Magnetic Aerogels for Room-Temperature Catalytic Production of Bis(indolyl)methane Derivatives
Abstract
:1. Introduction
2. Results
2.1. Catalyst Preparation and Characterization
2.2. Catalytic Activity Evaluation
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Aerogel Catalysts
3.3. Catalytic Tests
3.4. Characterization Techniques
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pierre, A.C.; Pajonk, G.M. Chemistry of Aerogels and Their Applications. Chem. Rev. 2002, 102, 4243–4266. [Google Scholar] [CrossRef] [PubMed]
- Corrias, A.; Loche, D.; Casula, M.F. Aerogels Containing Metal, Alloy, and Oxide Nanoparticles Embedded into Dielectric Matrices. In Springer Handbook of Aerogels; Aegerter, M.A., Leventis, N., Koebel, M., Steiner, S.A., III, Eds.; Springer Handbooks; Springer Nature: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Maleki, H.; Durães, L.; Portugal, A. An Overview on Silica Aerogels Synthesis and Different Mechanical Reinforcing Strategies. J. Non Cryst. Solids 2014, 385, 55–74. [Google Scholar] [CrossRef]
- Pajonk, G.M. Aerogel Catalysts. Appl. Catal. 1991, 72, 217–266. [Google Scholar] [CrossRef]
- Tleimat-Manzalji, R.; Manzalji, T.; Pajonk, G.M. Aerogels and Xerogels for Catalytic Applications. J. Non Cryst. Solids 1992, 147–148, 744–747. [Google Scholar] [CrossRef]
- Gisler, A.; Bürgi, T.; Baiker, A. Epoxidation on Titania–Silica Aerogel Catalysts Studied by Attenuated Total Reflection Fourier Transform Infrared and Modulation Spectroscopy. Phys. Chem. Chem. Phys. 2003, 5, 3539–3548. [Google Scholar] [CrossRef]
- Buisson, P.; Hernandez, C.; Pierre, M.; Pierre, A.C. Encapsulation of Lipases in Aerogels. J. Non Cryst. Solids 2001, 285, 295–302. [Google Scholar] [CrossRef]
- Karamikamkar, S.; Abidli, A.; Aghababaei Tafreshi, O.; Ghaffari-Mosanenzadeh, S.; Buahom, P.; Naguib, H.E.; Park, C.B. Nanocomposite Aerogel Network Featuring High Surface Area and Superinsulation Properties. Chem. Mater. 2024, 36, 642–656. [Google Scholar] [CrossRef]
- Liu, Y.; Bu, X.; Liu, R.; Feng, M.; Zhang, Z.; He, M.; Huang, J.; Zhou, Y. Construction of Robust Silica-Hybridized Cellulose Aerogels Integrating Passive Radiative Cooling and Thermal Insulation for Year-Round Building Energy Saving. Chem. Eng. J. 2024, 481, 148780. [Google Scholar] [CrossRef]
- Niculescu, A.-G.; Tudorache, D.-I.; Bocioagă, M.; Mihaiescu, D.E.; Hadibarata, T.; Grumezescu, A.M. An Updated Overview of Silica Aerogel-Based Nanomaterials. Nanomaterials 2024, 14, 469. [Google Scholar] [CrossRef]
- Loche, D.; Casula, M.F.; Corrias, A.; Marras, S.; Moggi, P. Bimetallic FeCo Nanocrystals Supported on Highly Porous Silica Aerogels as Fischer–Tropsch Catalysts. Catal. Lett. 2012, 142, 1061–1066. [Google Scholar] [CrossRef]
- Marras, C.; Loche, D.; Carta, D.; Casula, M.F.; Schirru, M.; Cutrufello, M.G.; Corrias, A. Copper-Based Catalysts Supported on Highly Porous Silica for the Water Gas Shift Reaction. Chempluschem 2016, 81, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Vanyorek, L.; Loche, D.; Katona, H.; Casula, M.F.; Corrias, A.; Kónya, Z.; Kukovecz, Á.; Kiricsi, I. Optimization of the Catalytic Chemical Vapor Deposition Synthesis of Multiwall Carbon Nanotubes on FeCo(Ni)/SiO2 Aerogel Catalysts by Statistical Design of Experiments. J. Phys. Chem. C 2011, 115, 5894–5902. [Google Scholar] [CrossRef]
- Casula, M.F.; Concas, G.; Congiu, F.; Corrias, A.; Loche, D.; Marras, C.; Spano, G. Characterization of Stoichiometric Nanocrystalline Spinel Ferrites Dispersed on Porous Silica Aerogel. J. Nanosci. Nanotechnol. 2011, 11, 10136–10141. [Google Scholar] [CrossRef] [PubMed]
- Cutrufello, M.G.; Rombi, E.; Ferino, I.; Loche, D.; Corrias, A.; Casula, M.F. Ni-Based Xero- and Aerogels as Catalysts for Nitroxidation Processes. J. Solgel Sci. Technol. 2011, 60, 324–332. [Google Scholar] [CrossRef]
- Martínez, S.; Vallribera, A.; Cotet, C.L.; Popovici, M.; Martín, L.; Roig, A.; Moreno-Mañas, M.; Molins, E. Nanosized Metallic Particles Embedded in Silica and Carbon Aerogels as Catalysts in the Mizoroki–Heck Coupling Reaction. New J. Chem. 2005, 29, 1342. [Google Scholar] [CrossRef]
- Martínez, S.; Meseguer, M.; Casas, L.; Rodríguez, E.; Molins, E.; Moreno-Mañas, M.; Roig, A.; Sebastián, R.M.; Vallribera, A. Silica Aerogel-Iron Oxide Nanocomposites: Recoverable Catalysts in Conjugate Additions and in the Biginelli Reaction. Tetrahedron 2003, 59, 1553–1556. [Google Scholar] [CrossRef]
- Orlović, A.; Janaćković, D.; Skala, D. Alumina/Silica Aerogel with Zinc Chloride Alkylation Catalyst: Influence of Supercritical Drying Conditions and Aerogel Structure on Alkylation Catalytic Activity. Catal. Commun. 2002, 3, 119–123. [Google Scholar] [CrossRef]
- Shiri, M.; Zolfigol, M.A.; Kruger, H.G.; Tanbakouchian, Z. Bis- and Trisindolylmethanes (BIMs and TIMs). Chem. Rev. 2010, 110, 2250–2293. [Google Scholar] [CrossRef]
- Wang, Y.; Sang, R.; Zheng, Y.; Guo, L.; Guan, M.; Wu, Y. Graphene Oxide: An Efficient Recyclable Solid Acid for the Synthesis of Bis(Indolyl)Methanes from Aldehydes and Indoles in Water. Catal. Commun. 2017, 89, 138–142. [Google Scholar] [CrossRef]
- Tocco, G.; Zedda, G.; Casu, M.; Simbula, G.; Begala, M. Solvent-Free Addition of Indole to Aldehydes: Unexpected Synthesis of Novel 1-[1-(1H-Indol-3-Yl) Alkyl]-1H-Indoles and Preliminary Evaluation of Their Cytotoxicity in Hepatocarcinoma Cells. Molecules 2017, 22, 1747. [Google Scholar] [CrossRef]
- Grosso, C.; Cardoso, A.L.; Lemos, A.; Varela, J.; Rodrigues, M.J.; Custódio, L.; Barreira, L.; Pinho E Melo, T.M.V.D. Novel Approach to Bis(Indolyl)Methanes: De Novo Synthesis of 1-Hydroxyiminomethyl Derivatives with Anti-Cancer Properties. Eur. J. Med. Chem. 2015, 93, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Bergman, J.; Carlsson, R.; Misztal, S. The Reaction of Some Indoles and Indolines with 2,3-Dichloro-5,6-Dicyano-1,4-Benzoquinone. Acta Chem. Scandinava B 1976, 30, 853–862. [Google Scholar] [CrossRef]
- D’Auria, M. Photochemical Synthesis of Diindolylmethanes. Tetrahedron 1991, 47, 9225–9230. [Google Scholar] [CrossRef]
- Meng, J.-B.; Wang, W.-G.; Xiong, G.-X.; Wang, Y.-M.; Fu, D.-C.; Du, D.-M.; Wang, R.-J.; Wang, H.-G.; Koshima, H.; Matsuura, T. A Multistep Photoreaction of Aromatic Aldehydes with Heteroaromatics in the Solid State. J. Photochem. Photobiol. A Chem. 1993, 74, 43–49. [Google Scholar] [CrossRef]
- Meng, J.-B.; Wang, W.-G.; Wang, H.-G.; Matsuura, T.; Koshima, H.; Sugimoto, I.; Ito, Y. Solid-State Photochemistry of Indoles with Naphtalese and Phenanthrene. Photochem. Photobiol. 1993, 57, 597–602. [Google Scholar] [CrossRef]
- Wang, S.-Y.; Ji, S.-J.; Su, X.-M. A Meldrum’s Acid Catalyzed Synthesis of Bis(Indolyl)Methanes in Water under Ultrasonic Condition. Chin. J. Chem. 2008, 26, 22–24. [Google Scholar] [CrossRef]
- Chakrabarty, M.; Karmakar, S.; Harigaya, Y. First Isolation of Both Indolylcarbinols and Diindolylalkanes from Microwave-Assisted Acid (Clay)-Catalysed Reaction of Indoles with Diethyl Ketomalonate. Heterocycles 2005, 65, 37. [Google Scholar] [CrossRef]
- Chakrabarty, M.; Khasnobis, S.; Harigaya, Y.; Konda, Y. Neat Formic Acid: An Excellent N-Formylating Agent for Carbazoles, 3-Alkylindoles, Diphenylamine and Moderately Weak Nucleophilic Anilines. Synth. Commun. 2000, 30, 187–200. [Google Scholar] [CrossRef]
- Uhle, F.C.; Harris, L.S. The Synthesis and Cyclization of α-Methylamino-β-(4-Carboxy-3-Indole)-Propionic Acid. J. Am. Chem. Soc. 1957, 79, 102–109. [Google Scholar] [CrossRef]
- Noland, W.E.; Venkiteswaran, M.R.; Richards, C.G. Cyclizative Condensations. I. 2-Methylindole with Acetone and Methyl Ethyl Ketone 1. J. Org. Chem. 1961, 26, 4241–4248. [Google Scholar] [CrossRef]
- Freter, K. Synthesis and Reactions of 3-Indolyl.Beta. Ketones. J. Org. Chem. 1972, 37, 2010–2015. [Google Scholar] [CrossRef]
- Li, W.; Lin, X.; Wang, J.; Li, G.; Wang, Y. A Mild and Efficient Synthesis of Bis-Indolylmethanes Catalyzed by Sulfamic Acid. Synth. Commun. 2005, 35, 2765–2769. [Google Scholar] [CrossRef]
- An, L.-T.; Ding, F.-Q.; Zou, J.-P.; Lu, X.-H.; Zhang, L.-L. An Efficient and Solvent-Free Reaction for Synthesis of Bis(Indol-3-Yl)Methanes Catalyzed by Sulfamic Acid. Chin. J. Chem. 2007, 25, 822–827. [Google Scholar] [CrossRef]
- Li, J.-T.; Dai, H.-G.; Xu, W.-Z.; Li, T.-S. An Efficient and Practical Synthesis of Bis(Indolyl)Methanes Catalyzed by Aminosulfonic Acid under Ultrasound. Ultrason. Sonochem 2006, 13, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.R.; Singh, D.U.; Samant, S.D. Sulphamic Acid—A Mild, Efficient, and Cost-Effective Solid Acid Catalyst for the Synthesis of Bis(1H-indol-3-yl)Methanes. Synth. Commun. 2005, 35, 2133–2138. [Google Scholar] [CrossRef]
- Raju, B.C.; Rao, J.M. P-TsOH-Catalyzed Efficient Synthesis of Bis(Indolyl)Methanes. ChemInform 2008, 39. [Google Scholar] [CrossRef]
- Nasreen, A.; Varala, R.; Adapa, S.R. Copper Nitrate Trihydrate Catalyzed Efficient Synthesis of Bis(Indolyl)Methanes in Acetonitrile at Room Temperature. J. Heterocycl. Chem. 2007, 44, 983–987. [Google Scholar] [CrossRef]
- Zhang, D.-M.; Tang, Q.-G.; Ji, C.-X.; Guo, C. 3,3′-(4-Bromophenylmethanediyl)Bis(5-Methoxy-1H-Indole). Acta Crystallogr. Sect. E Struct. Rep. Online 2007, 63, o81–o82. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, D.-M.; Tang, Q.-G.; Sun, H.-S. 5,5′-Dimethoxy-3,3′-(3-Nitrophenylmethanediyl)Bis(1H-Indole). Acta Crystallogr. Sect. E Struct. Rep. Online 2006, 62, o3994–o3995. [Google Scholar] [CrossRef]
- Zhang, D.-M.; Tang, S.-G.; Wu, W.-Y.; Tang, Q.-G.; Guo, C. 3,3′-(4-Chlorophenylmethanediyl)Bis(5-Methoxy-1H-Indole). Acta Crystallogr. Sect. E Struct. Rep. Online 2006, 62, o5467–o5468. [Google Scholar] [CrossRef]
- Tang, S.-G.; Zhang, D.-M.; Wu, W.-Y.; Shan, L.; Guo, C. 5,5′-Dimethoxy-3,3′-(3-Fluorophenylmethanediyl)Bis(1H-Indole). Acta Crystallogr. Sect. E Struct. Rep. Online 2006, 62, o4691–o4692. [Google Scholar] [CrossRef]
- Hosseini-Sarvari, M. Synthesis of Bis(Indolyl)Methanes Using a Catalytic Amount of ZnO under Solvent-Free Conditions. Synth. Commun. 2008, 38, 832–840. [Google Scholar] [CrossRef]
- Du, D.-M.; Meng, S.-M.; Wang, Y.-M.; Meng, J.-B.; Zhou, X.-Z. Solid State Reaction of Aromatic Ketones with Heteroaromatics. Chin. J. Chem. 1995, 13, 520–524. [Google Scholar] [CrossRef]
- Firouzabadi, H.; Iranpoor, N.; Jafari, A.A. Aluminumdodecatungstophosphate (AlPW12O40), a Versatile and a Highly Water Tolerant Green Lewis Acid Catalyzes Efficient Preparation of Indole Derivatives. J. Mol. Catal. A Chem. 2006, 244, 168–172. [Google Scholar] [CrossRef]
- Eisenberg, A.C.; Tanski, J.M.; Getzler, Y.D.Y.L. {2-[Bis(3-Methyl-1H-Indol-2-Yl)Methyl]Phenolato-κO }dimethyl(Tetrahydrofuran-κO)Aluminium(III). Acta Crystallogr. Sect. E Struct. Rep. Online 2009, 65, m1353. [Google Scholar] [CrossRef] [PubMed]
- Hosseini-Sarvari, M. Titania (TiO2)-Catalyzed Expedient, Solventless and Mild Synthesis of Bis(Indolyl)Methanes Scientific Paper. Acta Chim. Slov. 2007, 54, 354–359. [Google Scholar]
- Rahimizadeh, M.; Bakhtiarpoor, Z.; Eshghi, H.; Pordel, M.; Rajabzadeh, G. TiO2 Nanoparticles: An Efficient Heterogeneous Catalyst for Synthesis of Bis(Indolyl)Methanes under Solvent-Free Conditions. Monatshefte Für Chem. Chem. Mon. 2009, 140, 1465–1469. [Google Scholar] [CrossRef]
- Thirupathi Reddy, Y.; Narsimha Reddy, P.; Sunil Kumar, B.; Rajitha, B. Efficient Synthesis of Bis(Indolyl)Methanes Catalyzed by TiCl4. Indian J. Chem. 2005, 44B, 2393–2395. [Google Scholar]
- Nagawade, R.R.; Shinde, D.B. Zirconium(IV) Chloride—Catalysed Reaction of Indoles: An Expeditious Synthesis of Bis(Indolyl)Methanes. Bull. Korean Chem. Soc. 2005, 26, 1962–1964. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Yin, L.; Wang, Y.M. An Efficient and Practical Process for the Synthesis of Bis(Indolyl)Methanes Catalyzed by Zirconium Tetrachloride. Synthesis 2005, 2005, 1949–1954. [Google Scholar] [CrossRef]
- Reddy, A.V.; Ravinder, K.; Reddy, V.L.N.; Goud, T.V.; Ravikanth, V.; Venkateswarlu, Y. Zeolite Catalyzed Synthesis of Bis(Indolyl) Methanes. Synth. Commun. 2003, 33, 3687–3694. [Google Scholar] [CrossRef]
- Karthik, M.; Magesh, C.J.; Perumal, P.T.; Palanichamy, M.; Arabindoo, B.; Murugesan, V. Zeolite-Catalyzed Ecofriendly Synthesis of Vibrindole A and Bis(Indolyl)Methanes. Appl. Catal. A Gen. 2005, 286, 137–141. [Google Scholar] [CrossRef]
- Karthik, M.; Palanichamy, M.; Murugesan, V. A Mild, Eco-Friendly and Efficient Zeolite Catalyzed Synthesis of Vibrindole A and Bis(Indolyl)Methanes. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 2005; Volume 156, pp. 873–878. [Google Scholar]
- Lin, Z.H.; Guan, C.J.; Feng, X.L.; Zhao, C.X. Synthesis of Macroreticular P-(ω-Sulfonic-Perfluoroalkylated)Polystyrene Ion-Exchange Resin and Its Application as Solid Acid Catalyst. J. Mol. Catal. A Chem. 2006, 247, 19–26. [Google Scholar] [CrossRef]
- Ramesh, C.; Banerjee, J.; Pal, R.; Das, B. Silica Supported Sodium Hydrogen Sulfate and Amberlyst-15: Two Efficient Heterogeneous Catalysts for Facile Synthesis of Bis- and Tris(1H-Indol-3-Yl)Methanes from Indoles and Carbonyl Compounds1. Adv. Synth. Catal. 2003, 345, 557–559. [Google Scholar] [CrossRef]
- Feng, X.; Guan, C.; Zhao, C. Ion Exchange Resin Catalyzed Condensation of Indole and Carbonyl Compounds—Synthesis of Bis -Indolylmethanes. Synth. Commun. 2004, 34, 487–492. [Google Scholar] [CrossRef]
- Ke, B.; Qin, Y.; Wang, Y.; Wang, F. Amberlyst-Catalyzed Reaction of Indole: Synthesis of Bisindolylalkane. Synth. Commun. 2005, 35, 1209–1212. [Google Scholar] [CrossRef]
- Sheng, S.R.; Wang, Q.Y.; Ding, Y.; Liu, X.L.; Cai, M.Z. Synthesis of Bis(Indolyl)Methanes Using Recyclable PEG-Supported Sulfonic Acid as Catalyst. Catal. Lett. 2009, 128, 418–422. [Google Scholar] [CrossRef]
- Yu, L.; Chen, D.; Li, J.; Wang, P.G. Preparation, Characterization, and Synthetic Uses of Lanthanide(III) Catalysts Supported on Ion Exchange Resins. J. Org. Chem. 1997, 62, 3575–3581. [Google Scholar] [CrossRef]
- Banerji, J.; Duttaa, U.; Basaka, B.; Saha, M.; BudzikiewiczC, H.; Chatterjeea, A. Electrophilic Substitution Reactions of Indole: Part XX-Use of Montmorillonite Clay K-LO. Indian J. Chem. 2001, 40B, 981–984. [Google Scholar]
- Chhattise, P.K.; Arbuj, S.S.; Mohite, K.C.; Bhavsar, S.V.; Horne, A.S.; Handore, K.N.; Chabukswar, V.V. One Dimensional CdS Nanostructures: Heterogeneous Catalyst for Synthesis of Aryl-3,3′-Bis(Indol-3-Yl)Methanes. RSC Adv. 2014, 4, 28623–28627. [Google Scholar] [CrossRef]
- Sobhani, S.; Jahanshahi, R. Nano N-Propylsulfonated γ-Fe2O3 (NPS-γ-Fe2O3) as a Magnetically Recyclable Heterogeneous Catalyst for the Efficient Synthesis of 2-Indolyl-1-Nitroalkanes and Bis(Indolyl)Methanes. New J. Chem. 2013, 37, 1009–1015. [Google Scholar] [CrossRef]
- Huaccallo-Aguilar, Y.; Álvarez-Torrellas, S.; Martínez-Nieves, J.; Delgado-Adámez, J.; Gil, M.V.; Ovejero, G.; García, J. Magnetite-Based Catalyst in the Catalytic Wet Peroxide Oxidation for Different Aqueous Matrices Spiked with Naproxen–Diclofenac Mixture. Catalysts 2021, 11, 514. [Google Scholar] [CrossRef]
- Wang, D.; Li, Y.; Wen, L.; Xi, J.; Liu, P.; Hansen, T.W.; Li, P. Ni-Pd-Incorporated Fe3O4 Yolk-Shelled Nanospheres as Efficient Magnetically Recyclable Catalysts for Reduction of N-Containing Unsaturated Compounds. Catalysts 2023, 13, 190. [Google Scholar] [CrossRef]
- Hosseini Nasab, N.; Safari, J. Synthesis of a Wide Range of Biologically Important Spiropyrans and Spiroacenaphthylenes, Using NiFe2O4@SiO2@Melamine Magnetic Nanoparticles as an Efficient, Green and Reusable Nanocatalyst. J. Mol. Struct. 2019, 1193, 118–124. [Google Scholar] [CrossRef]
- Shaabani, A.; Afshari, R.; Hooshmand, S.E.; Tabatabaei, A.T.; Hajishaabanha, F. Copper Supported on MWCNT-Guanidine Acetic Acid@Fe3O4: Synthesis, Characterization and Application as a Novel Multi-Task Nanocatalyst for Preparation of Triazoles and Bis(Indolyl)Methanes in Water. RSC Adv. 2016, 6, 18113–18125. [Google Scholar] [CrossRef]
- Kour, M.; Paul, S. Sulfonated Carbon/Nano-Metal Oxide Composites: A Novel and Recyclable Solid Acid Catalyst for Organic Synthesis in Benign Reaction Media. New J. Chem. 2015, 39, 6338–6350. [Google Scholar] [CrossRef]
- Carta, D.; Casula, M.F.; Falqui, A.; Loche, D.; Mountjoy, G.; Sangregorio, C.; Corrias, A. A Structural and Magnetic Investigation of the Inversion Degree in Ferrite Nanocrystals MFe2O4 (M = Mn, Co, Ni). J. Phys. Chem. C 2009, 113, 8606–8615. [Google Scholar] [CrossRef]
- Rouquerol, J.; Rouquerol, F.; Llewellyn, P.; Maurin, G.; Sing, K.S.W. Adsorption by Powders and Porous Solids; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 9780080970356. [Google Scholar]
- Chierotti, M.R.; Gaglioti, K.; Gobetto, R.; Barbero, M.; Nervi, C. Mechanism of the Solvent-Free Reactions between Indole Derivatives and 4-Nitrobenzaldehyde Studied by Solid-State NMR and DFT Calculations. CrystEngComm 2012, 14, 6732. [Google Scholar] [CrossRef]
- Casula, M.F.; Loche, D.; Marras, S.; Paschina, G.; Corrias, A. Role of Urea in the Preparation of Highly Porous Nanocomposite Aerogels. Langmuir 2007, 23, 3509–3512. [Google Scholar] [CrossRef]
Aerogel Label | Processing Conditions | Composition (10 wt% Loading MFe2O4) | Surface Area (m2∙g−1) | Pore Volume (cm3∙g−1) |
---|---|---|---|---|
Ni-CAT | 900 °C 1 h | NiFe2O4/SiO2 | 405 | 2.09 |
SiO2-CAT | 900 °C 1 h | SiO2 | 373 | 1.36 |
Catalyst | 1:2:3 Ratio 1 | 2:3 Ratio 1 |
---|---|---|
None | 44:48:8 | 86:14 |
SiO2 | 7:37:56 | 40:60 |
NiFe2O4-SiO2 | 4:2:94 | 2:98 |
Catalyst (5 mol%) | 1:2:3 Ratio 1 | 2:3 Ratio |
---|---|---|
Ni-X-CAT | 20:34:46 | 43:57 |
Ni-CAT | 4:2:94 | 2:98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melis, N.; Loche, D.; Thakkar, S.V.; Cutrufello, M.G.; Sini, M.F.; Sedda, G.; Pilia, L.; Frongia, A.; Casula, M.F. Magnetic Aerogels for Room-Temperature Catalytic Production of Bis(indolyl)methane Derivatives. Molecules 2024, 29, 2223. https://doi.org/10.3390/molecules29102223
Melis N, Loche D, Thakkar SV, Cutrufello MG, Sini MF, Sedda G, Pilia L, Frongia A, Casula MF. Magnetic Aerogels for Room-Temperature Catalytic Production of Bis(indolyl)methane Derivatives. Molecules. 2024; 29(10):2223. https://doi.org/10.3390/molecules29102223
Chicago/Turabian StyleMelis, Nicola, Danilo Loche, Swapneel V. Thakkar, Maria Giorgia Cutrufello, Maria Franca Sini, Gianmarco Sedda, Luca Pilia, Angelo Frongia, and Maria Francesca Casula. 2024. "Magnetic Aerogels for Room-Temperature Catalytic Production of Bis(indolyl)methane Derivatives" Molecules 29, no. 10: 2223. https://doi.org/10.3390/molecules29102223
APA StyleMelis, N., Loche, D., Thakkar, S. V., Cutrufello, M. G., Sini, M. F., Sedda, G., Pilia, L., Frongia, A., & Casula, M. F. (2024). Magnetic Aerogels for Room-Temperature Catalytic Production of Bis(indolyl)methane Derivatives. Molecules, 29(10), 2223. https://doi.org/10.3390/molecules29102223