MPS@BWO with High Adsorption Capacity for Efficient Photocatalytic Reduction of CO2
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure and Morphology
2.2. Photocatalytic Activity
2.3. Photocatalysis Mechanism
3. Materials and Methods
3.1. Materials
3.2. Preparation of Photocatalysts
3.3. Characterization Methods
3.4. Photocatalytic Reduction of CO2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lei, T.; Wang, D.; Yu, X.; Ma, S.; Zhao, W.; Cui, C.; Meng, J.; Tao, S.; Guan, D. Global Iron and Steel Plant CO2 Emissions and Carbon-Neutrality Pathways. Nature 2023, 622, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Ciais, P.; Wu, M.; Padrón, R.S.; Friedlingstein, P.; Schwaab, J.; Gudmundsson, L.; Seneviratne, S.I. Increasingly Negative Tropical Water–Interannual CO2 Growth Rate Coupling. Nature 2023, 618, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Yeo, J.Z.-Q.; Rosentreter, J.A.; Oakes, J.M.; Schulz, K.G.; Eyre, B.D. High Carbon Dioxide Emissions from Australian Estuaries Driven by Geomorphology and Climate. Nat. Commun. 2024, 15, 3967. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, J.; Feng, S.; Liang, X.; Wang, C. Light-Driven Thermocatalytic CO2 Reduction over Surface-Passivated b-Mo2C Nanowires: Enhanced Catalytic Stability by Light. Chem. Commun. 2019, 32, 4651–4654. [Google Scholar] [CrossRef]
- Giusi, D.; Ampelli, C.; Genovese, C.; Perathoner, S.; Centi, G. A Novel Gas Flow-through Photocatalytic Reactor Based on Copper-Functionalized Nanomembranes for the Photoreduction of CO2 to C1-C2 Carboxylic Acids and C1-C3 Alcohols. Chem. Eng. J. 2021, 408, 127250. [Google Scholar] [CrossRef]
- He, Y.; Rao, H.; Song, K.; Li, J.; Yu, Y.; Lou, Y.; Li, C.; Han, Y.; Shi, Z.; Feng, S. 3D Hierarchical ZnIn2S4 Nanosheets with Rich Zn Vacancies Boosting Photocatalytic CO2 Reduction. Adv. Funct. Mater. 2019, 29, 1905153. [Google Scholar] [CrossRef]
- Wang, J.; Sheng, R.; Xiao, J.; Lu, L.; Peng, Y.; Gu, D.; Xiao, W. Matched Redox Kinetics on Triazine-Based Carbon Nitride/Ni(OH)2 for Stoichiometric Overall Photocatalytic CO2 Conversion. Small 2024, 20, e2309707. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Zhang, L. Photobreeding Oxygen Vacancy Facilitates Phtocatalytic Reduction of CO2. Sep. Purif. Technol. 2024, 340, 126842. [Google Scholar] [CrossRef]
- Peter, S.C. Reduction of CO2 to Chemicals and Fuels: A Solution to Global Warming and Energy Crisis. ACS Energy Lett. 2018, 3, 1557–1561. [Google Scholar] [CrossRef]
- Li, C.-Q.; Yi, S.-S.; Liu, Y.; Niu, Z.-L.; Yue, X.-Z.; Liu, Z.-Y. In-Situ Constructing S-Scheme/Schottky Junction and Oxygen Vacancy on SrTiO3 to Steer Charge Transfer for Boosted Photocatalytic H2 Evolution. Chem. Eng. J. 2021, 417, 129231. [Google Scholar] [CrossRef]
- Mohammad, A. Sulfur-Doped Graphitic Carbon Nitride: Tailored Nanostructures for Photocatalytic, Sensing, and Energy Storage Applications. Adv. Colloid Interface Sci. 2023, 322, 103048. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Li, H.; Yekeh, D.; Deng, B.; Chen, Z.; Duan, S.; Yang, L. Rapidly Photocatalytic Degradation of Toluene Boosted by Plasmonic Effect and Schottky Junction on Pt Nanoparticles Engineered Self-Supporting Cu2O Nanowires. Sep. Purif. Technol. 2025, 353, 128559. [Google Scholar] [CrossRef]
- Yu, X.; Huang, K.; Zhang, Y.; Jin, Y.; Chen, Y.; Chen, F.; Zhang, X. Photodynamically Functionalized CoP/MoS2 Nanocomposites with Antibacterial Activity. ACS Appl. Nano Mater. 2024, 7, 3260–3268. [Google Scholar] [CrossRef]
- Cao, X.; Tan, B.; Zhang, B.; Huang, G.; Xu, H.; Song, Z.; Yan, J. Integration of Silver Nanoparticles into Carbon-Encapsulated Tungsten Oxide Promoting Visible-Light-Driven Photocatalytic Degradation Efficiency. Appl. Surf. Sci. 2024, 678, 161112. [Google Scholar] [CrossRef]
- Zhao, W. Insights into Photocatalytic Mechanism over a Novel Cu2WS4/MoS2 S-Scheme Heterojunction. Rare Met. 2024, 43, 3118–3133. [Google Scholar] [CrossRef]
- Ge, M.; Yin, H.; Tian, W.; Zhang, H.; Li, S.; Wang, S.; Chen, Z. Electrostatically Induced Furfural-Derived Carbon Dots-CdS Hybrid for Solar Light-Driven Hydrogen Production. J. Colloid Interface Sci. 2024, 660, 147–156. [Google Scholar] [CrossRef]
- Wang, Z.; Min, S.; Li, R.; Lin, W.; Li, K.; Wang, S.; Kang, L. Constructing Cuprous Oxide-Modified Zinc Tetraphenylporphyrin Ultrathin Nanosheets Heterojunction for Enhanced Photocatalytic Carbon Dioxide Reduction to Methane. J. Colloid Interface Sci. 2024, 667, 212–222. [Google Scholar] [CrossRef]
- Kanwal, A.; Shahzadi, T.; Riaz, T.; Zaib, M.; Khan, S.; Habila, M.A.; Sillanpaa, M. Photocatalytic Degradation Studies of Organic Dyes over Novel Cu/Ni Loaded Reduced Graphene Oxide Hybrid Nanocomposite: Adsorption, Kinetics and Thermodynamic Studies. Molecules 2023, 28, 6474. [Google Scholar] [CrossRef]
- Yan, T.; Li, N.; Wang, L.; Ran, W.; Duchesne, P.N.; Wan, L.; Nguyen, N.T.; Wang, L.; Xia, M.; Ozin, G.A. Bismuth Atom Tailoring of Indium Oxide Surface Frustrated Lewis Pairs Boosts Heterogeneous CO2 Photocatalytic Hydrogenation. Nat. Commun. 2020, 11, 6095. [Google Scholar] [CrossRef]
- Bafaqeer, A.; Tahir, M.; Amin, N.A.S. Synergistic Effects of 2D/2D ZnV2O6/RGO Nanosheets Heterojunction for Stable and High Performance Photo-Induced CO2 Reduction to Solar Fuels. Chem. Eng. J. 2018, 334, 2142–2153. [Google Scholar] [CrossRef]
- Dai, W.; Yu, J.; Xu, H.; Hu, X.; Luo, X.; Yang, L.; Tu, X. Synthesis of Hierarchical Flower-like Bi2MoO6 Microspheres as Efficient Photocatalyst for Photoreduction of CO2 into Solar Fuels under Visible Light. CrystEngComm 2016, 18, 3472–3480. [Google Scholar] [CrossRef]
- Yuan, X.; Shen, D.; Zhang, Q.; Zou, H.; Liu, Z.; Peng, F. Z-Scheme Bi2WO6/CuBi2O4 Heterojunction Mediated by Interfacial Electric Field for Efficient Visible-Light Photocatalytic Degradation of Tetracycline. Chem. Eng. J. 2019, 369, 292–301. [Google Scholar] [CrossRef]
- Guo, S.; Di, J.; Chen, C.; Zhu, C.; Duan, M.; Lian, C.; Ji, M.; Zhou, W.; Xu, M.; Song, P.; et al. Oxygen Vacancy Mediated Bismuth Stannate Ultra-Small Nanoparticle towards Photocatalytic CO2-to-CO Conversion. Appl. Catal. B Environ. 2020, 276, 119156. [Google Scholar] [CrossRef]
- Ribeiro, C.S.; Lansarin, M.A. Enhanced Photocatalytic Activity of Bi2WO6 with PVP Addition for CO2 Reduction into Ethanol under Visible Light. Environ. Sci. Pollut. Res. 2020, 28, 23667–23674. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Du, T.; Jia, H.; Zhou, L.; Yue, Q.; Wang, H.; Wang, Y. A Novel Bi2WO6/Si Heterostructure Photocatalyst with Fermi Level Shift in Valence Band Realizes Efficient Reduction of CO2 under Visible Light. Appl. Surf. Sci. 2022, 585, 152665. [Google Scholar] [CrossRef]
- Jiang, P.; Yu, Y.; Wang, K.; Liu, W. Efficient Electron Transfer in G-C3N4/TiO2 Heterojunction for Enhanced Photocatalytic CO2 Reduction. Catalysts 2024, 14, 335. [Google Scholar] [CrossRef]
- Zhang, Y.; Ju, P.; Hao, L.; Zhai, X.; Jiang, F.; Sun, C. Novel Z-Scheme MoS2/Bi2WO6 Heterojunction with Highly Enhanced Photocatalytic Activity under Visible Light Irradiation. J. Alloys Compd. 2021, 854, 157224. [Google Scholar] [CrossRef]
- Ullah, R.; Ali, H.; Liu, M.; Zahid, M.; Ahmad, M.; Zeb, J.; Khan, I.; Ismail, A.; Hayat, S.; Bououdina, M.; et al. Precision Engineering of Z-Scheme Interfacial Charge Transfer in CoPc/Bi2WO6 through W-Based Bonds and Internal Electric Field for Efficient CO2 Photoreduction. Sep. Purif. Technol. 2024, 338, 126578. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, F.; Sun, N.; Wu, J.; Qi, Y.; Zhang, Y.; Song, J.; Sun, Y.; Liu, Q.; Wang, X.; et al. Constructing a 3D Bi2WO6/ZnIn2S4 Direct Z-Scheme Heterostructure for Improved Photocatalytic CO2 Reduction Performance. J. Colloid Interface Sci. 2024, 662, 695–706. [Google Scholar] [CrossRef]
- Zheng, Z. 2D/1D Nested Hollow Porous ZnIn2S4/g-C3N4 Heterojunction Based on Morphology Modulation for Photocatalytic CO2 Reduction. J. Environ. Chem. Eng. 2024, 12, 112971. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, H.; Chen, P.; Fang, X.; Du, T. Synthesis of La and Ce Modified X Zeolite from Rice Husk Ash for Carbon Dioxide Capture. J. Mater. Res. Technol. 2020, 9, 4368–4378. [Google Scholar] [CrossRef]
- Che, S.; Fang, X.; Li, S.; Chen, X.; Du, T. Modification of Potassium Chabazites Derived from Fly Ash by Dosing Extra Cations: Promoted CO2 Adsorption Capacities and Fine-Tuned Frameworks. Z. Anorg Allge Chem. 2019, 645, 1365–1371. [Google Scholar] [CrossRef]
- Sun, L.; Ouyang, X.; Li, Z.; Yuan, Z.; Gong, W.; Chen, Z.; Mei, S.; Liu, Y.; Zhou, Q. Preparation of Fe3O4@SiO2@N-TiO2 and Its Application for Photocatalytic Degradation of Methyl Orange in Na2SO4 Solution. Appl. Sci. 2024, 14, 5205. [Google Scholar] [CrossRef]
- Zhang, L.; Li, R.; Ding, H.; Chen, D.; Wang, X. Preparation of a Self-Cleaning TiO2-SiO2/PFDTS Coating with Superamphiphobicity and Photocatalytic Performance. Prog. Org. Coat. 2024, 197, 108767. [Google Scholar] [CrossRef]
- Bera, S.; Lee, J.E.; Rawal, S.B.; Lee, W.I. Size-Dependent Plasmonic Effects of Au and Au@SiO2 Nanoparticles in Photocatalytic CO2 Conversion Reaction of Pt/TiO2. Appl. Catal. B Environ. 2016, 199, 55–63. [Google Scholar] [CrossRef]
- Guo, A. Enhanced High Temperature Cyclic CO2 Capture on Li4SiO4 Sorbent from Two-Dimensional SiO2 Nanomeshes. Chem. Eng. J. 2024, 485, 149943. [Google Scholar] [CrossRef]
- Sui, H.; Zhang, F.; Zhang, L.; Wang, D.; Wang, Y.; Yang, Y.; Yao, J. Competitive Sorption of CO2/CH4 and CO2 Capture on Modified Silica Surfaces: A Molecular Simulation. Sci. Total Environ. 2024, 908, 168356. [Google Scholar] [CrossRef]
- Yi, H.; Yan, M.; Huang, D.; Zeng, G.; Lai, C.; Li, M.; Huo, X.; Qin, L.; Liu, S.; Liu, X.; et al. Synergistic Effect of Artificial Enzyme and 2D Nano-Structured Bi2WO6 for Eco-Friendly and Efficient Biomimetic Photocatalysis. Appl. Catal. B Environ. 2019, 250, 52–62. [Google Scholar] [CrossRef]
- Samangsri, S.; Areerob, T.; Chiarakorn, S. Core/Shell Nitrogen-Doped TiO2@SiO2 Nano-Catalyst as an Additive in Photocatalytic Paint for Gaseous Acetaldehyde Decomposition. Catalysts 2023, 13, 351. [Google Scholar] [CrossRef]
- Qian, X.; Yue, D.; Tian, Z.; Reng, M.; Zhu, Y.; Kan, M.; Zhang, T.; Zhao, Y. Carbon Quantum Dots Decorated Bi2WO6 Nanocomposite with Enhanced Photocatalytic Oxidation Activity for VOCs. Appl. Catal. B Environ. 2016, 193, 16–21. [Google Scholar] [CrossRef]
- Sun, H.; Chen, J.; Liu, S.; Agrawal, D.K.; Zhao, Y.; Wang, D.; Mao, Z. Photocatalytic H2 Evolution of Porous Silicon Derived from Magnesiothermic Reduction of Mesoporous SiO2. Int. J. Hydrogen Energy 2019, 44, 7216–7221. [Google Scholar] [CrossRef]
- Liu, J. Construction of Bi2WO6/g-C3N4/Cu Foam as 3D Z-Scheme Photocatalyst for Photocatalytic CO2 Reduction. Appl. Surf. Sci. 2024, 664, 160274. [Google Scholar] [CrossRef]
- Sun, C.; Lu, J.; Rao, F.; Sun, Y.; Ye, J.; Gong, S.; Hassan, Q.-U.; Zubairu, S.M.; Zhu, L.; An, Y.; et al. Highly Efficient and Selective NO Photocatalytic Abatement by Tuning Charge Separation in Multi-Walled Carbon Nanotubes and Bi2WO6 Microsphere Heterojunction. Surf. Interfaces 2024, 51, 104806. [Google Scholar] [CrossRef]
- Hammud, H.H.; Traboulsi, H.; Karnati, R.K.; Bakir, E.M. Photodegradation of Congo Red by Modified P25-Titanium Dioxide with Cobalt-Carbon Supported on SiO2 Matrix, DFT Studies of Chemical Reactivity. Catalysts 2022, 12, 248. [Google Scholar] [CrossRef]
- Pal, S.; Taurino, A.; Catalano, M.; Licciulli, A. Block Copolymer and Cellulose Templated Mesoporous TiO2-SiO2 Nanocomposite as Superior Photocatalyst. Catalysts 2022, 12, 770. [Google Scholar] [CrossRef]
- Jia, H.; Du, T.; Fang, X.; Gong, H.; Qiu, Z.; Li, Y.; Wang, Y. Synthesis of Template-Free ZSM-5 from Rice Husk Ash at Low Temperatures and Its CO2 Adsorption Performance. ACS Omega 2021, 6, 3961–3972. [Google Scholar] [CrossRef]
- Song, H.; Liu, D.; Yang, J.; Wang, L.; Xu, H.; Xiong, Y. Highly Crystalline Mesoporous Silicon Spheres for Efficient Visible Photocatalytic Hydrogen Evolution. ChemNanoMat 2017, 3, 22–26. [Google Scholar] [CrossRef]
- Jiang, M.; Gao, Y.; Wang, Z.; Ding, Z. Photocatalytic CO2 Reduction Promoted by a CuCo2O4 Cocatalyst with Homogeneous and Heterogeneous Light Harvesters. Appl. Catal. B Environ. 2016, 198, 180–188. [Google Scholar] [CrossRef]
- Xing, Z.; Hu, J.; Ma, M.; Lin, H.; An, Y.; Liu, Z.; Zhang, Y.; Li, J.; Yang, S. From One to Two: In Situ Construction of an Ultrathin 2D-2D Closely Bonded Heterojunction from a Single-Phase Monolayer Nanosheet. J. Am. Chem. Soc. 2019, 141, 19715–19727. [Google Scholar] [CrossRef]
- Chang, C.-J.; Chen, J.-K.; Lin, K.-S.; Wei, Y.-H.; Chao, P.-Y.; Huang, C.-Y. Enhanced Visible-Light-Driven Photocatalytic Degradation by Metal Wire-Mesh Supported Ag/Flower-like Bi2WO6 Photocatalysts. J. Alloys Compd. 2020, 813, 152186. [Google Scholar] [CrossRef]
- Qiang, Z.; Liu, X.; Li, F.; Li, T.; Zhang, M.; Singh, H.; Huttula, M.; Cao, W. Iodine Doped Z-Scheme Bi2O2CO3/Bi2WO6 Photocatalysts: Facile Synthesis, Efficient Visible Light Photocatalysis, and Photocatalytic Mechanism. Chem. Eng. J. 2021, 403, 126327. [Google Scholar] [CrossRef]
- Choi, D.S.; Kim, N.Y.; Yoo, E.; Kim, J.; Joo, J.B. Enhanced Coke Resistant Ni/SiO2@SiO2 Core–Shell Nanostructured Catalysts for Dry Reforming of Methane: Effect of Metal-Support Interaction and SiO2 Shell. Chem. Eng. Sci. 2024, 299, 120480. [Google Scholar] [CrossRef]
- Li, K. A Critical Review of CO2 Photoconversion: Catalysts and Reactors. Catal. Today 2014, 224, 3–12. [Google Scholar] [CrossRef]
- Ahmadi, M.; Alavi, S.M.; Larimi, A. UV–Vis Light Responsive Bi2WO6 Nanosheet/TiO2 Nanobelt Heterojunction Photo-Catalyst for CO2 Reduction. Catal. Commun. 2023, 179, 106681. [Google Scholar] [CrossRef]
- Zhang, H.; Bian, H.; Wang, F.; Li, Y.; Zhu, L.; Xia, D. 2D/2D Bi2WO6/C3N5 S-Scheme Heterojunction for Highly Selective Production of CH4 by Photocatalytic CO2 Reduction under Visible Light. Appl. Catal. A Gen. 2024, 686, 119914. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, Y.; Wang, D.; He, W.; Fang, X.; Zhao, C.; Pan, J.; Liu, D.; Liu, S.; Chen, T.; et al. Nanoengineering Construction of G-C3N4/Bi2WO6 S-Scheme Heterojunctions for Cooperative Enhanced Photocatalytic CO2 Reduction and Pollutant Degradation. Sep. Purif. Technol. 2025, 354, 128893. [Google Scholar] [CrossRef]
- Jiang, H.; An, Q.; Zang, S. Ultrathin RuO2/Bi2WO6 and PtO2-Pt/Bi2WO6 Heterojunction Nanosheets toward Efficient Photocatalytic CO2 Reduction under Visible Light Irradiation. J. Environ. Chem. Eng. 2023, 11, 110960. [Google Scholar] [CrossRef]
- Li, X.; Yu, Y.; Wang, Y.; Di, Y.; Liu, J.; Li, D.; Wang, Y.; Zhu, Z.; Liu, H.; Wei, M. Withered Magnolia-Derived BCDs onto 3D Flower-like Bi2WO6 for Efficient Photocatalytic TC Degradation and CO2 Reduction. J. Alloys Compd. 2023, 965, 171520. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, H.; Wei, D.; Li, Z. Ultrasonic-Assisted Fabrication of Cs2AgBiBr6/Bi2WO6 S-Scheme Heterojunction for Photocatalytic CO2 Reduction under Visible Light. Chin. J. Catal. 2022, 43, 2606–2614. [Google Scholar] [CrossRef]
- Xiao, L.; Lin, R.; Wang, J.; Cui, C.; Wang, J.; Li, Z. A Novel Hollow-Hierarchical Structured Bi2WO6 with Enhanced Photocatalytic Activity for CO2 Photoreduction. J. Colloid Interface Sci. 2018, 523, 151–158. [Google Scholar] [CrossRef]
- Cirena, Z. Fe Doped G-C3N4 Composited ZnIn2S4 Promoting Cr(VI) Photoreduction. Chin. Chem. Lett. 2023, 34, 107726. [Google Scholar] [CrossRef]
- Wang, S.; Guan, B.Y.; Lu, Y.; Lou, X.W. “David” Formation of Hierarchical In 2S3 –CdIn2S4 Heterostructured Nanotubes for Efficient and Stable Visible Light CO2 Reduction. J. Am. Chem. Soc. 2017, 139, 17305–17308. [Google Scholar] [CrossRef]
- Huang, L. Fabrication of Hierarchical Co3O4@CdIn2S4 p–n Heterojunction Photocatalysts for Improved CO2 Reduction with Visible Light. J. Mater. Chem. A 2020, 8, 7177–7183. [Google Scholar] [CrossRef]
- Song, M.; Qi, K.; Wen, Y.; Zhang, X.; Yuan, Y.; Xie, X.; Wang, Z. Rational Design of Novel Three-Dimensional Reticulated Ag2O/ZnO Z-Scheme Heterojunction on Ni Foam for Promising Practical Photocatalysis. Sci. Total Environ. 2021, 793, 148519. [Google Scholar] [CrossRef]
- Zhang, G.; Hu, Z.; Sun, M.; Liu, Y.; Liu, L.; Liu, H.; Huang, C.-P.; Qu, J.; Li, J. Formation of Bi2WO6 Bipyramids with Vacancy Pairs for Enhanced Solar-Driven Photoactivity. Adv. Funct. Mater. 2015, 25, 3726–3734. [Google Scholar] [CrossRef]
- Jin, P.; Wang, L.; Ma, X.; Lian, R.; Huang, J.; She, H.; Zhang, M.; Wang, Q. Construction of Hierarchical ZnIn2S4@PCN-224 Heterojunction for Boosting Photocatalytic Performance in Hydrogen Production and Degradation of Tetracycline Hydrochloride. Appl. Catal. B Environ. 2021, 284, 119762. [Google Scholar] [CrossRef]
- Su, B.; Huang, L.; Xiong, Z.; Yang, Y.; Hou, Y.; Ding, Z.; Wang, S. Branch-like ZnS–DETA/CdS Hierarchical Heterostructures as an Efficient Photocatalyst for Visible Light CO2 Reduction. J. Mater. Chem. A 2019, 7, 26877–26883. [Google Scholar] [CrossRef]
- Yang, R.; Zhong, S.; Zhang, L.; Liu, B. PW12/CN@Bi2WO6 Composite Photocatalyst Prepared Based on Organic-Inorganic Hybrid System for Removing Pollutants in Water. Sep. Purif. Technol. 2020, 235, 116270. [Google Scholar] [CrossRef]
- Wang, S.; Guan, B.Y.; Lou, X.W.D. Construction of ZnIn2S4–In2O3 Hierarchical Tubular Heterostructures for Efficient CO2 Photoreduction. J. Am. Chem. Soc. 2018, 140, 5037–5040. [Google Scholar] [CrossRef]
- Cao, S.; Shen, B.; Tong, T.; Fu, J.; Yu, J. 2D/2D Heterojunction of Ultrathin MXene/Bi2WO6 Nanosheets for Improved Photocatalytic CO2 Reduction. Adv. Funct. Mater. 2018, 28, 1800136. [Google Scholar] [CrossRef]
- Xiong, H.; Wu, L.; Liu, Y.; Gao, T.; Li, K.; Long, Y.; Zhang, R.; Zhang, L.; Qiao, Z.; Huo, Q.; et al. Controllable Synthesis of Mesoporous TiO2 Polymorphs with Tunable Crystal Structure for Enhanced Photocatalytic H2 Production. Adv. Energy Mater. 2019, 9, 1901634. [Google Scholar] [CrossRef]
- Chang, X. CO2 Photo-Reduction: Insights into CO2 Activation and Reaction on Surfaces of Photocatalysts. Environ. Sci. 2016, 9, 2177–2196. [Google Scholar] [CrossRef]
- Klein, J.; Kampermann, L.; Mockenhaupt, B.; Behrens, M.; Strunk, J.; Bacher, G. Limitations of the Tauc Plot Method. Adv. Funct. Mater. 2023, 33, 2304523. [Google Scholar] [CrossRef]
- Zhang, Y.; Ju, S.; Casals, G.; Tang, J.; Lin, Y.; Li, X.; Liang, L.; Jia, Z.; Zeng, M.; Casals, E. Facile Aqueous Synthesis and Comparative Evaluation of TiO2-Semiconductor and TiO2-Metal Nanohybrid Photocatalysts in Antibiotics Degradation under Visible Light. RSC Adv. 2023, 13, 33187–33203. [Google Scholar] [CrossRef] [PubMed]
- Lan, J.; Zhu, Q.; Gu, X.; Ma, M.; Li, D.; Huang, K.; Fu, X.; Zhu, Y.; Zhang, Y. Understanding the Mechanism of Saturated and Mono-/Tri-Lacunary Keggin SiWx Doped in Bi2WO6 and BiOBr for Efficient Photocatalytic CO2 Reduction. Sep. Purif. Technol. 2023, 321, 124228. [Google Scholar] [CrossRef]
- Yang, F.; Ba, G.; Wang, Z.; Li, H. Surface Modification Induced Construction of Core-Shell Homojunction of Polymeric Carbon Nitride for Boosted Photocatalytic Performance. J. Colloid Interface Sci. 2021, 594, 64–72. [Google Scholar] [CrossRef]
Photocatalyst | SBET (m2/g) | VCO2 (mmol/g) | VTotal (cm3/g) | DAverage (nm) |
---|---|---|---|---|
BWO | 47.97 | 0.24 | 0.178 | 14.84 |
BWS-025 | 51.99 | 0.23 | 0.179 | 13.74 |
BWS-05 | 91.90 | 0.29 | 0.202 | 8.79 |
BWS-1 | 127.65 | 0.32 | 0.289 | 9.05 |
BWS-2 | 169.10 | 0.41 | 0.377 | 9.92 |
MPS | 1136.42 | 1.39 | 1.729 | 6.08 |
Photocatalyst | 1 h | 2 h | 3 h | 4 h | 5 h | 6 h |
---|---|---|---|---|---|---|
BWO | 8.54 | 10.41 | 12.51 | 14.87 | 17.36 | 19.58 |
BWS-025 | 6.96 | 8.60 | 10.04 | 11.64 | 12.69 | 14.33 |
BWS-05 | 8.11 | 13.24 | 14.80 | 17.12 | 19.21 | 22.91 |
BWS-1 | 13.25 | 16.97 | 20.03 | 23.28 | 26.55 | 29.51 |
BWS-2 | 7.13 | 10.02 | 11.38 | 14.02 | 14.47 | 15.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Du, T.; Li, Y.; Jia, H.; Cao, G.; Zhang, J.; Wang, Y. MPS@BWO with High Adsorption Capacity for Efficient Photocatalytic Reduction of CO2. Catalysts 2024, 14, 745. https://doi.org/10.3390/catal14110745
Chen P, Du T, Li Y, Jia H, Cao G, Zhang J, Wang Y. MPS@BWO with High Adsorption Capacity for Efficient Photocatalytic Reduction of CO2. Catalysts. 2024; 14(11):745. https://doi.org/10.3390/catal14110745
Chicago/Turabian StyleChen, Peng, Tao Du, Yingnan Li, He Jia, Gemeng Cao, Junxu Zhang, and Yisong Wang. 2024. "MPS@BWO with High Adsorption Capacity for Efficient Photocatalytic Reduction of CO2" Catalysts 14, no. 11: 745. https://doi.org/10.3390/catal14110745
APA StyleChen, P., Du, T., Li, Y., Jia, H., Cao, G., Zhang, J., & Wang, Y. (2024). MPS@BWO with High Adsorption Capacity for Efficient Photocatalytic Reduction of CO2. Catalysts, 14(11), 745. https://doi.org/10.3390/catal14110745