, water plays an important role in our catalytic system for sp3 C–O bond activation and stabilization of OH by hydration for the smooth generation of the activated Pd(II) cation species, as well as for nucleophilic attack of indoles to hydrated benzyl alcohols. Full article
(This article belongs to the Special Issue Palladium Catalysts for Cross-Coupling Reaction)
Show Figures

Graphical abstract

11 pages, 221 KiB  
Article
Synthesis of Bisindolylmethanes and Their Cytotoxicity Properties
by Kalla Reddi Mohan Naidu, Shaik Ibrahim Khalivulla, Syed Rasheed, Sharida Fakurazi, Palanisamy Arulselvan, Ola Lasekan and Faridah Abas
Int. J. Mol. Sci. 2013, 14(1), 1843-1853; https://doi.org/10.3390/ijms14011843 - 16 Jan 2013
Cited by 26 | Viewed by 8283
Abstract
Polymer supported dichlorophosphate (PEG-OPOCl2) is an efficient green catalyst for the electrophilic substitution reaction of indole with aromatic aldehydes, in neat condition, to afford an excellent yield of bis(indolyl) methanes with short reaction time, at room temperature. The synthesized compounds and [...] Read more.
Polymer supported dichlorophosphate (PEG-OPOCl2) is an efficient green catalyst for the electrophilic substitution reaction of indole with aromatic aldehydes, in neat condition, to afford an excellent yield of bis(indolyl) methanes with short reaction time, at room temperature. The synthesized compounds and their anti-cancer activity are evaluated. Full article
(This article belongs to the Section Materials Science)
Show Figures

14 pages, 225 KiB  
Article
RuCl3·3H2O Catalyzed Reactions: Facile Synthesis of Bis(indolyl)methanes under Mild Conditions
by Hong-En Qu, Chen Xiao, Ning Wang, Kai-Hui Yu, Qiao-Sheng Hu and Liang-Xian Liu
Molecules 2011, 16(5), 3855-3868; https://doi.org/10.3390/molecules16053855 - 9 May 2011
Cited by 54 | Viewed by 9391
Abstract
RuCl3·3H2O was found to be an effective catalyst for reactions of indoles, 2-methylthiophene, and 2-methylfuran with aldehydes to afford the corresponding bis(indolyl)methanes, bis(thienyl)methanes, and bis(fur-2-yl)methanes in moderate to excellent yields. Experimental results indicated that mono(indolyl)methanol is not the reaction [...] Read more.
RuCl3·3H2O was found to be an effective catalyst for reactions of indoles, 2-methylthiophene, and 2-methylfuran with aldehydes to afford the corresponding bis(indolyl)methanes, bis(thienyl)methanes, and bis(fur-2-yl)methanes in moderate to excellent yields. Experimental results indicated that mono(indolyl)methanol is not the reaction intermediate under these reaction conditions. Full article
(This article belongs to the Special Issue Organometallic Chemistry)
Show Figures

Figure 1

5 pages, 386 KiB  
Short Note
Copper Dipyridine Dichloride: An Efficient and Convenient Catalyst for the Synthesis of Bis (Indolyl) Methanes
by Bavanthula Rajitha, Pola Someshwar, Vanam Naveen Kumar and Janganati Venu Madhav
Molbank 2007, 2007(3), M553; https://doi.org/10.3390/M553 - 30 May 2007
Cited by 1 | Viewed by 3897
Abstract
Copper dipyridine dichloride is used as an efficient catalyst for the electrophilic substitution reaction of indoles with aromatic aldehydes in acetonitrile to afford the corresponding bis (indolyl)methanes in excellent yields at room temperature. Full article
Show Figures

Scheme 1

Back to TopTop