Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = Bader charges

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2229 KiB  
Article
Investigation of the Effect of Molecules Containing Sulfonamide Moiety Adsorbed on the FAPbI3 Perovskite Surface: A First-Principles Study
by Shiyan Yang, Yu Zhuang, Youbo Dou, Jianjun Wang, Hongwen Zhang, Wenjing Lu, Qiuli Zhang, Xihua Zhang, Yuan Wu and Xianfeng Jiang
Molecules 2025, 30(11), 2463; https://doi.org/10.3390/molecules30112463 - 4 Jun 2025
Viewed by 527
Abstract
First-principles calculations were conducted to examine the impact of three sulfonamide-containing molecules (H4N2O2S, CH8N4O3S, and C2H2N6O4S) adsorbed on the FAPbI3(001) perovskite [...] Read more.
First-principles calculations were conducted to examine the impact of three sulfonamide-containing molecules (H4N2O2S, CH8N4O3S, and C2H2N6O4S) adsorbed on the FAPbI3(001) perovskite surface, aiming to establish a significant positive correlation between the molecular structures and their regulatory effects on the perovskite surface. A systematic comparison was conducted to evaluate the adsorption stability of the three molecules on the two distinct surface terminations. The results show that all three molecules exhibit strong adsorption on the FAPbI3(001) surface, with C2H12N6O4S demonstrating the most favorable binding stability due to its extended frameworks and multiple electron-donating/withdrawing groups. Simpler molecules lacking carbon skeletons exhibit weaker adsorption and less dependence on surface termination. Ab initio molecular dynamics simulations (AIMD) further corroborated the thermal stability of the stable adsorption configurations at elevated temperatures. Electronic structure analysis reveals that molecular adsorption significantly reconstructs the density of states (DOS) on the PbI2-terminated surface, inducing shifts in band-edge states and enhancing energy-level coupling between molecular orbitals and surface states. In contrast, the FAI-terminated surface shows weaker interactions. Charge density difference (CDD) analysis indicates that the molecules form multiple coordination bonds (e.g., Pb–O, Pb–S, and Pb–N) with uncoordinated Pb atoms, facilitated by –SO2–NH2 groups. Bader charge and work function analyses indicate that the PbI2-terminated surface exhibits more pronounced electronic coupling and interfacial charge transfer. The C2H12N6O4S adsorption system demonstrates the most substantial reduction in work function. Optical property calculations show a distinct red-shift in the absorption edge along both the XX and YY directions for all adsorption systems, accompanied by enhanced absorption intensity and broadened spectral range. These findings suggest that sulfonamide-containing molecules, particularly C2H12N6O4S with extended carbon skeletons, can effectively stabilize the perovskite interface, optimize charge transport pathways, and enhance light-harvesting performance. Full article
Show Figures

Figure 1

16 pages, 5651 KiB  
Article
Surface-Dependent Isotopic Adsorption of CO on α-Al2O3: Role of Weak Interactions and Zero-Point Energy
by Qun Yang, Xiyue Cheng, Qian Xu and Shuiquan Deng
Molecules 2025, 30(9), 2067; https://doi.org/10.3390/molecules30092067 - 6 May 2025
Viewed by 470
Abstract
Carbon isotopes, particularly 13C, are critical for applications in food authentication, biomedical diagnostics, and metabolic research; however, their efficient separation remains challenging due to their low natural abundance. This study investigates the adsorption behavior of 12CO and 13CO on various [...] Read more.
Carbon isotopes, particularly 13C, are critical for applications in food authentication, biomedical diagnostics, and metabolic research; however, their efficient separation remains challenging due to their low natural abundance. This study investigates the adsorption behavior of 12CO and 13CO on various low-index α-Al2O3 surfaces as a strategy for isotope separation. Density functional theory (DFT) calculations with D3 (BJ) dispersion corrections were employed to optimize surface models for five representative α-Al2O3 facets. Nine adsorption configurations were systematically evaluated by optimizing geometric structures, computing adsorption enthalpies with zero-point energy corrections, and performing Bader charge and charge density difference analyses to elucidate interfacial interactions. The results reveal that CO preferentially adsorbs in a vertical configuration via its carbon end at Al sites, with the (0001) surface exhibiting the lowest surface energy and most favorable adsorption characteristics. Furthermore, we found that facets with lower surface energy not only facilitate stronger CO adsorption but also demonstrate pronounced adsorption enthalpy differences between 12CO and 13CO, driven by vibrational zero-point energy disparities. These findings highlight the potential of low adsorption enthalpy surfaces, particularly (0001), (011¯2), and (112¯0), for enhancing isotope separation efficiency, providing valuable insights for the design of advanced separation materials. Full article
Show Figures

Graphical abstract

18 pages, 9400 KiB  
Article
Influence of Alloying Elements on the Phase Structure, Stress–Strain Behavior, and Fracture Toughness of Ni3Sn: A First-Principles Study
by Haotian Zhang, Jiaoyan Dai, Yinwen Cao, Yanjie Zhang, Mingdong Bao and Yanping Yin
Materials 2025, 18(8), 1792; https://doi.org/10.3390/ma18081792 - 14 Apr 2025
Viewed by 464
Abstract
Transient liquid-phase bonding (TLPB) enables the low-temperature fabrication of encapsulated solder joints with high-temperature resistance and electromigration resilience; yet, Ni-Sn TLPB joints suffer from brittle fracture due to intermetallic compounds (IMCs). This study investigates the Co, Cu, and Pt alloying effects on Ni [...] Read more.
Transient liquid-phase bonding (TLPB) enables the low-temperature fabrication of encapsulated solder joints with high-temperature resistance and electromigration resilience; yet, Ni-Sn TLPB joints suffer from brittle fracture due to intermetallic compounds (IMCs). This study investigates the Co, Cu, and Pt alloying effects on Ni3Sn via formation energy, molecular dynamics, and first-principles calculations. Occupancy models of Ni6−xMxSn2 (M = Co, Cu, and Pt) were established, with the lattice parameters, B/G ratios, fracture toughness (KIC), and stress–strain behaviors analyzed. The results reveal that Co enhances fracture toughness and reduces Ni3Sn anisotropy, mitigating microcrack risks, while Cu/Pt introduce antibonding interactions (Cu–Sn and Pt–Sn), weakening the bonding strength. The classical B/G brittleness criterion proves inapplicable in Ni–M–Sn systems due to mixed bonding (metallic/covalent) and the hexagonal structure’s limited slip systems. The Ni6−xCoxSn2 formation improves toughness with a low Co content, supported by an electronic structure analysis (density of states and Bader charges). The thermodynamic stability and reduced molar shrinkage (Ni + Sn → Ni3Sn) confirm Co’s efficacy in optimizing Ni–Sn solder joints. Full article
Show Figures

Figure 1

15 pages, 3182 KiB  
Article
Ab Initio Investigation of the Stability, Electronic, Mechanical, and Transport Properties of New Double Half Heusler Alloys Ti2Pt2ZSb (Z = Al, Ga, In)
by Nurgul S. Soltanbek, Nurpeiis A. Merali, Nursultan E. Sagatov, Fatima U. Abuova, Edgars Elsts, Aisulu U. Abuova, Vladimir V. Khovaylo, Talgat M. Inerbaev, Marina Konuhova and Anatoli I. Popov
Metals 2025, 15(3), 329; https://doi.org/10.3390/met15030329 - 18 Mar 2025
Cited by 2 | Viewed by 535
Abstract
This research aimed to explore the structural, electronic, mechanical, and vibrational properties of double half Heusler compounds with the generic formula Ti2Pt2ZSb (Z = Al, Ga, and In), using density functional theory calculations. The generalized gradient approximation within the [...] Read more.
This research aimed to explore the structural, electronic, mechanical, and vibrational properties of double half Heusler compounds with the generic formula Ti2Pt2ZSb (Z = Al, Ga, and In), using density functional theory calculations. The generalized gradient approximation within the PBE functional was employed for structural relaxation and for calculations of vibrational and mechanical properties and thermal conductivity, while the hybrid HSE06 functional was employed for calculations of the electronic properties. Our results demonstrate that these compounds are energetically favorable and dynamically and mechanically stable. Our electronic structure calculations revealed that the Ti2Pt2AlSb double half Heusler compound is a non-magnetic semiconductor with an indirect band gap of 1.49 eV, while Ti2Pt2GaSb and Ti2Pt2InSb are non-magnetic semiconductors with direct band gaps of 1.40 eV. Further analysis, including phonon dispersion curves, the electron localization function (ELF), and Bader charge analysis, provided insights into the bonding character and vibrational properties of these materials. These findings suggest that double half Heusler compounds are promising candidates for thermoelectric device applications and energy-conversion devices, due to their favorable properties. Full article
Show Figures

Figure 1

11 pages, 15006 KiB  
Article
Rational Design of Novel Single-Atom Catalysts of Transition-Metal-Doped 2D AlN Monolayer as Highly Effective Electrocatalysts for Nitrogen Reduction Reaction
by Xiaopeng Shen and Qinfang Zhang
Molecules 2024, 29(23), 5768; https://doi.org/10.3390/molecules29235768 - 6 Dec 2024
Viewed by 1113
Abstract
The single-atom catalysts (SACs) for the electrocatalytic nitrogen reduction reaction (NRR) have garnered significant attention in recent years. The NRR is regarded as a milder and greener approach to ammonia synthesis. The pursuit of highly efficient and selective electrocatalysts for the NRR continues [...] Read more.
The single-atom catalysts (SACs) for the electrocatalytic nitrogen reduction reaction (NRR) have garnered significant attention in recent years. The NRR is regarded as a milder and greener approach to ammonia synthesis. The pursuit of highly efficient and selective electrocatalysts for the NRR continues to garner substantial interest, yet it poses a significant challenge. In this study, we employed density functional theory calculations to investigate the stability and catalytic activity of 29 transition metal atoms loaded on the two-dimensional (2D) AlN monolayer with Al monovacancy (TM@AlN) for the conversion of N2 to NH3. After screening the activity and selectivity of NRR, it was found that Os@AlN exhibited the highest activity for NRR with a very low limiting potential of −0.46 V along the distal pathway. The analysis of the related electronic structure, Bader charge, electron localization function, and PDOS revealed the origin of NRR activity from the perspective of energy and electronic properties. The high activity and selectivity towards the NRR of SACs are closely associated with the Os-3N coordination. Our findings have expanded the scope of designing innovative high-efficiency SACs for NRR. Full article
(This article belongs to the Special Issue Advances in 2D Materials for Electrochemical Applications)
Show Figures

Figure 1

20 pages, 5851 KiB  
Article
The Effect of Solute Elements Co-Segregation on Grain Boundary Energy and the Mechanical Properties of Aluminum by First-Principles Calculation
by Xuan Zhang, Yuxuan Wan, Cuifan Chen and Liang Zhang
Nanomaterials 2024, 14(22), 1803; https://doi.org/10.3390/nano14221803 - 11 Nov 2024
Cited by 1 | Viewed by 1425
Abstract
The segregation of solute atoms at grain boundary (GB) has an important effect on the GB characteristics and the properties of materials. The study of multielement co-segregation in GBs is still in progress and deserves further research at the atomic scale. In this [...] Read more.
The segregation of solute atoms at grain boundary (GB) has an important effect on the GB characteristics and the properties of materials. The study of multielement co-segregation in GBs is still in progress and deserves further research at the atomic scale. In this work, first-principles calculations were carried out to investigate the effect of Mg and Cu co-segregation on the energetic and mechanical properties of the Al Σ5(210) GB. The segregation tendency of Mg at the GB in the presence of Cu is characterized, indicating a preference for substitutional segregation far away from Cu atoms. Cu segregation can facilitate the segregation of Mg due to their mutual attractive energy. The GB energy results show that Mg and Cu co-segregation significantly decreases GB energy and thus enhances the stability of the Al Σ5(210) GB. First-principles tensile test calculations indicate that Cu effectively counteracts the weakening effect of Mg segregation in the GB, particularly with the high concentration of Cu segregation. The phenomenon of Cu compensating the strength of the GB is attributed to an increase of charge density and the formation of newly formed Cu-Al bonds. Conversely, Mg segregation weakens the strengthening effect of Cu on the GB, but it can increase the strength of the GB when high concentrations of Cu atoms are present in the GB. The ICOHP and Bader charge analysis exhibits that the strengthening effect of Mg is attributed to charge transfer with surrounding Al and Cu, which enhances the Cu-Al and Al-Al bonds. The results provide a further understanding of the interplay between co-segregated elements and its influence on the energetic and mechanical properties of grain boundary. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

11 pages, 5100 KiB  
Article
Density Functional Theory Provides Insights into β-SnSe Monolayers as a Highly Sensitive and Recoverable Ozone Sensing Material
by Jiayin Wu, Zongbao Li, Tongle Liang, Qiuyan Mo, Jingting Wei, Bin Li and Xiaobo Xing
Micromachines 2024, 15(8), 960; https://doi.org/10.3390/mi15080960 - 27 Jul 2024
Cited by 2 | Viewed by 1232
Abstract
This study explores the potential of β-SnSe monolayers as a promising material for ozone (O3) sensing using density functional theory (DFT) combined with the non-equilibrium Green’s function (NEGF) method. The adsorption characteristics of O3 molecules on the β-SnSe monolayer surface [...] Read more.
This study explores the potential of β-SnSe monolayers as a promising material for ozone (O3) sensing using density functional theory (DFT) combined with the non-equilibrium Green’s function (NEGF) method. The adsorption characteristics of O3 molecules on the β-SnSe monolayer surface were thoroughly investigated, including adsorption energy, band structure, density of states (DOSs), differential charge density, and Bader charge analysis. Post-adsorption, hybridization energy levels were introduced into the system, leading to a reduced band gap and increased electrical conductivity. A robust charge exchange between O3 and the β-SnSe monolayer was observed, indicative of chemisorption. Recovery time calculations also revealed that the β-SnSe monolayer could be reused after O3 adsorption. The sensitivity of the β-SnSe monolayer to O3 was quantitatively evaluated through current-voltage characteristic simulations, revealing an extraordinary sensitivity of 1817.57% at a bias voltage of 1.2 V. This sensitivity surpasses that of other two-dimensional materials such as graphene oxide. This comprehensive investigation demonstrates the exceptional potential of β-SnSe monolayers as a highly sensitive, recoverable, and environmentally friendly O3 sensing material. Full article
(This article belongs to the Special Issue Gas Sensors: From Fundamental Research to Applications)
Show Figures

Figure 1

12 pages, 6768 KiB  
Article
Theoretical Study on the Structures and Stabilities of CunZn3O3 (n = 1–4) Clusters: Sequential Doping of Zn3O3 Cluster with Cu Atoms
by Zhi-Wei Tao, Han-Yi Zou, Hong-Hui Li, Bin Wang and Wen-Jie Chen
Inorganics 2024, 12(2), 56; https://doi.org/10.3390/inorganics12020056 - 9 Feb 2024
Viewed by 1967
Abstract
Density functional theory (DFT) and coupled cluster theory (CCSD(T)) calculations are performed to investigate the geometric and electronic structures and chemical bonding of a series of Cu-doped zinc oxide clusters: CunZn3O3 (n = 1–4). The structural evolution [...] Read more.
Density functional theory (DFT) and coupled cluster theory (CCSD(T)) calculations are performed to investigate the geometric and electronic structures and chemical bonding of a series of Cu-doped zinc oxide clusters: CunZn3O3 (n = 1–4). The structural evolution of CunZn3O3 (n = 1–4) clusters may reveal the aggregation behavior of Cu atoms on the Zn3O3 cluster. The planar seven-membered ring of the CuZn3O3 cluster plays an important role in the structural evolution; that is, the Cu atom, Cu dimer (Cu2) and Cu trimer (Cu3) anchor on the CuZn3O3 cluster. Additionally, it is found that CunZn3O3 clusters become more stable as the Cu content (n) increases. Bader charge analysis points out that with the doping of Cu atoms, the reducibility of Cu aggregation (Cun−1) on the CuZn3O3 cluster increases. Combined with the d-band centers and the surface electrostatic potential (ESP), the reactivity and the possible reaction sites of CunZn3O3 (n = 1–4) clusters are also illustrated. Full article
Show Figures

Graphical abstract

9 pages, 3302 KiB  
Article
The Adsorption Behavior of Hydrogen on the PuO2(111) Surface: A DFT+U Study
by Huang Huang, Min Zhu and Yan Li
Coatings 2024, 14(2), 195; https://doi.org/10.3390/coatings14020195 - 1 Feb 2024
Cited by 4 | Viewed by 1569
Abstract
Based on density functional theory, a first-principles study of the adsorption behavior of hydrogen atoms on the PuO2(111) surface is carried out in this work. Models for three different surface morphologies of PuO2(111) are established. It is found that [...] Read more.
Based on density functional theory, a first-principles study of the adsorption behavior of hydrogen atoms on the PuO2(111) surface is carried out in this work. Models for three different surface morphologies of PuO2(111) are established. It is found that the surface with the outermost oxygen atom (sub outer Pu atom) morphology has the best stability. Based on this model, the adsorption energy, bader charge, and electronic density of the states of a hydrogen atom at different adsorption sites are calculated. Finally, we analyzed the process of hydrogen dissociation into hydrogen atoms on the surface using the cNEB method. The results indicate that the top position of the outermost oxygen atom and the bridge position of the second outermost plutonium atom are relatively stable adsorption configurations, where hydrogen atoms lose electrons and release heat, forming O-H bonds with oxygen atoms. The density of states of O-p orbital electrons will undergo significant changes, reflecting the hybridization of O-p and H-s orbital electrons, forming a stable bonding effect. The dissociation of hydrogen molecules into two hydrogen atoms adsorbed on the top of oxygen atoms requires crossing an energy barrier of 1.06 eV. The decrease in total energy indicates that hydrogen tends to exist on the PuO2(111) surface in a hydrogen atom state. The research results lay the foundation for theoretically exploring the hydrogenation corrosion mechanism of the PuO2(111) surface, providing theoretical support for exploring the corrosion aging of plutonium oxide, predicting the material properties of plutonium oxide under extreme and special environments. Full article
Show Figures

Figure 1

14 pages, 4156 KiB  
Article
Experimental and Theoretical Investigation of Gadolinium Oxyhydride (GdHO) Thin Films: Optical, Photocatalytic, and Electronic Properties
by Kasi Vinoth Kumar, Luminita Andronic, Elbruz Murat Baba, Dargie Deribew, Jeyanthinath Mayandi, Ellen Moons and Smagul Zh. Karazhanov
Nanomaterials 2023, 13(24), 3093; https://doi.org/10.3390/nano13243093 - 7 Dec 2023
Cited by 1 | Viewed by 1803
Abstract
Oxyhydrides of rare-earth metals (REMOHs) exhibit notable photochromic behaviors. Among these, yttrium oxyhydride (YHO) stands out for its impressive transparency and swift UV-responsive color change, positioning it as an optimal material for self-cleaning window applications. Although semiconductor photocatalysis holds potential solutions for critical [...] Read more.
Oxyhydrides of rare-earth metals (REMOHs) exhibit notable photochromic behaviors. Among these, yttrium oxyhydride (YHO) stands out for its impressive transparency and swift UV-responsive color change, positioning it as an optimal material for self-cleaning window applications. Although semiconductor photocatalysis holds potential solutions for critical environmental issues, optimizing the photocatalytic efficacy of photochromic substances has not been adequately addressed. This research advances the study of REMOHs, focusing on the properties of gadolinium oxyhydride (GdHO) both theoretically and experimentally. The electronic and structural characteristics of GdHO, vital for ceramic technology, are thoroughly examined. Explicitly determined work functions for GdH2, GdHO, and Gd2O3 stand at 3.4 eV, 3.0 eV, and 4.3 eV, respectively. Bader charge analysis showcases GdHO’s intricate bonding attributes, whereas its electron localization function majorly presents an ionic nature. The charge neutrality level is situated about 0.33 eV below the top valence band, highlighting these materials’ inclination for acceptor-dominant electrical conductivity. Remarkably, this research unveils GdHO films’ photocatalytic capabilities for the first time. Even with their restricted surface due to thinness, these films follow the Langmuir–Hinshelwood degradation kinetics, ensuring total degradation of methylene blue in a day. It was observed that GdHO’s work function diminishes with reduced deposition pressure, and UV exposure further decreases it by 0.2 eV—a change that reverts post-UV exposure. The persistent stability of GdHO films, hinting at feasible recyclability, enhances their potential efficiency, underlining their viability in practical applications. Overall, this study accentuates GdHO’s pivotal role in electronics and photocatalysis, representing a landmark advancement in the domain. Full article
Show Figures

Figure 1

16 pages, 4065 KiB  
Article
Optimizing the Local Charge of Graphene via Iron Doping to Promote the Adsorption of Formaldehyde Molecules—A Density Functional Theory Study
by Xiao Zhang, Chen Chen, Ting Cheng, Yizhuo Yang, Jiaxin Liu, Jiarui Zhu, Baoxuan Hou, Xin Xin and Mingyue Wen
Coatings 2023, 13(12), 2034; https://doi.org/10.3390/coatings13122034 - 2 Dec 2023
Viewed by 1812
Abstract
Formaldehyde is a colorless, pungent, and highly volatile toxic gas known for its detrimental effects on the brain, respiratory, and nervous systems. The adsorption method emerges as an effective approach for detecting and mitigating formaldehyde gas, with the adsorption material serving as its [...] Read more.
Formaldehyde is a colorless, pungent, and highly volatile toxic gas known for its detrimental effects on the brain, respiratory, and nervous systems. The adsorption method emerges as an effective approach for detecting and mitigating formaldehyde gas, with the adsorption material serving as its core component. Graphene, a two-dimensional nanomaterial with remarkable properties, exhibits enhanced adsorption capabilities when subjected to metal doping, which alters its local geometric and charge characteristics. In this investigation, theoretical first-principles density functional technology was employed to optimize the efficiency of Fe-doped graphene in formaldehyde adsorption. The calculated adsorption bond length and energy were used to determine the type of adsorption. Then, the calculated Bader charge, density of states (partial density of states), and differential valence charge density distribution were used to analyze the electron transfer process before and after adsorption. Finally, the theoretical optical properties analysis result was applied to analyze the potential of Fe-doped graphene for formaldehyde detection. The findings indicated that Fe-doped graphene constitutes a viable and stable doping structure, accompanied by a notable shift in valence charge distribution around the doped iron atom. This altered charge distribution facilitated the chemical adsorption process, leading to reduced adsorption spacing and increased adsorption energy. Throughout the chemical adsorption process, there was evident charge transfer between carbon (formaldehyde) and iron atoms, as well as between oxygen (formaldehyde) and iron atoms. The formation of adsorption bonds primarily involved the p-orbital electrons of carbon and oxygen atoms, along with the p- and d-orbital electrons of iron atoms. Ultimately, the Fe-doped graphene material exhibited promising applications in the realm of formaldehyde molecular detection, marked by significant theoretical disparities in optical properties before and after the adsorption process. Full article
Show Figures

Graphical abstract

11 pages, 2280 KiB  
Article
First-Principles Study of Adsorption of Pb Atoms on 3C-SiC
by Michal Komorowicz, Kazimierz Skrobas and Konrad Czerski
Materials 2023, 16(20), 6700; https://doi.org/10.3390/ma16206700 - 16 Oct 2023
Cited by 1 | Viewed by 1502
Abstract
Changes in the atomic and electronic structure of silicon carbide 3C-SiC (β-SiC), resulting from lead adsorption, were studied within the density functional theory. The aim of the study was to analyze the main mechanisms occurring during the corrosion of this material. Therefore, the [...] Read more.
Changes in the atomic and electronic structure of silicon carbide 3C-SiC (β-SiC), resulting from lead adsorption, were studied within the density functional theory. The aim of the study was to analyze the main mechanisms occurring during the corrosion of this material. Therefore, the investigations focused on process-relevant parameters such as bond lengths, bond energies, Bader charges, and charge density differences. To compare the magnitude of the interactions, the calculations were conducted for three representative surfaces: (100, 110, and 111) with varying degrees of lead coverage. The results indicate that chemisorption occurs, with the strongest binding on the hexagonal surface (111) in interaction with three dangling bonds. The adsorption energy rises with increasing coverage, especially as the surface approaches saturation. As a result of these interactions, atomic bonds on the surface weaken, which affects the dissolution corrosion. Full article
(This article belongs to the Special Issue Advanced Materials under Extreme Environments)
Show Figures

Figure 1

14 pages, 3501 KiB  
Article
Halogen Bond-Involving Self-Assembly of Iodonium Carboxylates: Adding a Dimension to Supramolecular Architecture
by Amirbek D. Radzhabov, Alyona I. Ledneva, Natalia S. Soldatova, Irina I. Fedorova, Daniil M. Ivanov, Alexey A. Ivanov, Mekhman S. Yusubov, Vadim Yu. Kukushkin and Pavel S. Postnikov
Int. J. Mol. Sci. 2023, 24(19), 14642; https://doi.org/10.3390/ijms241914642 - 27 Sep 2023
Cited by 10 | Viewed by 2040
Abstract
We designed 0D, 1D, and 2D supramolecular assemblies made of diaryliodonium salts (functioning as double σ-hole donors) and carboxylates (as σ-hole acceptors). The association was based on two charge-supported halogen bonds (XB), which occurred between IIII sites of the iodonium cations and [...] Read more.
We designed 0D, 1D, and 2D supramolecular assemblies made of diaryliodonium salts (functioning as double σ-hole donors) and carboxylates (as σ-hole acceptors). The association was based on two charge-supported halogen bonds (XB), which occurred between IIII sites of the iodonium cations and the carboxylate anions. The sequential introduction of the carboxylic groups in the aryl ring of the benzoic acid added a dimension to the 0D supramolecular organization of the benzoate, which furnished 1D-chained and 2D-layered structures when terephthalate and trimesate anions, correspondingly, were applied as XB acceptors. The structure-directing XB were studied using DFT calculations under periodic boundary conditions and were followed by the one-electron-potential analysis and the Bader atoms-in-molecules topological analysis of electron density. These theoretical methods confirmed the existence of the XB and verified the philicities of the interaction partners in the designed solid-state structures. Full article
Show Figures

Figure 1

51 pages, 10064 KiB  
Article
A Theoretical Investigation of Novel Sila- and Germa-Spirocyclic Imines and Their Relevance for Electron-Transporting Materials and Drug Discovery
by Marwan Dakkouri
Molecules 2023, 28(17), 6298; https://doi.org/10.3390/molecules28176298 - 28 Aug 2023
Cited by 1 | Viewed by 3192
Abstract
A new class of spirocyclic imines (SCIs) has been theoretically investigated by applying a variety of quantum chemical methods and basis sets. The uniqueness of these compounds is depicted by various peculiarities, e.g., the incidence of planar six-membered rings each with two imine [...] Read more.
A new class of spirocyclic imines (SCIs) has been theoretically investigated by applying a variety of quantum chemical methods and basis sets. The uniqueness of these compounds is depicted by various peculiarities, e.g., the incidence of planar six-membered rings each with two imine groups (two π bonds) and the incorporation of the isosteres carbon, silicon, or germanium spiro centers. Additional peculiarities of these novel SCIs are mirrored by their three-dimensionality, the simultaneous occurrence of nucleophilic and electrophilic centers, and the cross-hyperconjugative (spiro-conjugation) interactions, which provoke charge mobility along the spirocyclic scaffold. Substitution of SCIs with strong electron-withdrawing substituents, like the cyano group or fluorine, enhances their docking capability and impacts their reactivity and charge mobility. To gain thorough knowledge about the molecular properties of these SCIs, their structures have been optimized and various quantum chemical concepts and models were applied, e.g., full NBO analysis and the frontier molecular orbitals (FMOs) theory (HOMO-LUMO energy gap) and the chemical reactivity descriptors derived from them. For the assessment of the charge density distribution along the SCI framework, additional complementary quantum chemical methods were used, e.g., molecular electrostatic potential (MESP) and Bader’s QTAIM. Additionally, using the aromaticity index NICS (nuclear independent chemical shift) and other criteria, it could be shown that the investigated cross-hyperconjugated sila and germa SCIs are spiro-aromatics of the Heilbronner Craig-type Möbius aromaticity. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Graphical abstract

17 pages, 4398 KiB  
Article
Adsorption Features of Tetrahalomethanes (CX4; X = F, Cl, and Br) on β12 Borophene and Pristine Graphene Nanosheets: A Comparative DFT Study
by Mahmoud A. A. Ibrahim, Amna H. M. Mahmoud, Nayra A. M. Moussa, Gamal A. H. Mekhemer, Shaban R. M. Sayed, Muhammad Naeem Ahmed, Mohamed K. Abd El-Rahman, Eslam Dabbish and Tamer Shoeib
Molecules 2023, 28(14), 5476; https://doi.org/10.3390/molecules28145476 - 18 Jul 2023
Cited by 6 | Viewed by 1646
Abstract
The potentiality of the β12 borophene (β12) and pristine graphene (GN) nanosheets to adsorb tetrahalomethanes (CX4; X = F, Cl, and Br) were investigated using density functional theory (DFT) methods. To provide a thorough understanding of the [...] Read more.
The potentiality of the β12 borophene (β12) and pristine graphene (GN) nanosheets to adsorb tetrahalomethanes (CX4; X = F, Cl, and Br) were investigated using density functional theory (DFT) methods. To provide a thorough understanding of the adsorption process, tetrel (XC-X3∙∙∙β12/GN)- and halogen (X3C-X∙∙∙β12/GN)-oriented configurations were characterized at various adsorption sites. According to the energetic manifestations, the adsorption process of the CX4∙∙∙β12/GN complexes within the tetrel-oriented configuration led to more desirable negative adsorption energy (Eads) values than that within the halogen-oriented analogs. Numerically, Eads values of the CBr4∙∙∙Br1@β12 and T@GN complexes within tetrel-/halogen-oriented configurations were −12.33/−8.91 and −10.03/−6.00 kcal/mol, respectively. Frontier molecular orbital (FMO) results exhibited changes in the EHOMO, ELUMO, and Egap values of the pure β12 and GN nanosheets following the adsorption of CX4 molecules. Bader charge transfer findings outlined the electron-donating property for the CX4 molecules after adsorbing on the β12 and GN nanosheets within the two modeled configurations, except the adsorbed CBr4 molecule on the GN sheet within the tetrel-oriented configuration. Following the adsorption process, new bands and peaks were observed in the band structure and density of state (DOS) plots, respectively, with a larger number in the case of the tetrel-oriented configuration than in the halogen-oriented one. According to the solvent effect affirmations, adsorption energies of the CX4∙∙∙β12/GN complexes increased in the presence of a water medium. The results of this study will serve as a focal point for experimentalists to better comprehend the adsorption behavior of β12 and GN nanosheets toward small toxic molecules. Full article
(This article belongs to the Special Issue Computational Chemistry for Material Research)
Show Figures

Graphical abstract

Back to TopTop