Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = Bi2WO6 phase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1596 KB  
Article
Heat Capacity and Thermodynamic Properties of Photocatalitic Bismuth Tungstate, Bi2WO6
by Bogusław Onderka and Anna Kula
Metals 2025, 15(11), 1174; https://doi.org/10.3390/met15111174 - 23 Oct 2025
Viewed by 266
Abstract
The photocatalytic activity of Bi2WO6 Aurivillius phase has been widely exploited for the degradation of a wide range of gaseous and aqueous molecules, as well as microorganisms, under the influence of visible irradiation. Strategies for the development of doped and [...] Read more.
The photocatalytic activity of Bi2WO6 Aurivillius phase has been widely exploited for the degradation of a wide range of gaseous and aqueous molecules, as well as microorganisms, under the influence of visible irradiation. Strategies for the development of doped and co-doped bismuth tungstate materials require the thermodynamic data on this phase. The heat capacity of bismuth tungstate, Bi2WO6, was investigated using a DSC microcalorimeter on polycrystalline powder samples in the temperature range from 313 to 1103 K (40–830 °C) in two separate runs. The samples were synthesized by solid-state reaction from pure binary oxides at 1033 K (760 °C) in a platinum crucible with cover. The high temperature Cp(T) data were fitted by the Maier–Kelley equation and, from this relation, the standard molar heat capacity of γ-Bi2WO6 polymorph was estimated to be at 298.15 K 176.8 ± 3.9 J·K−1·mol−1. A reversible second-order transition of Bi2WO6 phase was observed in the experimental temperature range, with a peak close to 940 K (667 °C). Additionally, the extrapolation of Cp(T) to 0 K was proposed using a method based on the multiple Einstein model. Thermodynamic properties (heat capacity Cp(T), entropy S°(T), enthalpy H°(T), Gibbs energy G°(T)) of crystalline γ-Bi2WO6 were calculated in the temperature range of 298.15–1123 K (25–850 °C). Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Graphical abstract

28 pages, 12427 KB  
Review
Photocatalytic Degradation of Methyl Orange in Wastewater Using TiO2-Based Coatings Prepared by Plasma Electrolytic Oxidation of Titanium: A Review
by Stevan Stojadinović
Reactions 2025, 6(2), 25; https://doi.org/10.3390/reactions6020025 - 8 Apr 2025
Cited by 2 | Viewed by 2420
Abstract
This review analyzes TiO2-based coatings formed by the plasma electrolytic oxidation (PEO) process of titanium for the photocatalytic degradation of methyl orange (MO) under simulated solar irradiation conditions. PEO is recognized as a useful technique for creating oxide coatings on various [...] Read more.
This review analyzes TiO2-based coatings formed by the plasma electrolytic oxidation (PEO) process of titanium for the photocatalytic degradation of methyl orange (MO) under simulated solar irradiation conditions. PEO is recognized as a useful technique for creating oxide coatings on various metals, particularly titanium, to assist in the degradation of organic pollutants. TiO2-based photocatalysts in the form of coatings are more practical than TiO2-based photocatalysts in the form of powder because the photocatalyst does not need to be recycled and reused after wastewater degradation treatment, which is an expensive and time-consuming process. In addition, the main advantage of PEO in the synthesis of TiO2-based photocatalysts is its short processing time (a few minutes), as it excludes the annealing step needed to convert the amorphous TiO2 into a crystalline phase, a prerequisite for a possible photocatalytic application. Pure TiO2 coatings formed by PEO have a low photocatalytic efficiency in the degradation of MO, which is due to the rapid recombination of the photo-generated electron/hole pairs. In this review, recent advances in the sensitization of TiO2 with narrow band gap semiconductors (WO3, SnO2, CdS, Sb2O3, Bi2O3, and Al2TiO5), doping with rare earth ions (example Eu3+) and transition metals (Mn, Ni, Co, Fe) are summarized as an effective strategy to reduce the recombination of photo-generated electron/hole pairs and to improve the photocatalytic efficiency of TiO2 coatings. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2025)
Show Figures

Figure 1

12 pages, 4492 KB  
Article
Evaluation of Thermal and Mechanical Properties of Bi-In-Sn/WO3 Composites for Efficient Heat Dissipation
by Die Wu, Zhen Ning, Yanlin Zhu and Rui Yuan
Materials 2024, 17(21), 5315; https://doi.org/10.3390/ma17215315 - 31 Oct 2024
Cited by 3 | Viewed by 1277
Abstract
Phase change materials (PCMs) offer promising solutions for efficient thermal management in electronic devices, energy storage systems, and renewable energy applications due to their capacity to store and release significant thermal energy during phase transitions. This study investigates the thermal and physical properties [...] Read more.
Phase change materials (PCMs) offer promising solutions for efficient thermal management in electronic devices, energy storage systems, and renewable energy applications due to their capacity to store and release significant thermal energy during phase transitions. This study investigates the thermal and physical properties of Bi-In-Sn/WO3 composites, specifically for their use as phase change thermal interface materials (PCM-TIMs). The Bi-In-Sn/WO3 composite was synthesized through mechanochemical grinding, which enabled the uniform dispersion of WO3 particles within the Bi-In-Sn alloy matrix. The addition of WO3 particles markedly improved the composite’s thermal conductivity and transformed its physical form into a putty-like consistency, addressing leakage issues typically associated with pure Bi-In-Sn alloys. Microstructural analyses demonstrated the existence of a continuous interface between the liquid metal and WO3 phases, with no gaps, ensuring structural stability. Thermal performance tests demonstrated that the Bi-In-Sn/WO3 composite achieved improved thermal conductivity, and reduced volumetric latent heat, and there was a slight increase in thermal contact resistance with higher WO3 content. These findings highlight the potential of Bi-In-Sn/WO3 composites for utilization as advanced PCM-TIMs, offering enhanced heat dissipation, stability, and physical integrity for high-performance electronic and energy systems. Full article
Show Figures

Figure 1

15 pages, 6180 KB  
Article
MPS@BWO with High Adsorption Capacity for Efficient Photocatalytic Reduction of CO2
by Peng Chen, Tao Du, Yingnan Li, He Jia, Gemeng Cao, Junxu Zhang and Yisong Wang
Catalysts 2024, 14(11), 745; https://doi.org/10.3390/catal14110745 - 23 Oct 2024
Viewed by 1202
Abstract
Photocatalysis can reduce CO2 to available energy by means of light energy, which is considered to be an effective solution to alleviate energy and environmental problems. In this paper, an MPS@Bi2WO6 composite photocatalyst was prepared by in situ hydrothermal [...] Read more.
Photocatalysis can reduce CO2 to available energy by means of light energy, which is considered to be an effective solution to alleviate energy and environmental problems. In this paper, an MPS@Bi2WO6 composite photocatalyst was prepared by in situ hydrothermal method. BWO grew on the surface of MPS, which increased the CO2 absorption capacity of the photocatalyst and improved the microstructure. Under the synergistic effect of the two aspects, BWS achieves the enhancement of light energy absorption capacity and can effectively excite electron-hole pairs. The transition electrons with high reduction ability migrate to the surface and contact with high concentrations of CO2, achieving efficient CO2 reduction under visible light. Among the photocatalysts in this paper, BWS-1 (BWO: MPS = 1:1) has efficient CO2 gas phase reduction ability under visible light, and the CO yield reaches 29.51 μmol/g. The MPS@BWO photocatalyst is a low-cost and efficient CO2 photoreduction catalyst with broad application prospects. Full article
Show Figures

Figure 1

20 pages, 24444 KB  
Article
Preparation and Photocatalytic Performance of In2O3/Bi2WO6 Type II Heterojunction Composite Materials
by Xiuping Zhang, Fengqiu Qin, Yuanyuan Zhong, Tian Xiao, Qiang Yu, Xiaodong Zhu, Wei Feng and Zhiyong Qi
Molecules 2024, 29(20), 4911; https://doi.org/10.3390/molecules29204911 - 17 Oct 2024
Cited by 9 | Viewed by 1733
Abstract
Bismuth-based photocatalytic materials have been widely used in the field of photocatalysis in recent years due to their unique layered structure. However, single bismuth-based photocatalytic materials are greatly limited in their photocatalytic performance due to their poor response to visible light and easy [...] Read more.
Bismuth-based photocatalytic materials have been widely used in the field of photocatalysis in recent years due to their unique layered structure. However, single bismuth-based photocatalytic materials are greatly limited in their photocatalytic performance due to their poor response to visible light and easy recombination of photogenerated charges. At present, constructing semiconductor heterojunctions is an effective modification method that improves quantum efficiency by promoting the separation of photogenerated electrons and holes. In this study, the successful preparation of an In2O3/Bi2WO6 (In2O3/BWO) II-type semiconductor heterojunction composite material was achieved. XRD characterization was performed to conduct a phase analysis of the samples, SEM and TEM characterization for a morphology analysis of the samples, and DRS and XPS testing for optical property and elemental valence state analyses of the samples. In the II-type semiconductor junction system, photogenerated electrons (e) on the In2O3 conduction band (CB) migrate to the BWO CB, while holes (h+) on the BWO valence band (VB) transfer to the In2O3 VB, promoting the separation of photoinduced charges, raising the quantum efficiency. When the molar ratio of In2O3/BWO is 2:6, the photocatalytic degradation degree of rhodamine B (RhB) is 59.4% (44.0% for BWO) after 60 min illumination, showing the best photocatalytic activity. After four cycles, the degradation degree of the sample was 54.3%, which is 91.4% of that of the first photocatalytic degradation experiment, indicating that the sample has good reusability. The XRD results of 2:6 In2O3/BWO before and after the cyclic experiments show that the positions and intensities of its diffraction peaks did not change significantly, indicating excellent structural stability. The active species experiment results imply that h+ is the primary species. Additionally, this study proposes a mechanism for the separation, migration, and photocatalysis of photoinduced charges in II-type semiconductor junctions. Full article
Show Figures

Figure 1

19 pages, 5124 KB  
Article
Design of Bismuth Tungstate Bi2WO6 Photocatalyst for Enhanced and Environmentally Friendly Organic Pollutant Degradation
by Aicha El Aouni, Mohamed El Ouardi, Madjid Arab, Mohamed Saadi, Henrik Haspel, Zoltán Kónya, Abdelkader Ben Ali, Amane Jada, Amal BaQais and Hassan Ait Ahsaine
Materials 2024, 17(5), 1029; https://doi.org/10.3390/ma17051029 - 23 Feb 2024
Cited by 25 | Viewed by 3772
Abstract
In this study, a chemical precipitation approach was adopted to produce a photocatalyst based on bismuth tungstate Bi2WO6 for enhanced and environmentally friendly organic pollutant degradation. Various tools such as X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), optical [...] Read more.
In this study, a chemical precipitation approach was adopted to produce a photocatalyst based on bismuth tungstate Bi2WO6 for enhanced and environmentally friendly organic pollutant degradation. Various tools such as X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), optical spectroscopy and X-ray photoelectron spectroscopy, were employed to assess the structural and morphological properties. Hence, the XRD profiles showed a well crystallized Bi2WO6 orthorhombic phase. The photocatalytic performance of the resulting photocatalyst was assessed by the decomposition of Rhodamine B (RhB) and methyl orange (MO) with a decomposition efficiency of 97 and 92%, along with the highest chemical oxygen demand of 82 and 79% during 120 min of illumination, respectively. The principal novelty of the present work is to focus on the changes in the crystalline structure, the morphology, and the optical and the photoelectrochemical characteristics of the Bi2WO6, by tuning the annealing temperature of the designed photocatalyst. Such physicochemical property changes in the as-prepared photocatalyst will affect in turn its photocatalytic activity toward the organic pollutant decomposition. The photocatalytic mechanism was elaborated based on electrochemical impedance spectroscopy, photocurrent analysis, photoluminescence spectroscopy, and radical trapping measurements. The overall data indicate that the superoxide O2•− and holes h+ are the principal species responsible for the pollutant photodegradation. Full article
Show Figures

Figure 1

15 pages, 5800 KB  
Article
Preparation of Surface Dispersed WO3/BiVO4 Heterojunction Arrays and Their Photoelectrochemical Performance for Water Splitting
by Xiaoli Fan, Qinying Chen, Fei Zhu, Tao Wang, Bin Gao, Li Song and Jianping He
Molecules 2024, 29(2), 372; https://doi.org/10.3390/molecules29020372 - 11 Jan 2024
Cited by 9 | Viewed by 2650
Abstract
In this work, a surface dispersed heterojunction of BiVO4-nanoparticle@WO3-nanoflake was successfully prepared by hydrothermal combined with solvothermal method. We optimized the morphology of the WO3 nanoflakes and BiVO4 nanoparticles by controlling the synthesis conditions to get the [...] Read more.
In this work, a surface dispersed heterojunction of BiVO4-nanoparticle@WO3-nanoflake was successfully prepared by hydrothermal combined with solvothermal method. We optimized the morphology of the WO3 nanoflakes and BiVO4 nanoparticles by controlling the synthesis conditions to get the uniform BiVO4 loaded on the surface of WO3 arrays. The phase composition and morphology evolution with different reaction precursors were investigated in detail. When used as photoanodes, the WO3/BiVO4 composite exhibits superior activity with photocurrent at 3.53 mA cm−2 for photoelectrochemical (PEC) water oxidation, which is twice that of pure WO3 photoanode. The superior surface dispersion structure of the BiVO4-nanoparticle@WO3-nanoflake heterojunction ensures a large effective heterojunction area and relieves the interfacial hole accumulation at the same time, which contributes to the improved photocurrents together with the stability of the WO3/BiVO4 photoanodes. Full article
(This article belongs to the Special Issue Nanomaterials for Energy Storage and Conversion)
Show Figures

Figure 1

15 pages, 3491 KB  
Article
Flux Growth and Raman Spectroscopy Study of Cu2CrBO5 Crystals
by Evgeniya Moshkina, Evgeniy Eremin, Maxim Molokeev, Dieter Kokh and Alexander Krylov
Crystals 2023, 13(10), 1415; https://doi.org/10.3390/cryst13101415 - 23 Sep 2023
Cited by 1 | Viewed by 1742
Abstract
Multicomponent flux systems based on both Li2WO4-B2O3-Li2O-CuO-Cr2O3 and Bi2O3-MoO3-B2O3-Na2O-CuO-Cr2O3 were studied in order to grow [...] Read more.
Multicomponent flux systems based on both Li2WO4-B2O3-Li2O-CuO-Cr2O3 and Bi2O3-MoO3-B2O3-Na2O-CuO-Cr2O3 were studied in order to grow Cu2CrBO5 crystals. The conditions for Cu2CrBO5 crystallization were investigated by varyingthe component ratios, and the peculiarities of their interaction were characterized by studying the formation sequence of high-temperature crystallizing phases. Special attention was paid to the problem of Cr2O3 solubility. Phase boundaries between CuCrO2, Cu2CrO4, and Cu2CrBO5 were considered. The crystal structure of the obtained samples was studied viasingle crystal and powder X-ray diffraction. The chemical composition of the grown crystals was examined using the EDX technique. Anactual ratio of Cu:Cr = 1.89:1.11 was found for Cu2CrBO5 grown from the lithium-tungstate system, which showed a small deviation from 2:1, implying the presence of a part of bivalent Cr2+ in the samples. Anomalies in the thermal dependence of magnetization were analyzed and compared with the previously obtained data for Cu2CrBO5. The anomaly at TC ≈ 42 K and the antiferromagnetic phase transition at TN ≈ 119 K were considered. Polarized Raman spectra of Cu2CrBO5 were obtained for the first time, and a comparative analysis of the obtained data with other monoclinic and orthorhombic ludwigites is presented. Along with the polarized room temperature spectra, the thermal evolution of Raman modes near the antiferromagnetic phase transition temperature TN ≈ 119 K is provided. The influence of the magnetic phase transition on the Raman spectra of Cu2CrBO5 is discussed. Full article
(This article belongs to the Special Issue Raman Spectroscopy of Crystalline Materials and Nanostructures)
Show Figures

Figure 1

20 pages, 6683 KB  
Article
Study of the Phase Formation Processes and Their Influence on the Change in the Optical and Shielding Characteristics of 0.25ZnO–0.25Al2O3–0.25WO3–0.25Bi2O3 Ceramics
by Aibek S. Seitbayev, Artem L. Kozlovskiy, Daryn B. Borgekov and Maxim V. Zdorovets
Ceramics 2023, 6(2), 798-817; https://doi.org/10.3390/ceramics6020046 - 23 Mar 2023
Cited by 3 | Viewed by 2058
Abstract
The phase formation processes in 0.25ZnO–0.25Al2O3–0.25WO3–0.25Bi2O3 ceramics with variation in the thermal annealing temperature were evaluated in this study. According to the obtained data on the phase composition dependent on the annealing temperature, the [...] Read more.
The phase formation processes in 0.25ZnO–0.25Al2O3–0.25WO3–0.25Bi2O3 ceramics with variation in the thermal annealing temperature were evaluated in this study. According to the obtained data on the phase composition dependent on the annealing temperature, the phase transformation dynamics, which can be written in the form of ZnO/Bi2O3/WO3/Al2O3 → ZnBi38O60/ZnO/Bi2WO6/WO3 → Bi2Al4O9/ZnBi38O60/Bi2WO6/ZnO/WO3 → ZnWO4/Bi2WO6/ZnAl2O4/ZnO → ZnWO4/Bi2WO6/ZnAl2O4 → Bi2WO6/ZnWO4/ZnAl2O4 → ZnAl2O4/Bi2WO6/Bi2W2O9, were established. It has been found that the formation of phases of complex oxides of the ZnWO4, Bi2WO6 and Bi2W2O9 types in the composition of ceramics leads to an increase in the density of ceramics up to 8.05–8.10 g/cm3, which positively affects the shielding efficiency and strength characteristics. According to the data on the change in strength characteristics, it was found that a change in the density of ceramics from 6.3 to 8.05–8.10 g/cm3 leads to strengthening and an increase in the crack resistance of ceramics by 75–80%, which indicates a high strength of ceramics and their increased resistance to external influences. As shown by the evaluation of the shielding characteristics, an increase in the density of ceramics due to a phase composition change leads to an increase in the shielding efficiency and a decrease in gamma intensity by a factor of 3–3.5. At the same time, on the base of the data presented, it can be concluded that ceramics obtained in the range of 900–1100 °C have both high shielding characteristics and high strength and resistance to external influences. Full article
Show Figures

Figure 1

17 pages, 12961 KB  
Article
Kinetic Aspects of Benzene Degradation over TiO2-N and Composite Fe/Bi2WO6/TiO2-N Photocatalysts under Irradiation with Visible Light
by Mikhail Lyulyukin, Nikita Kovalevskiy, Andrey Bukhtiyarov, Denis Kozlov and Dmitry Selishchev
Int. J. Mol. Sci. 2023, 24(6), 5693; https://doi.org/10.3390/ijms24065693 - 16 Mar 2023
Cited by 13 | Viewed by 2374
Abstract
In this study, composite materials based on nanocrystalline anatase TiO2 doped with nitrogen and bismuth tungstate are synthesized using a hydrothermal method. All samples are tested in the oxidation of volatile organic compounds under visible light to find the correlations between their [...] Read more.
In this study, composite materials based on nanocrystalline anatase TiO2 doped with nitrogen and bismuth tungstate are synthesized using a hydrothermal method. All samples are tested in the oxidation of volatile organic compounds under visible light to find the correlations between their physicochemical characteristics and photocatalytic activity. The kinetic aspects are studied both in batch and continuous-flow reactors, using ethanol and benzene as test compounds. The Bi2WO6/TiO2-N heterostructure enhanced with Fe species efficiently utilizes visible light in the blue region and exhibits much higher activity in the degradation of ethanol vapor than pristine TiO2-N. However, an increased activity of Fe/Bi2WO6/TiO2-N can have an adverse effect in the degradation of benzene vapor. A temporary deactivation of the photocatalyst can occur at a high concentration of benzene due to the fast accumulation of non-volatile intermediates on its surface. The formed intermediates suppress the adsorption of the initial benzene and substantially increase the time required for its complete removal from the gas phase. An increase in temperature up to 140 °C makes it possible to increase the rate of the overall oxidation process, and the use of the Fe/Bi2WO6/TiO2-N composite improves the selectivity of oxidation compared to pristine TiO2-N. Full article
Show Figures

Graphical abstract

19 pages, 7958 KB  
Article
Investigation of the Effect of PbO Doping on Telluride Glass Ceramics as a Potential Material for Gamma Radiation Shielding
by Artem L. Kozlovskiy, Dmitriy I. Shlimas, Maxim V. Zdorovets, Edgars Elsts, Marina Konuhova and Anatoli I. Popov
Materials 2023, 16(6), 2366; https://doi.org/10.3390/ma16062366 - 15 Mar 2023
Cited by 12 | Viewed by 2257
Abstract
The purpose of this paper is to study the effect of PbO doping of multicomponent composite glass-like ceramics based on TeO2, WO3, Bi2O3, MoO3, and SiO2, which are one of the [...] Read more.
The purpose of this paper is to study the effect of PbO doping of multicomponent composite glass-like ceramics based on TeO2, WO3, Bi2O3, MoO3, and SiO2, which are one of the promising materials for gamma radiation shielding. According to X-ray diffraction data, it was found that the PbO dopant concentration increase from 0.10 to 0.20–0.25 mol results in the initialization of the phase transformation and structural ordering processes, which are expressed in the formation of SiO2 and PbWO4 phases, and the crystallinity degree growth. An analysis of the optical properties showed that a change in the ratio of the contributions of the amorphous and ordered fractions leads to the optical density increase and the band gap alteration, as well as a variation in the optical characteristics. During the study of the strength and mechanical properties of the synthesized ceramics, depending on the dopant concentration, it was found that when inclusions in the form of PbWO4 are formed in the structure, the strength characteristics increase by 70–80% compared to the initial data, which indicates the doping efficiency and a rise in the mechanical strength of ceramics to external influences. During evaluation of the shielding protective characteristics of the synthesized ceramics, it was revealed that the formation of PbWO4 in the structure results in a rise in the high-energy gamma ray absorption efficiency. Full article
(This article belongs to the Special Issue Fabrications and Characterization of Different Glasses Systems)
Show Figures

Figure 1

14 pages, 7663 KB  
Article
Study of the Structural, Optical and Strength Properties of Glass-like (1−x)ZnO–0.25Al2O3–0.25WO3–xBi2O3 Ceramics
by Artem L. Kozlovskiy, Aibek S. Seitbayev, Daryn B. Borgekov and Maxim V. Zdorovets
Crystals 2022, 12(11), 1527; https://doi.org/10.3390/cryst12111527 - 27 Oct 2022
Cited by 3 | Viewed by 1922
Abstract
The main purpose of this work is to study the effect of substitution of zinc oxide for bismuth oxide in the composition of (1−x)ZnO–0.25Al2O3–0.25WO3–xBi2O3 ceramics, as well as the accompanying processes of phase transformations [...] Read more.
The main purpose of this work is to study the effect of substitution of zinc oxide for bismuth oxide in the composition of (1−x)ZnO–0.25Al2O3–0.25WO3–xBi2O3 ceramics, as well as the accompanying processes of phase transformations and their influence on the optical and strength properties of ceramics. The use of these oxide compounds as materials for creating shielding coatings or ceramics is due to the combination of their structural, optical, and strength properties, which make it possible to compete with traditional protective glasses based on rare earth oxide compounds. Interest in these types of ceramics is due to their potential for use as basic materials for shielding ionizing radiation as well as for use as radiation-resistant coatings. The main research methods were X-ray diffractometry to determine the phase composition of ceramics; scanning electron microscopy and energy dispersive analysis to determine the morphological features and isotropy of the distribution of elements in the structure; and UV-V is spectroscopy to determine the optical properties of ceramics. During the studies, it was found that an increase in the Bi2O3 concentration leads to the formation of new phase inclusions in the form of orthorhombic Bi2WO6 and Bi2W2O9 phases, the appearance of which leads to an increase in the density of ceramics and a change in the dislocation density. An analysis of the strength properties, in particular, hardness and crack resistance, showed that a change in the phase composition of ceramics with an increase in the Bi2O3 concentration leads to a significant strengthening of the ceramics, which is due to the effect of the presence of interfacial boundaries as well as an increase in the dislocation density. Full article
(This article belongs to the Special Issue Recent Developments of Inorganic Crystalline Materials)
Show Figures

Figure 1

12 pages, 2924 KB  
Article
In Situ Formation of Z-Scheme Bi2WO6/WO3 Heterojunctions for Gas-Phase CO2 Photoreduction with H2O by Photohydrothermal Treatment
by Zekai Zhang, Ding Zhang, Lin Lyu, Guokai Cui and Hanfeng Lu
Catalysts 2022, 12(10), 1237; https://doi.org/10.3390/catal12101237 - 14 Oct 2022
Cited by 3 | Viewed by 2208
Abstract
We report a new photohydrothermal method to prepare a Bi2WO6/WO3 catalytic material for CO2 photoreduction by solar concentrators. The photohydrothermal treatment improves the physico-chemical properties of the Bi2WO6/WO3 material and forms well [...] Read more.
We report a new photohydrothermal method to prepare a Bi2WO6/WO3 catalytic material for CO2 photoreduction by solar concentrators. The photohydrothermal treatment improves the physico-chemical properties of the Bi2WO6/WO3 material and forms well contact Bi2WO6/WO3 heterojunctions, which increase the maximum reaction rate of CO2 photoreduction to 8.2 times under the simulated light, and the hydrocarbon yield under the real concentrating solar light achieves thousands of μmol·gcata−1. The reason for the high activity is attributed to the direct Z-scheme effect of Bi2WO6/WO3 heterojunctions and the photothermal effect during the course. These findings highlight the utilization of solar energy in CO2 photoreduction and open avenues for the rational design of highly efficient photocatalysts. Full article
(This article belongs to the Special Issue CO2 Catalytic Conversion and Utilization)
Show Figures

Graphical abstract

12 pages, 3795 KB  
Article
Z-Scheme Heterojunction of SnS2/Bi2WO6 for Photoreduction of CO2 to 100% Alcohol Products by Promoting the Separation of Photogenerated Charges
by Yong Xu, Juanjuan Yu, Jianfei Long, Lingxiao Tu, Weili Dai and Lixia Yang
Nanomaterials 2022, 12(12), 2030; https://doi.org/10.3390/nano12122030 - 13 Jun 2022
Cited by 12 | Viewed by 2969
Abstract
Using sunlight to convert CO2 into solar fuel is an ideal solution to both global warming and the energy crisis. The construction of direct Z-scheme heterojunctions is an effective method to overcome the shortcomings of single-component or conventional heterogeneous photocatalysts for photocatalytic [...] Read more.
Using sunlight to convert CO2 into solar fuel is an ideal solution to both global warming and the energy crisis. The construction of direct Z-scheme heterojunctions is an effective method to overcome the shortcomings of single-component or conventional heterogeneous photocatalysts for photocatalytic CO2 (carbon dioxide) reduction. In this work, a composite photocatalyst of narrow-gap SnS2 and stable oxide Bi2WO6 were prepared by a simple hydrothermal method. The combination of Bi2WO6 and SnS2 narrows the bandgap, thereby broadening the absorption edge and increasing the absorption intensity of visible light. Photoluminescence, transient photocurrent, and electrochemical impedance showed that the coupling of SnS2 and Bi2WO6 enhanced the efficiency of photogenerated charge separation. The experimental results show that the electron transfer in the Z-scheme heterojunction of SnS2/Bi2WO6 enables the CO2 reduction reactions to take place. The photocatalytic reduction of CO2 is carried out in pure water phase without electron donor, and the products are only methanol and ethanol. By constructing a Z-scheme heterojunction, the photocatalytic activity of the SnS2/Bi2WO6 composite was improved to 3.3 times that of pure SnS2. Full article
(This article belongs to the Special Issue Degradation and Photocatalytic Properties of Nanocomposites)
Show Figures

Graphical abstract

11 pages, 7284 KB  
Article
Facile Preparation of a Novel Bi2WO6/Calcined Mussel Shell Composite Photocatalyst with Enhanced Photocatalytic Performance
by Shijie Li, Chunchun Wang, Yanping Liu, Bing Xue, Jialin Chen, Hengwei Wang and Yu Liu
Catalysts 2020, 10(10), 1166; https://doi.org/10.3390/catal10101166 - 12 Oct 2020
Cited by 97 | Viewed by 3960
Abstract
The exploration of cost-effective and highly efficient photocatalysts is still a great challenge. In this work, a cost-effective and highly active Bi2WO6/calcined mussel shell (CMS/BWO) composite photocatalyst was prepared by a facile solvothermal route, in which Bi2WO [...] Read more.
The exploration of cost-effective and highly efficient photocatalysts is still a great challenge. In this work, a cost-effective and highly active Bi2WO6/calcined mussel shell (CMS/BWO) composite photocatalyst was prepared by a facile solvothermal route, in which Bi2WO6 nanosheets were tightly, evenly, and vertically grown on waste calcined mussel shells (CMS). Multiple techniques are adopted to characterize the phases, morphology, and chemical properties of the as-fabricated catalysts. In contrast to the stacked Bi2WO6, CMS/BWO has numerous exposed edges and open transfer pathways, which can create more open space and reactive sites for photocatalytic reactions. Such favorable characteristics enable CMS/BWO to efficiently degrade organic pollutants (e.g., rhodamine B (RhB), methylene blue (MB), tetracycline hydrochloride (TC)) under visible light. Moreover, the generation of reactive species during the photocatalytic process is also examined by trapping experiments, disclosing the pivotal role of photo-generated holes (h+) and hydroxyl radicals (•OH) in the photo-degradation of pollutants. Above all, this study not only provides an efficient photocatalyst for environmental remediation, but it also opens up new possibilities for waste mussel shell reutilization. Full article
(This article belongs to the Special Issue Photocatalysis and Environment)
Show Figures

Graphical abstract

Back to TopTop