Optimizing the Local Charge of Graphene via Iron Doping to Promote the Adsorption of Formaldehyde Molecules—A Density Functional Theory Study
Abstract
:1. Introduction
2. Computational Methods and Models
3. Results and Discussions
3.1. GH and Fe-GH Structural Optimization
3.2. Adsorption Properties of Formaldehyde on Pristine Graphene
3.3. Adsorption Properties of Formaldehyde on Fe-Doped Grapheme
3.4. Electronic Properties during the Adsorption Process
3.5. Optical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jalali, M.; Moghadam, S.R.; Baziar, M.; Hesam, G.; Moradpour, Z.; Zakeri, H.R. Occupational exposure to formaldehyde, lifetime cancer probability, and hazard quotient in pathology lab employees in Iran: A quantitative risk assessment. Environ. Sci. Pollut. Res. 2021, 28, 1878–1888. [Google Scholar] [CrossRef]
- Pattavina, F.; Wachocka, M.; Tuti, F.; Boninti, F.; Santi, R.; Grossi, R.; Laurenti, P. From hazard identification to risk assessment: The role of the prevention technician in the carcinogenic risk assessment for formaldehyde. Front. Public Health 2023, 11, 960921. [Google Scholar] [CrossRef] [PubMed]
- Min, Y.; Fu, D.; Liu, H.; Yuan, C.; Wang, L.; Cao, M.; Sun, A.; Yang, W.; Liu, J. Highly selective detection of formaldehyde and its analogs in clams based on unique and specific conjugation reactions via ultraviolet-visible absorptions. Chin. J. Anal. Chem. 2023, 51, 100287. [Google Scholar] [CrossRef]
- Ge, J.; Yang, H.; Lu, X.; Wang, S.; Zhao, Y.; Huang, J.; Xi, Z.; Zhang, L.; Li, R. Combined exposure to formaldehyde and PM2.5: Hematopoietic toxicity and molecular mechanism in mice. Environ. Int. 2020, 144, 106050. [Google Scholar] [CrossRef] [PubMed]
- Kou, Y.; Zhao, H.; Cui, D.; Han, H.; Tong, Z. Formaldehyde toxicity in age-related neurological dementia. Ageing Res. Rev. 2022, 73, 101512. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; She, J.; Zhou, M.; Fan, X. Rapid and sensitive detection of formaldehyde using portable 2-dimensional gas chromatography equipped with photoionization detectors. Sens. Actuators B Chem. 2019, 283, 182–187. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, S.; Ma, Z.; Guo, Z. Rapid determination of formaldehyde in food packaging material by oscilloscopic polarography. J. Hyg. Res. 2003, 32, 391–393. [Google Scholar]
- Zhao, X.Q.; Zhang, Z.Q. Microwave-assisted on-line derivatization for sensitive flow injection fluorometric determination of formaldehyde in some foods. Talanta 2009, 80, 242–245. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.; San, X.; Zhang, L.; Wang, N.; Wang, G.; Meng, D.; Shen, Y. Highly selective gas sensors for formaldehyde detection based on ZnO@ZIF-8 core-shell heterostructures. Sens. Actuators B Chem. 2024, 398, 134689. [Google Scholar] [CrossRef]
- Chen, X.; Gao, P.; Guo, L.; Wen, Y.; Fang, D.; Gong, B.; Zhang, Y.; Zhang, S. High-efficient physical adsorption and detection of formaldehyde using Sc- and Ti-decorated graphdiyne. Phys. Lett. A 2017, 381, 879–885. [Google Scholar] [CrossRef]
- Kang, Y.-J.; Jo, H.-K.; Jang, M.-H.; Ma, X.; Jeon, Y.; Oh, K.; Park, J.-I. A Brief Review of Formaldehyde Removal through Activated Carbon Adsorption. Appl. Sci. 2022, 12, 5025. [Google Scholar] [CrossRef]
- Robert, B.; Nallathambi, G. Indoor formaldehyde removal by catalytic oxidation, adsorption and nanofibrous membranes: A review. Environ. Chem. Lett. 2021, 19, 2551–2579. [Google Scholar] [CrossRef]
- Gong, W.; Zhang, L.; Yu, Y.; Lin, B.; Wang, Y.; Cao, Y.; Guo, M. Modification of Cu3(BTC)2 with Cobalt Ion for Adsorption and Visualized Detection of Formaldehyde Gas. Appl. Organomet. Chem. 2020, 34, e5783. [Google Scholar] [CrossRef]
- Na, C.-J.; Yoo, M.-J.; Tsang, D.C.W.; Kim, H.W.; Kim, K.-H. High-performance materials for effective sorptive removal of formaldehyde in air. J. Hazard. Mater. 2019, 366, 452–465. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhu, Z.; Wei, F.; Yang, X. Enhancement of formaldehyde removal by activated carbon fiber via in situ growth of carbon nanotubes. Build. Environ. 2017, 126, 27–33. [Google Scholar] [CrossRef]
- Feng, C.; Zhuo, Y.; Hu, P. Research on adsorption enhancement of formaldehyde over transition-sensitive carbon materials for fast purification. J. Build. Eng. 2023, 76, 107353. [Google Scholar] [CrossRef]
- Song, S.; Chen, D.; Wang, H.; Guo, Q.; Wang, W.; Wu, M.; Yu, W. Film bulk acoustic formaldehyde sensor with polyethyleneimine-modified single-wall carbon nanotubes as sensitive layer. Sens. Actuators B Chem. 2018, 266, 204–212. [Google Scholar] [CrossRef]
- Heshami, M.; Tavangar, Z.; Taheri, B. Adsorption of gold and silver glycinate on graphene and graphene oxide surface: A DFT study. Appl. Surf. Sci. 2023, 619, 156676. [Google Scholar] [CrossRef]
- Nam, S.-N.; Jun, B.-M.; Park, C.M.; Jang, M.; Cho, K.-S.; Lee, J.Y.; Park, C.; Snyder, S.A.; Son, A.; Yoon, Y. Removal of bisphenol A via adsorption on graphene/(reduced) graphene oxide-based nanomaterials. Sep. Purif. Rev. 2023, 1–19. [Google Scholar] [CrossRef]
- Kim, K.H.; Jo, S.; Seo, S.E.; Kim, J.; Lee, D.-S.; Joo, S.; Lee, J.; Song, H.S.; Lee, H.G.; Kwon, O.S. Ultrasensitive Gas Detection Based on Electrically Enhanced Nanoplasmonic Sensor with Graphene-Encased Gold Nanorod. Acs Sens. 2023, 8, 2169–2178. [Google Scholar] [CrossRef]
- Nath, U.; Sarma, M. Pyridinic Dominance N-Doped Graphene: A Potential Material for SO2 Gas Detection. J. Phys. Chem. A 2023, 127, 1112–1123. [Google Scholar] [CrossRef]
- Xiao, X.; Jin, W.; Tang, C.; Qi, X.; Li, R.; Zhang, Y.; Zhang, W.; Yu, X.; Zhu, X.; Ma, Y.; et al. Thermal reduced graphene oxide-based gas sensor for rapid detection of ammonia at room temperature. J. Mater. Sci. 2023, 58, 11016–11028. [Google Scholar] [CrossRef]
- Serincay, N.; Fellah, M.F. Acetaldehyde adsorption and detection: A density functional theory study on Al-doped graphene. Vacuum 2020, 175, 109279. [Google Scholar] [CrossRef]
- Shen, Y.; Fang, Q.; Chen, B. Environmental Applications of Three-Dimensional Graphene-Based Macrostructures: Adsorption, Transformation, and Detection. Environ. Sci. Technol. 2015, 49, 67–84. [Google Scholar] [CrossRef]
- Liu, S.; Niu, S.; Liu, J.; Wang, D.; Wang, Y.; Han, K. Mechanism of formaldehyde oxidation catalyzed by doped graphene single atom catalysts: Density functional theory study. Mol. Catal. 2022, 528, 112516. [Google Scholar] [CrossRef]
- Tang, H.; Xiang, Y.; Zhan, H.; Zhou, Y.; Kang, J. DFT investigation of transition metal-doped graphene for the adsorption of HCl gas. Diam. Relat. Mater. 2023, 136, 109995. [Google Scholar] [CrossRef]
- Jia, X.; An, L. The adsorption of nitrogen oxides on noble metal-doped graphene: The first-principles study. Mod. Phys. Lett. B 2019, 33, 1950044. [Google Scholar] [CrossRef]
- Seyed-Talebi, S.M.; Beheshtian, J.; Neek-amal, M. Doping effect on the adsorption of NH3 molecule onto graphene quantum dot: From the physisorption to the chemisorption. J. Appl. Phys. 2013, 114, 124307. [Google Scholar] [CrossRef]
- Padilla, V.E.C.; de la Cruz, M.T.R.; Alvarado, Y.E.A.; Díaz, R.G.; García, C.E.R.; Cocoletzi, G.H. Studies of hydrogen sulfide and ammonia adsorption on P- and Si-doped graphene: Density functional theory calculations. J. Mol. Model. 2019, 25, 94. [Google Scholar] [CrossRef]
- Zhang, Z.D.; Liang, B.; Chi, Y.Q.; Jiang, Y.D.; Song, J.; Guo, Y. Adsorption mechanism of SO2 on vacancy-defected graphene and Ti doped graphene: A DFT study. Superlatt. Microstruct. 2021, 159, 107036. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, X.W.; Ren, J.F. Electronic structure and optical properties of B- or N-doped graphene adsorbed methanol molecule: First-principles calculations. J. Optoelectron. Adv. Mater. 2021, 23, 72–78. [Google Scholar]
- Zhang, T.; Sun, H.; Wang, F.D.; Zhang, W.D.; Tang, S.W.; Ma, J.M.; Gong, H.W.; Zhang, J.P. Adsorption of phosgene molecule on the transition metal-doped graphene: First principles calculations. Appl. Surf. Sci. 2017, 425, 340–350. [Google Scholar] [CrossRef]
- Muhammad, R.; Shuai, Y.; Tan, H.P. First-principles study on hydrogen adsorption on nitrogen doped graphene. Phys. E-Low-Dimens. Syst. Nanostruct. 2017, 88, 115–124. [Google Scholar] [CrossRef]
- Zhang, J.N.; Ma, L.; Zhang, M.; Zhang, J.M. Effects of gas adsorption on electronic and optical properties of palladium-doped graphene: First-principles study. Phys. E-Low-Dimens. Syst. Nanostruct. 2020, 118, 113879. [Google Scholar] [CrossRef]
- Casiano-Jimenez, G.; Ortega-Lopez, C.; Rodriguez-Martinez, J.A.; Moreno-Armenta, M.G.; Espitia-Rico, M.J. Electronic Structure of Graphene on the Hexagonal Boron Nitride Surface: A Density Functional Theory Study. Coatings 2022, 12, 237. [Google Scholar] [CrossRef]
- Dai, X.; Shen, T.; Chen, J.; Liu, H. Effects of Defects and Doping on an Al Atom Adsorbed on Graphene: A First-Principles Investigation. Coatings 2020, 10, 131. [Google Scholar] [CrossRef]
- Liu, F.; Yang, S.; Zhang, X.; Tang, S.; Wei, S. Insight into the Desolvation of Organic Electrolyte Cations with Propylene Carbonate as a Solvent in Flat Pores: A First-Principles Calculation. Coatings 2023, 13, 1384. [Google Scholar] [CrossRef]
- Pamungkas, M.A.; Sari, V.K.R.; Irwansyah; Putra, S.A.; Abdurrouf; Nurhuda, M. Tuning Electronic Structure and Magnetic Properties of Flat Stanene by Hydrogenation and Al/P Doping: A First Principle DFT Study. Coatings 2021, 11, 47. [Google Scholar] [CrossRef]
- Rajagopal, A.K.; Callaway, J. Inhomogeneous Electron Gas. Phys. Rev. B 1973, B7, 1912. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. B 1965, 140, A1133. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Am. Phys. Soc. 1992, 48, 6671. [Google Scholar] [CrossRef] [PubMed]
- Gao, E.; Feng, W.; Jin, Q.; Han, L.; He, Y. Exploring the effects of potassium-doping on the reactive oxygen species of CeO2 (110) for formaldehyde catalytic oxidation: A DFT study. Surf. Sci. 2024, 740, 122415. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, S.; Zheng, Y.; Zhang, Z.; Hou, T.; Du, H.; Wang, J. The role of oxygen vacancies on SnO2 in improving formaldehyde competitive adsorption: A DFT study with an experimental verification. Appl. Surf. Sci. 2021, 570, 151110. [Google Scholar] [CrossRef]
- Tang, M.; Zhang, Z.; Ge, Q. A DFT-based study of surface chemistries of rutile TiO2 and SnO2(110) toward formaldehyde and formic acid. Catal. Today 2016, 274, 103–108. [Google Scholar] [CrossRef]
- Chen, C.; Hou, B.; Cheng, T.; Xin, X.; Zhang, X.; Tian, Y.; Wen, M. The integration of both advantages of cobalt-incorporated cancrinite-structure nanozeolite and carbon nanotubes for achieving excellent electrochemical oxygen evolution efficiency. Catal. Commun. 2023, 180, 106708. [Google Scholar] [CrossRef]
- Chen, C.; Wen, M.; Cheng, T.; Tian, Y.; Zhang, X.; Hou, B. Accessible active sites activated by nano cobalt antimony oxide @ carbon nanotube composite electrocatalyst for highly enhanced hydrogen evolution reaction. Int. J. Hydrog. Energy 2023, 48, 7719–7736. [Google Scholar] [CrossRef]
- Villagracia, A.R.; Ong, H.L.; David, M.; Arboleda, N. First Principles Investigation on H2 Adsorption on the Pristine 2-Dimensional Hexagonal Aluminum. IOP Conf. Ser. Earth Environ. Sci. 2019, 268, 012135. [Google Scholar] [CrossRef]
- Santos, E.J.G.; Ayuela, A.; Sánchez-Portal, D. First-principles study of substitutional metal impurities in graphene: Structural, electronic and magnetic properties. New J. Phys. 2010, 12, 053012. [Google Scholar] [CrossRef]
- Xu, Z.; Lv, X.; Chen, J.; Jiang, L.; Lai, Y.; Li, J. First principles study of adsorption and oxidation mechanism of elemental mercury by HCl over MoS2 (1 0 0) surface. Chem. Eng. J. 2017, 308, 1225–1232. [Google Scholar] [CrossRef]
- Han, J.W.; James, J.N.; Sholl, D.S. First principles calculations of methylamine and methanol adsorption on hydroxylated quartz (0001). Surf. Sci. 2008, 602, 2478–2485. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, X. Hydrogen adsorption property of Na-decorated boron monolayer: A first principles investigation. Phys. E Low-Dimens. Syst. Nanostructures 2019, 107, 170–176. [Google Scholar] [CrossRef]
- Kang, S.H.; Kim, G.; Kwon, Y.K. Adsorption properties of chalcogen atoms on a golden buckyball Au16(-) from first principles. J. Phys. Condens. Matter. 2011, 23, 505301. [Google Scholar] [CrossRef] [PubMed]
- Majumder, C. Adsorption and decomposition of dimethyl methylphosphonate on pristine and mono-vacancy defected graphene: A first principles study. Appl. Surf. Sci. 2017, 418, 318–327. [Google Scholar] [CrossRef]
- Taherpour, A.A.; Rezaei, O.; Shahri, Z.; Jalilian, J.; Jamshidi, M.; Zolfaghar, N. First principles studies of electronic and optical properties of helium adsorption on Sc-doped BN monolayer. J. Iran. Chem. Soc. 2015, 12, 1983–1990. [Google Scholar] [CrossRef]
- Liu, T.; Qin, H.; Yang, D.; Zhang, G. First Principles Study of Gas Molecules Adsorption on Monolayered β-SnSe. Coatings 2019, 9, 390. [Google Scholar] [CrossRef]
- Hensley, A.J.R.; Wang, Y.; McEwen, J.-S. Adsorption of phenol on Fe (110) and Pd (111) from first principles. Surf. Sci. 2014, 630, 244–253. [Google Scholar] [CrossRef]
- Liu, D.; Deng, J.; Jin, Y.; He, C. Adsorption of atomic oxygen on HfC and TaC (110) surface from first principles. Appl. Surf. Sci. 2012, 261, 214–218. [Google Scholar] [CrossRef]
- Ma, D.; Ju, W.; Li, T.; Yang, G.; He, C.; Ma, B.; Tang, Y.; Lu, Z.; Yang, Z. Formaldehyde molecule adsorption on the doped monolayer MoS2: A first-principles study. Appl. Surf. Sci. 2016, 371, 180–188. [Google Scholar] [CrossRef]
- Yuan, Z.; Kong, X.; Ma, S.; Gao, T.; Xiao, C.; Chen, X.; Lu, T. Adsorption and diffusion mechanism of hydrogen atom on the Li2O (111) and (110) surfaces from first principles calculations. J. Nucl. Mater. 2019, 513, 232–240. [Google Scholar] [CrossRef]
- Yadav, S.; Singh, C.V. First Principles Investigation of HCl, H2, and Chlorosilane Adsorption on Cu3Si Surfaces with Applications for Polysilicon Production. J. Phys. Chem. C 2018, 122, 20252–20260. [Google Scholar] [CrossRef]
- Dai, J.H.; Jiang, X.W.; Song, Y. Stability and hydrogen adsorption properties of Mg/TiMn2 interface by first principles calculation. Surf. Sci. 2016, 653, 22–26. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, S. First-principles investigation of the structure, mechanical and hydrogen adsorption behavior of NiPt nanoparticle. Int. J. Energy Res. 2020, 44, 10970–10981. [Google Scholar] [CrossRef]
Formaldehyde Adsorbed on GH | ||
---|---|---|
Adsorption Configuration | Adsorption Length/Å | Adsorption Energy/eV |
a. | 3.49 | −0.0255 |
b. | 3.50 | −0.0230 |
c. | 3.79 | −0.0227 |
d. | 3.60 | −0.0282 |
Formaldehyde Adsorbed on Fe-GH | ||
Adsorption Configuration | Adsorption Length (O-Fe)/Å | Adsorption Energy/eV |
a. | 1.875 | −1.280 |
b. | 1.878 | −1.270 |
c. | 1.882 | −1.282 |
d. | 1.907 | −1.508 |
e | 1.947 (H-Fe) | −0.155 |
Formaldehyde Adsorbed on GH | |||
---|---|---|---|
Atoms | Before Adsorption | After Adsorption | Change |
C1 | 3.962 | 3.968 | 0.00600 |
C2 | 3.971 | 3.961 | −0.0100 |
C3 | 3.987 | 3.981 | −0.0060 |
C4 | 3.962 | 3.959 | −0.0030 |
CH2O | 12 | 12.0139 | 0.0139 |
Formaldehyde Adsorbed on Fe-GH | |||
Atoms | Before Adsorption | After Adsorption | Change |
C1 | 4.159 | 4.136 | −0.023 |
C2 | 4.387 | 4.365 | −0.022 |
C3 | 4.150 | 4.140 | −0.010 |
Fe | 7.160 | 6.873 | −0.287 |
CH2O | 12 | 12.338 | 0.338 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Chen, C.; Cheng, T.; Yang, Y.; Liu, J.; Zhu, J.; Hou, B.; Xin, X.; Wen, M. Optimizing the Local Charge of Graphene via Iron Doping to Promote the Adsorption of Formaldehyde Molecules—A Density Functional Theory Study. Coatings 2023, 13, 2034. https://doi.org/10.3390/coatings13122034
Zhang X, Chen C, Cheng T, Yang Y, Liu J, Zhu J, Hou B, Xin X, Wen M. Optimizing the Local Charge of Graphene via Iron Doping to Promote the Adsorption of Formaldehyde Molecules—A Density Functional Theory Study. Coatings. 2023; 13(12):2034. https://doi.org/10.3390/coatings13122034
Chicago/Turabian StyleZhang, Xiao, Chen Chen, Ting Cheng, Yizhuo Yang, Jiaxin Liu, Jiarui Zhu, Baoxuan Hou, Xin Xin, and Mingyue Wen. 2023. "Optimizing the Local Charge of Graphene via Iron Doping to Promote the Adsorption of Formaldehyde Molecules—A Density Functional Theory Study" Coatings 13, no. 12: 2034. https://doi.org/10.3390/coatings13122034
APA StyleZhang, X., Chen, C., Cheng, T., Yang, Y., Liu, J., Zhu, J., Hou, B., Xin, X., & Wen, M. (2023). Optimizing the Local Charge of Graphene via Iron Doping to Promote the Adsorption of Formaldehyde Molecules—A Density Functional Theory Study. Coatings, 13(12), 2034. https://doi.org/10.3390/coatings13122034