Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (245)

Search Parameters:
Keywords = Bacteroides Lactobacillus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4802 KiB  
Article
Curcumin Attenuates Zearalenone-Induced Reproductive Damage in Mice by Modulating the Gut Microbe–Testis Axis
by Bangwang Peng, Shuaiju Guo, Junlong Niu, Yongpeng Guo, Zhixiang Wang and Wei Zhang
Foods 2025, 14(15), 2703; https://doi.org/10.3390/foods14152703 - 31 Jul 2025
Viewed by 268
Abstract
Zearalenone (ZEN), a mycotoxin commonly found in cereal crops and foods, induces testicular damage and disrupts gut microbial composition. Curcumin (CUR), a bioactive compound derived from turmeric, is known to enhance intestinal microbial balance and exhibit anti-inflammatory properties. This study aimed to investigate [...] Read more.
Zearalenone (ZEN), a mycotoxin commonly found in cereal crops and foods, induces testicular damage and disrupts gut microbial composition. Curcumin (CUR), a bioactive compound derived from turmeric, is known to enhance intestinal microbial balance and exhibit anti-inflammatory properties. This study aimed to investigate the mechanism by which CUR alleviates ZEN-induced reductions in sperm quality through the modulation of the gut microbiota–testis axis. Forty-eight 6-week-old Balb/c male mice were randomly assigned to four treatment groups: control (CON), CUR (200 mg/kg body weight CUR), ZEN (40 mg/kg body weight ZEN), and ZEN + CUR (200 mg/kg CUR + 40 mg/kg ZEN). The degree of sperm damage was quantified by assessing both the survival rate and the morphological integrity of the spermatozoa. CUR was found to mitigate ZEN-induced reductions in the testosterone levels, testicular structural damage, and disrupted spermatogenesis. Exposure to ZEN markedly perturbed the gut microbiota, characterized by increased relative abundances of Prevotella and Bacteroides and a concomitant reduction in Lactobacillus. These alterations were accompanied by pronounced activation of the IL-17A–TNF-α signaling axis, as demonstrated by elevated transcriptional and translational expression of pathway-associated genes and proteins. Co-administration of CUR effectively reinstated microbial homeostasis and mitigated ZEN-induced IL-17A pathway activation. In conclusion, ZEN induces testicular inflammation and reduced sperm quality by lowering testosterone levels and disrupting gut microbial balance, which drives the testicular IL-17A signaling pathway. CUR alleviates ZEN-induced testicular inflammation and sperm quality reduction by restoring beneficial gut microbes and testosterone levels. Full article
Show Figures

Figure 1

17 pages, 1908 KiB  
Article
BDE-47 Disrupts Gut Microbiota and Exacerbates Prediabetic Conditions in Mice: Therapeutic Potential of Grape Exosomes and Antioxidants
by Zaoling Liu, Fang Cao, Aerna Qiayimaerdan, Nilupaer Aisikaer, Zulipiya Zunong, Xiaodie Ma and Yale Yu
Toxics 2025, 13(8), 640; https://doi.org/10.3390/toxics13080640 - 29 Jul 2025
Viewed by 222
Abstract
Background: BDE-47, a pervasive environmental pollutant detected in >90% of human serum samples, is increasingly linked to metabolic disorders. This study investigates the specific impact of BDE-47 exposure on the gut microbiota in prediabetic mice and evaluates the efficacy of therapeutic interventions [...] Read more.
Background: BDE-47, a pervasive environmental pollutant detected in >90% of human serum samples, is increasingly linked to metabolic disorders. This study investigates the specific impact of BDE-47 exposure on the gut microbiota in prediabetic mice and evaluates the efficacy of therapeutic interventions in mitigating these effects. Objectives: To determine whether BDE-47 exposure induces diabetogenic dysbiosis in prediabetic mice and to assess whether dietary interventions, such as grape exosomes and an antioxidant cocktail, can restore a healthy microbiota composition and mitigate diabetes risk. Methods: In this study, a prediabetic mouse model was established in 54 male SPF-grade C57BL/6J mice through a combination of high-sugar and high-fat diet feeding with streptozotocin injection. Oral glucose tolerance tests (OGTT) were conducted on day 7 and day 21 post-modeling to assess the establishment of the model. The criteria for successful model induction were defined as fasting blood glucose levels below 7.8 mmol/L and 2 h postprandial glucose levels between 7.8 and 11.1 mmol/L. Following confirmation of model success, a 3 × 3 factorial design was applied to allocate the experimental animals into groups based on two independent factors: BDE-47 exposure and exosome intervention. The BDE-47 exposure factor consisted of three dose levels—none, high-dose, and medium-dose—while the exosome intervention factor included three modalities—none, Antioxidant Nutrients Intervention, and Grape Exosomes Intervention. Fresh fecal samples were collected from mice two days prior to sacrifice. Cecal contents and segments of the small intestine were collected and transferred into 1.5 mL cryotubes. All sequences were clustered into operational taxonomic units (OTUs) based on defined similarity thresholds. To compare means across multiple groups, a two-way analysis of variance (ANOVA) was employed. The significance level was predefined at α = 0.05, and p-values < 0.05 were considered statistically significant. Bar charts and line graphs were generated using GraphPad Prism version 9.0 software, while statistical analyses were performed using SPSS version 20.0 software. Results: The results of 16S rDNA sequencing analysis of the microbiome showed that there was no difference in the α diversity of the intestinal microbiota in each group of mice (p > 0.05), but there was a difference in the Beta diversity (p < 0.05). At the gate level, the abundances of Proteobacteria, Campylobacterota, Desulfobacterota, and Fusobacteriota in the medium-dose BDE-7 group were higher than those in the model control group (p < 0.05). The abundance of Patellar bacteria was lower than that of the model control group (p < 0.05). The abundances of Proteobacteria and Campylobacterota in the high-dose BDE-7 group were higher than those in the model control group (p < 0.05). The abundance of Planctomycetota and Patescibacteria was lower than that of the model control group (p < 0.05), while the abundance of Campylobacterota in the grape exosome group was higher than that of the model control group (p < 0.05). The abundance of Patescibacteria was lower than that of the model control group (p < 0.05), while the abundance of Firmicutes and Fusobacteriota in the antioxidant nutrient group was higher than that of the model control group (p < 0.05). However, the abundance of Verrucomicrobiota and Patescibacteria was lower than that of the model control group (p < 0.05). At the genus level, the abundances of Bacteroides and unclassified Lachnospiraceae in the high-dose BDE-7 group were higher than those in the model control group (p < 0.05). The abundance of Lachnospiraceae NK4A136_group and Lactobacillus was lower than that of the model control group (p < 0.05). The abundance of Veillonella and Helicobacter in the medium-dose BDE-7 group was higher than that in the model control group (p < 0.05), while the abundance of Lactobacillus was lower (p < 0.05). The abundance of genera such as Lentilactobacillus and Faecalibacterium in the grape exosome group was higher than that in the model control group (p < 0.05). The abundance of Alloprevotella and Bacteroides was lower than that of the model control group (p < 0.05). In the antioxidant nutrient group, the abundance of Lachnospiraceae and Hydrogenophaga was higher than that in the model control group (p < 0.05). However, the abundance of Akkermansia and Coriobacteriaceae UCG-002 was significantly lower than that of the model control group (p < 0.05). Conclusions: BDE-47 induces diabetogenic dysbiosis in prediabetic mice, which is reversible by dietary interventions. These findings suggest that microbiota-targeted strategies may effectively mitigate the diabetes risk associated with environmental pollutant exposure. Future studies should further explore the mechanisms underlying these microbiota changes and the long-term health benefits of such interventions. Full article
Show Figures

Figure 1

21 pages, 2030 KiB  
Article
Restoring Balance: Probiotic Modulation of Microbiota, Metabolism, and Inflammation in SSRI-Induced Dysbiosis Using the SHIME® Model
by Marina Toscano de Oliveira, Fellipe Lopes de Oliveira, Mateus Kawata Salgaço, Victoria Mesa, Adilson Sartoratto, Kalil Duailibi, Breno Vilas Boas Raimundo, Williams Santos Ramos and Katia Sivieri
Pharmaceuticals 2025, 18(8), 1132; https://doi.org/10.3390/ph18081132 - 29 Jul 2025
Viewed by 553
Abstract
Background/Objectives: Selective serotonin reuptake inhibitors (SSRIs), widely prescribed for anxiety disorders, may negatively impact the gut microbiota, contributing to dysbiosis. Considering the gut–brain axis’s importance in mental health, probiotics could represent an effective adjunctive strategy. This study evaluated the effects of Lactobacillus helveticus [...] Read more.
Background/Objectives: Selective serotonin reuptake inhibitors (SSRIs), widely prescribed for anxiety disorders, may negatively impact the gut microbiota, contributing to dysbiosis. Considering the gut–brain axis’s importance in mental health, probiotics could represent an effective adjunctive strategy. This study evaluated the effects of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 on microbiota composition, metabolic activity, and immune markers in fecal samples from patients with anxiety on SSRIs, using the SHIME® (Simulator of the Human Intestinal Microbial Ecosystem) model. Methods: The fecal microbiotas of four patients using sertraline or escitalopram were inoculated in SHIME® reactors simulating the ascending colon. After stabilization, a 14-day probiotic intervention was performed. Microbial composition was assessed by 16S rRNA sequencing. Short-chain fatty acids (SCFAs), ammonia, and GABA were measured, along with the prebiotic index (PI). Intestinal barrier integrity was evaluated via transepithelial electrical resistance (TEER), and cytokine levels (IL-6, IL-8, IL-10, TNF-α) were analyzed using a Caco-2/THP-1 co-culture system. The statistical design employed in this study for the analysis of prebiotic index, metabolites, intestinal barrier integrity and cytokines levels was a repeated measures ANOVA, complemented by post hoc Tukey’s tests to assess differences across treatment groups. For the 16S rRNA sequencing data, alpha diversity was assessed using multiple metrics, including the Shannon, Simpson, and Fisher indices to evaluate species diversity, and the Chao1 and ACE indices to estimate species richness. Beta diversity, which measures microbiota similarity across groups, was analyzed using weighted and unweighted UniFrac distances. To assess significant differences in beta diversity between groups, a permutational multivariate analysis of variance (PERMANOVA) was performed using the Adonis test. Results: Probiotic supplementation increased Bifidobacterium and Lactobacillus, and decreased Klebsiella and Bacteroides. Beta diversity was significantly altered, while alpha diversity remained unchanged. SCFA levels increased after 7 days. Ammonia levels dropped, and PI values rose. TEER values indicated enhanced barrier integrity. IL-8 and TNF-α decreased, while IL-6 increased. GABA levels remained unchanged. Conclusions: The probiotic combination of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 modulated gut microbiota composition, metabolic activity, and inflammatory responses in samples from individuals with anxiety on SSRIs, supporting its potential as an adjunctive strategy to mitigate antidepressant-associated dysbiosis. However, limitations—including the small pooled-donor sample, the absence of a healthy control group, and a lack of significant GABA modulation—should be considered when interpreting the findings. Although the SHIME® model is considered a gold standard for microbiota studies, further clinical trials are necessary to confirm these promising results. Full article
Show Figures

Graphical abstract

20 pages, 12384 KiB  
Article
Oxidative Stress Model of Lipopolysaccharide-Challenge in Piglets of Wuzhishan Miniature Pig
by Ruiying Bao, Pingfei Qiu, Yanrong Hu, Junpu Chen, Xiaochun Li, Qin Wang, Yongqiang Li, Huiyu Shi, Haiwen Zhang and Xuemei Wang
Vet. Sci. 2025, 12(8), 694; https://doi.org/10.3390/vetsci12080694 - 24 Jul 2025
Viewed by 234
Abstract
Oxidative stress (OS) is a major concern in young poultry and livestock, prompting extensive research on OS models. This study aimed to systematically investigate the dynamic effects and temporal trends of OS induced with lipopolysaccharide (LPS) over time. Twenty-eight piglets were randomly divided [...] Read more.
Oxidative stress (OS) is a major concern in young poultry and livestock, prompting extensive research on OS models. This study aimed to systematically investigate the dynamic effects and temporal trends of OS induced with lipopolysaccharide (LPS) over time. Twenty-eight piglets were randomly divided into four groups and equally intraperitoneally injected with LPS at doses of 0 μg/kg (control), 50 μg/kg (L-LPS), 100 μg/kg (M-LPS) and 150 μg/kg (H-LPS) body weight, respectively. The results showed that total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD), and catalase (CAT) were decreased, while malondialdehyde (MDA), nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), IL-1β, tumor necrosis factor-α (TNF-α), diamine oxidase (DAO) and D-lactic acid (D-LA) were increased in the M-LPS and H-LPS group on day 1 in comparison with the control group, but no differences were found among treatments on day 7. However, LPS treatments gave rise to varying degrees of pathological injury in the intestines, livers and spleens on day 7. Metabolomics analysis indicated that compared with the control group, glycyl-valine, histamine and lepidine F were decreased in the M-LPS group. Most differentially expressed metabolites were enriched in amino acid-related metabolism pathways on both day 1 and day 7. Microbiome analysis identified that Oscillibacter_sp._CAG:241 was decreased in the M-LPS group compared with the control group on day 1, while Bacteroides_thetaiotaomicron and Lactobacillus_amylovorus were reduced in the M-LPS group on day 7. Collectively, an LPS dose of 100 μg/kg body weight is optimal for inducing acute inflammation in Wuzhishan miniature pigs. These findings highlight the importance of considering both the duration of OS induction and the specific research objectives when establishing OS models. Full article
Show Figures

Figure 1

13 pages, 1910 KiB  
Article
Curcumin Ameliorates DSS-Induced Colitis in Mice Through Modulation of Gut Microbiota and Metabolites
by Chengxue Yi, Yuxuan Xia, Jiajing Yan, Wen Xia, Haoyu Wang, Fei Mao and Pan Huang
Life 2025, 15(7), 1153; https://doi.org/10.3390/life15071153 - 21 Jul 2025
Viewed by 253
Abstract
In this study, we established a mouse colitis model using DSS to investigate the impact of curcumin on gut injury, the intestinal microbiota, and fecal metabolites. The findings indicated that curcumin effectively mitigated weight loss and colon shortening caused by colitis, enhanced the [...] Read more.
In this study, we established a mouse colitis model using DSS to investigate the impact of curcumin on gut injury, the intestinal microbiota, and fecal metabolites. The findings indicated that curcumin effectively mitigated weight loss and colon shortening caused by colitis, enhanced the expression of anti-inflammatory factor IL-10 mRNA (p < 0.05), and suppressed the expression of pro-inflammatory factors (IL-1β, IL-6, and TNF-α mRNA; p < 0.05). 16S rDNA sequencing analysis showed that in the CUR group, compared to the NC and DSS groups, the abundances of Bacteroides, Lachnospiraceae NK4A136, and Ruminococcaceae UGC 014 significantly increased, while that of Lactobacillus markedly decreased. Additionally, compared with the DSS group, the CUR group demonstrated a significant decrease in levels of metabolites associated with nucleic acid and fat metabolism, including xanthosine, isocitric acid, and D-xylose. Conversely, levels of metabolites of curcumin, such as demethoxycurcumin and tetrahydrocurcumin, were significantly elevated in the CUR group. Curcumin appears to offer protection against mouse colitis by potentially enhancing the composition of the gut microbiota and regulating metabolic and inflammatory processes through its metabolites. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

28 pages, 1513 KiB  
Review
The Impact of the Microbiota on the Immune Response Modulation in Colorectal Cancer
by Ana Iulia Neagu, Marinela Bostan, Vlad Alexandru Ionescu, Gina Gheorghe, Camelia Mia Hotnog, Viviana Roman, Mirela Mihaila, Simona Isabelle Stoica, Camelia Cristina Diaconu, Carmen Cristina Diaconu, Simona Maria Ruta and Coralia Bleotu
Biomolecules 2025, 15(7), 1005; https://doi.org/10.3390/biom15071005 - 14 Jul 2025
Viewed by 647
Abstract
Colorectal cancer (CRC) is a multifactorial disease increasingly recognized for its complex interplay with the gut microbiota. The disruption of microbial homeostasis—dysbiosis—has profound implications for intestinal barrier integrity and host immune function. Pathogenic bacterial species such as Fusobacterium nucleatum, Escherichia coli harboring polyketide [...] Read more.
Colorectal cancer (CRC) is a multifactorial disease increasingly recognized for its complex interplay with the gut microbiota. The disruption of microbial homeostasis—dysbiosis—has profound implications for intestinal barrier integrity and host immune function. Pathogenic bacterial species such as Fusobacterium nucleatum, Escherichia coli harboring polyketide synthase (pks) island, and enterotoxigenic Bacteroides fragilis are implicated in CRC through mechanisms involving mucosal inflammation, epithelial barrier disruption, and immune evasion. These pathogens promote pro-tumorigenic inflammation, enhance DNA damage, and suppress effective anti-tumor immunity. Conversely, commensal and probiotic bacteria, notably Lactobacillus and Bifidobacterium species, exert protective effects by preserving epithelial barrier function and priming host immune responses. These beneficial microbes can promote the maturation of dendritic cells, stimulate CD8+ T cell cytotoxicity, and modulate regulatory T cell populations, thereby enhancing anti-tumor immunity. The dichotomous role of the microbiota underscores its potential as both a biomarker and a therapeutic target in CRC. Recent advances in studies have explored microbiota-modulating strategies—ranging from dietary interventions and prebiotics to fecal microbiota transplantation (FMT) and microbial consortia—as adjuncts to conventional therapies. Moreover, the composition of the gut microbiome has been shown to influence the responses to immunotherapy and chemotherapy, raising the possibility of microbiome-informed precision oncology therapy. This review synthesizes the current findings on the pathogenic and protective roles of bacteria in CRC and evaluates the translational potential of microbiome-based interventions in shaping future therapeutic paradigms. Full article
Show Figures

Figure 1

15 pages, 1833 KiB  
Article
Comparative Analysis of Gut Microbiota Responses to New SN-38 Derivatives, Irinotecan, and FOLFOX in Mice Bearing Colorectal Cancer Patient-Derived Xenografts
by Katarzyna Unrug-Bielawska, Zuzanna Sandowska-Markiewicz, Magdalena Piątkowska, Paweł Czarnowski, Krzysztof Goryca, Natalia Zeber-Lubecka, Michalina Dąbrowska, Ewelina Kaniuga, Magdalena Cybulska-Lubak, Aneta Bałabas, Małgorzata Statkiewicz, Izabela Rumieńczyk, Kazimiera Pyśniak, Michał Mikula and Jerzy Ostrowski
Cancers 2025, 17(13), 2263; https://doi.org/10.3390/cancers17132263 - 7 Jul 2025
Viewed by 491
Abstract
Background: Symbiotic gut microbiota can enhance cancer therapy efficacy, while treatment-induced dysbiosis may reduce effectiveness or increase toxicity. Our preclinical study compared the anticancer effects and impact on fecal microbiota and metabolites of two water-soluble SN-38 derivatives (BN-MePPR and BN-MOA), with those observed [...] Read more.
Background: Symbiotic gut microbiota can enhance cancer therapy efficacy, while treatment-induced dysbiosis may reduce effectiveness or increase toxicity. Our preclinical study compared the anticancer effects and impact on fecal microbiota and metabolites of two water-soluble SN-38 derivatives (BN-MePPR and BN-MOA), with those observed after treatment with Irinotecan, and the FOLFOX regimen in NOD scid gamma mice bearing patient-derived colon adenocarcinoma xenografts (CRC PDX). Methods: Five individual experiments with Irinotecan and its derivatives and eight individual experiments with FOLFOX were conducted using eight CRC PDX models. Chemotherapeutics were administered intraperitoneally 4–5 times at 5-day intervals. Fecal samples were collected before and after treatment. Microbiota composition was analyzed by 16S rRNA gene (V3–V4 regions) sequencing. Mass spectrometry was used to quantify short-chain fatty acids (SCFAs) and amino acids (AAs). Results: All treatments significantly inhibited tumor growth versus controls. However, no significant changes were observed in gut microbiota α- and β-diversity between treated and untreated groups. Tumor progression in controls was associated with increased abundance of Marvinbryantia, Lactobacillus, Ruminococcus, and [Eubacterium] nodatum group. FOLFOX-treated mice showed increased Marvinbryantia, Bacteroides, and Candidatus Arthromitus, and decreased Akkermansia. No distinct taxa changes were found in the Irinotecan or derivative groups. SCFA levels remained unchanged across groups, while BN-MePPR, BN-MOA, and Irinotecan all increased AA concentrations. Conclusions: Contrary to earlier toxicological data, these findings indicate a relatively limited impact of the tested chemotherapeutics on the gut microbiome and metabolome, emphasizing the importance of research method selection in preclinical studies. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

23 pages, 4049 KiB  
Article
Gut Microbiome Engineering for Diabetic Kidney Disease Prevention: A Lactobacillus rhamnosus GG Intervention Study
by Alaa Talal Qumsani
Biology 2025, 14(6), 723; https://doi.org/10.3390/biology14060723 - 19 Jun 2025
Viewed by 743
Abstract
The gut microbiota has emerged as a critical modulator in metabolic diseases, with substantial evidence supporting its role in attenuating diabetes-related nephropathy. Recent investigations demonstrate that strategic manipulation of intestinal microflora offers novel therapeutic avenues for safeguarding renal function against diabetic complications. This [...] Read more.
The gut microbiota has emerged as a critical modulator in metabolic diseases, with substantial evidence supporting its role in attenuating diabetes-related nephropathy. Recent investigations demonstrate that strategic manipulation of intestinal microflora offers novel therapeutic avenues for safeguarding renal function against diabetic complications. This investigation sought to determine the nephroprotective potential of Lactobacillus rhamnosus GG (LGG) administration in diabetic nephropathy models. Six experimental cohorts were evaluated: control, probiotic-supplemented control, diabetic, diabetic receiving probiotic therapy, diabetic with antibiotics, and diabetic treated with both antibiotics and probiotics. Diabetic conditions were established via intraperitoneal administration of streptozotocin (50 mg/kg) following overnight fasting, according to validated protocols for experimental diabetes induction. Probiotic therapy (3 × 109 CFU/kg, bi-daily) began one month before diabetes induction and continued throughout the study duration. Glycemic indices were monitored at bi-weekly intervals, inflammatory biomarkers, renal function indices, and urinary albumin excretion. The metabolic profile was evaluated through the determination of HOMA-IR and the computation of metabolic syndrome scores. Microbiome characterization employed 16S rRNA gene sequencing alongside metagenomic shotgun sequencing for comprehensive microbial community mapping. L. rhamnosus GG supplementation substantially augmented microbiome richness and evenness metrics. Principal component analysis revealed distinct clustering of microbial populations between treatment groups. The Prevotella/Bacteroides ratio, an emerging marker of metabolic dysfunction, normalized following probiotic intervention in diabetic subjects. Results: L. rhamnosus GG administration markedly attenuated diabetic progression, achieving glycated hemoglobin reduction of 32% compared to untreated controls. Pro-inflammatory cytokine levels (IL-6, TNF-α) decreased significantly, while anti-inflammatory mediators (IL-10, TGF-β) exhibited enhanced expression. The renal morphometric analysis demonstrated preservation of glomerular architecture and reduced interstitial fibrosis. Additionally, transmission electron microscopy confirmed the maintenance of podocyte foot process integrity in probiotic-treated groups. Conclusions: The administration of Lactobacillus rhamnosus GG demonstrated profound renoprotective efficacy through multifaceted mechanisms, including microbiome reconstitution, metabolic amelioration, and inflammation modulation. Therapeutic effects suggest the potential of a combined probiotic and pharmacological approach to attenuate diabetic-induced renal pathology with enhanced efficacy. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

24 pages, 12602 KiB  
Article
Effects of Different Rearing Methods on the Intestinal Morphology, Intestinal Metabolites, and Gut Microbiota of Lueyang Black-Bone Chickens
by Shuang Zeng, Linqing Shao, Mingming Zhao, Ling Wang, Jia Cheng, Tao Zhang and Hongzhao Lu
Animals 2025, 15(12), 1758; https://doi.org/10.3390/ani15121758 - 14 Jun 2025
Viewed by 683
Abstract
The Lueyang black-bone chicken represents a distinct indigenous avian breed native to China and it is a slow-growing broiler breed. The gut, whose primary function is to digest food and absorb nutrients, is also home to a large and diverse microbial community. The [...] Read more.
The Lueyang black-bone chicken represents a distinct indigenous avian breed native to China and it is a slow-growing broiler breed. The gut, whose primary function is to digest food and absorb nutrients, is also home to a large and diverse microbial community. The intestinal morphology, intestinal metabolites, and gut microbiota are critical determinants of nutrient utilization efficiency and immune health in poultry. This study investigates the impact of two distinct rearing modalities—cage-raised (CR) and cage-free (CF)—on the intestinal morphology, intestinal metabolites, and gut microbiota of the duodenum and cecum in Lueyang black-bone chickens. Additionally, we have integrated metabolomics and microbiome analyses. Morphological assessments revealed that, in comparison to the CR group, the CF group exhibited a significant increase in duodenal villi height (VH) and crypt depth (CD) (p < 0.01). Furthermore, there was a notable increase in the number of intestinal inflammatory cells within the CF group. Non-targeted metabolomics indicated an upregulation of omega-3 series polyunsaturated fatty acids and bile acid metabolites in the CR group. Conversely, the CF group demonstrated significantly elevated levels of lysophosphatidylcholine (LPC) and phosphatidylcholine (PE) in the intestine. Microbiome analysis revealed that in the duodenum, beneficial bacteria (e.g., Lactobacillus) were the dominant genera in the CF group, while the Bacteroides predominate in the CR group. Correlation analyses indicated a positive association between LPC levels and the presence of eight bacterial genera, including Ureaplasma. The omega-3 series polyunsaturated fatty acids were positively correlated with three bacterial genera, such as Flavobacterium. Notably, bile acid metabolites exhibited a significant positive correlation with Rikenellaceae_RC9_gut_group. In conclusion, this study provides novel insights into how rearing methods influence intestinal morphology, intestinal metabolites, and gut microbiota, offering a new perspective for the scientific management of poultry with the premise of ensuring animal health and welfare. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

24 pages, 2292 KiB  
Article
Fertilization Alters Indicator Species Serving as Bioindicators for Evaluating Agricultural Practices Related to Maize Grain Yield
by Guoqiang Li, Jiaqing Liu, Wenya Zhang, Jvshui Hu, Peng Shi and Gehong Wei
Microorganisms 2025, 13(6), 1384; https://doi.org/10.3390/microorganisms13061384 - 13 Jun 2025
Viewed by 972
Abstract
Diversified agricultural practices reconfigure agroecosystem services by modifying fertilization, tillage intensities, and cropping patterns, altering soil properties and microbial assemblages. However, microbial communities, as critical bioindicators of soil health and productivity, respond to agricultural disturbances, and the effects of multiple practices on productivity-associated [...] Read more.
Diversified agricultural practices reconfigure agroecosystem services by modifying fertilization, tillage intensities, and cropping patterns, altering soil properties and microbial assemblages. However, microbial communities, as critical bioindicators of soil health and productivity, respond to agricultural disturbances, and the effects of multiple practices on productivity-associated indicator species require further validation. Using 16S and ITS amplicon sequencing, this study employed a field experiment to investigate the effects of agricultural practices on soil properties, maize productivity, and microbial communities under two fertilization treatments. Within each treatment, we assessed correlations between indicator species associated with cropping–tillage practices and soil productivity. Results showed that fertilization significantly altered soil properties, increased maize grain yield by 23.9%, and reshaped bacterial and fungal community structures, increasing bacterial richness by 23% but reducing fungal richness and Shannon index by 15% and 20%, respectively. Furthermore, cropping–tillage practices significantly affected microbial communities and grain yields in both fertilized and unfertilized treatments despite a slight influence on soil properties. Distinct sets of bacterial and fungal indicator species were identified for each fertilization treatment: unfertilized soils harbored 21 dominant bacterial indicator species (e.g., Bacillus, Rhizobium, Streptomyces) and 8 fungal indicators (e.g., Cryptococcus, Gibberella, Tetracladium); fertilized soils contained 24 dominant bacterial indicators (e.g., Fusobacterium, Clostridium, Lactobacillus) and 6 fungal indicators (e.g., Gibberella, Cladosporium, Mortierella). Notably, abundances of specific indicator genera (e.g., bacteria: Bacteroides, Gemmatirosa, Iamia, Lysobacter, Prevotella, Staphylococcus, Sutterella; fungi: Glomus, Fusicolla in unfertilized soil; bacteria: Dinghuibacter, Haliangium, Kribbella, Rhodomicrobium, Terrimonas; fungi: Pulvinula in fertilized soil) correlated positively with grain yields. These findings demonstrate that fertilization reshapes the composition of microbial indicator species significantly associated with maize productivity. Tailored microbial indicator assemblages specific to distinct fertilization strategies are therefore essential for evaluating crop productivity and assessing agricultural practice impacts. Consequently, monitoring these indicator species enables rapid assessment of soil fertility changes, offering guidance for fertilization management. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

21 pages, 1077 KiB  
Article
The Vaginal Microbiome: Associations with Vaginal pH, Menopause and Metabolic Parameters
by Yi-Chun Chen, Yi-Fen Chiang, Ko-Chieh Huang, Kai-Lee Wang, Yun-Ju Huang, Tzong-Ming Shieh, Mohamed Ali and Shih-Min Hsia
Microorganisms 2025, 13(6), 1317; https://doi.org/10.3390/microorganisms13061317 - 5 Jun 2025
Viewed by 1041
Abstract
The vaginal microbiota, a critical determinant of women’s health, is influenced by hormonal and metabolic parameters across the lifespan. While Lactobacillus species are beneficial markers of vaginal health, microbial composition undergoes pronounced alterations after menopause. This study aimed to elucidate the associations between [...] Read more.
The vaginal microbiota, a critical determinant of women’s health, is influenced by hormonal and metabolic parameters across the lifespan. While Lactobacillus species are beneficial markers of vaginal health, microbial composition undergoes pronounced alterations after menopause. This study aimed to elucidate the associations between vaginal microbiota composition, vaginal pH, menopausal status, and metabolic parameters in Asian women. Vaginal secretion samples were collected from 40 women (20 premenopausal, 20 postmenopausal). Full-length 16S rRNA gene sequencing was used to characterize the microbiota, categorized into Community State Types (CSTs): CST-I + II (Lactobacillus crispatus/gasseri, protective), CST-III (Lactobacillus iners, neutral), and CST-IV (anaerobic bacteria, harmful). Vaginal pH and clinical data were assessed in relation to microbial profiles. CST distribution differed significantly by menopausal status and vaginal pH. Harmful-type CST-IV was more prevalent in postmenopausal women (70% vs. 40%, p < 0.05), while CST-III was dominant in premenopausal women (45% vs. 5%). CST-IV was associated with elevated pH (median 6.00, p = 0.026) and increased abundance of anaerobes including Bacteroides, Fusobacterium, Porphyromonas, Prevotella, and Streptococcus. Oral antibiotic use reduced both beneficial and harmful CSTs, shifting toward neutral CST-III (75%, p = 0.048). Use of sodium–glucose cotransporter-2 (SGLT2) inhibitors in postmenopausal women was associated with a higher prevalence of protective CST-I + II (57.14% vs. 8.33%, p < 0.05), though no significant impact on pathogen presence was observed. This study highlights the dynamic interplay between menopausal status, metabolic interventions, and vaginal microbiota composition. Findings may inform targeted strategies to maintain vaginal health in aging populations. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Graphical abstract

20 pages, 2936 KiB  
Article
Effects of Lactobacillus plantarum-81-Fermented Feed on Growth and Intestinal Health of Muscovy Ducks
by Zhaolong Li, Song Peng, Mengshi Zhao, Xiaodong Zhuang, Huini Wu, Tiecheng Sun and Fengqiang Lin
Fermentation 2025, 11(6), 311; https://doi.org/10.3390/fermentation11060311 - 29 May 2025
Viewed by 710
Abstract
Feed fermented by various strains of Lactobacillus plantarum (LP) produces distinct biologically active substances. This study systematically evaluates the growth performance, gut microbiota modulation, and immune response parameters in Muscovy ducks fed with LP81-fermented diets (LP81-FF) compared to conventional regimens. Our findings demonstrate [...] Read more.
Feed fermented by various strains of Lactobacillus plantarum (LP) produces distinct biologically active substances. This study systematically evaluates the growth performance, gut microbiota modulation, and immune response parameters in Muscovy ducks fed with LP81-fermented diets (LP81-FF) compared to conventional regimens. Our findings demonstrate that LP81-FF elicits dose-dependent improvements in Muscovy duck production parameters. Through a 70-day feeding trial, LP81-FF administration reduced feed intake by 3.1% and improved the average daily gain (ADG) and feed conversion ratio (FCR) by 9.18% and 6.65% (p < 0.05) compared to conventional feed. Systemic antioxidant capacity analysis revealed 25.99% elevation in total antioxidant capacity (T-AOC) (p < 0.05), accompanied by 14.37% and 30.79% increases in serum IgG and IgM levels, respectively. Immune organ indices showed dose-responsive enhancement, with the high-dose group (HD) achieving 47.27% and 28.92% increases in thymus and bursa of Fabricius indices (p < 0.05). Additionally, 16S rRNA sequencing revealed that LP81-FF optimized the intestinal microbial community structure of Muscovy ducks by promoting the abundance of Bacteroides, Butyricicoccus, and Ruminococcus (beneficial bacteria) (p < 0.05), while inhibiting the increase of Escherichia-Shigella and Rothia (harmful bacteria). It also promoted the secretion of beneficial metabolites such as Glutaric acid and 2,6-Diaminohexanoic acid in the intestine, inhibited the production of harmful substances dominated by Fexofenadine, and enhanced the strength of physical barrier-related factors such as intestinal mucosa villi and goblet cell count. These multi-omics insights establish that LP81-FF enhances growth performance through coordinated modulation of gut–liver axis homeostasis, mucosal immunity activation, and microbial-metabolic network optimization. Our results position LP81-FF as a sustainable alternative to antibiotic growth promoters in waterfowl production systems. Full article
Show Figures

Figure 1

22 pages, 3157 KiB  
Article
Effects of Dietary Supplementation with Three Different Probiotics on Growth Performance, Antioxidant Capacity, and Intestinal Microbiota in Grass Carp (Ctenopharyngodon idella)
by Wanjia Zhu, Yi Yi, Zhiwei Zou, Haipeng Li, Ting Liang, Qianhe Shi, Liwei Liu and Jianmei Su
Microorganisms 2025, 13(6), 1222; https://doi.org/10.3390/microorganisms13061222 - 27 May 2025
Cited by 1 | Viewed by 513
Abstract
The growing demand for sustainable aquaculture has intensified research on probiotics as antibiotic alternatives. This study aims to evaluate the effects of three probiotic supplements—1 × 1010 CFU/g of Bacillus subtilis (BS), Clostridium butyricum (CB), or Enterococcus faecalis (EF)—on growth performance, antioxidant [...] Read more.
The growing demand for sustainable aquaculture has intensified research on probiotics as antibiotic alternatives. This study aims to evaluate the effects of three probiotic supplements—1 × 1010 CFU/g of Bacillus subtilis (BS), Clostridium butyricum (CB), or Enterococcus faecalis (EF)—on growth performance, antioxidant capacity, intestinal structure, and gut microbiota in grass carp (Ctenopharyngodon idella; initial body weight: 42.52 ± 4.17 g) for 28 d. Compared to the non-supplemented (NC) control group, all probiotic-supplemented groups significantly enhanced final body weight, weight gain rate, specific growth rate, and crude protein content, and reduced feed conversion ratio (p < 0.05). Probiotic supplementation upregulated the intestinal ctrb1 gene expression and increased villus length. Serum superoxide dismutase (SOD) and catalase activity were elevated in the BS group, whereas only SOD was increased in the CB group (p < 0.05). Gut microbiota analysis revealed reduced Proteobacteria abundance in all probiotic-supplemented groups. Compared with the NC group, the BS group enriched Bacteroidetes and Prevotella_7, while the CB group promoted the abundance of Actinobacteria, Lactobacillus, and Clostridium_sensu_stricto_1. The EF group increased the abundance of Fusobacteria, Cetobacterium, and Bacteroides (p < 0.05). These findings demonstrate that dietary supplementation with probiotics enhances growth performance by modulating antioxidant responses, intestinal morphology, and microbial community balance. Full article
(This article belongs to the Special Issue Microbes in Aquaculture)
Show Figures

Graphical abstract

22 pages, 5184 KiB  
Article
The Impact of Human Milk Oligosaccharides on Antibiotic-Induced Microbial Dysbiosis and Gut Inflammation in Mice
by Kristine Rothaus Christensen, Torben Sølbeck Rasmussen, Caroline M. Junker Mentzel, Sofie Kaas Lanng, Elena Tina Gabriella Meloni, Hanne Christine Bertram, Camilla Hartmann Friis Hansen and Axel Kornerup Hansen
Antibiotics 2025, 14(5), 488; https://doi.org/10.3390/antibiotics14050488 - 10 May 2025
Viewed by 693
Abstract
Background/Objectives: Antibiotics have a significant impact on the gut microbiota, and we hypothesized that human milk oligosaccharides may alleviate antibiotic-induced gut microbiota dysbiosis. Methods: Six groups of eight mice were administered drinking water with or without ampicillin for one week. We [...] Read more.
Background/Objectives: Antibiotics have a significant impact on the gut microbiota, and we hypothesized that human milk oligosaccharides may alleviate antibiotic-induced gut microbiota dysbiosis. Methods: Six groups of eight mice were administered drinking water with or without ampicillin for one week. We then introduced the human milk oligosaccharide 2′-fucosyllactose (2′FL), either alone or in combination with difucosyl-lactose (DFL), for two weeks after the termination of ampicillin treatment. Results: Ampicillin reduced microbiota diversity and the abundance of specific bacteria. One week after the termination of ampicillin treatment, the 2′FL + DFL mixture counteracted the ampicillin-induced reduction in diversity, although this effect was not sustained. Over the subsequent two weeks, the 2′FL + DFL mixture had a significant impact on the relative abundances of Lactobacillus spp. and Bacteroides spp. Ampicillin also reduced caecal propionate levels, downregulated the gene Gzmb for Granzyme B, and upregulated the gene Reg3a for Regenerating islet-derived protein 3 alpha, all of which were counteracted by the 2′FL + DFL mixture. Ampicillin had a minor impact on ileal cytokine levels. The 2′FL + DFL mixture showed a cytokine effect indicating reduced adaptive and innate inflammation. Ampicillin reduced water intake and growth in the mice. The oligosaccharides did not affect water intake, but the 2′FL + DFL mixture slightly reduced body weight. Conclusions: The 2′FL + DFL mixture appears to hold potential for counteracting some of the side effects of ampicillin treatment. Full article
Show Figures

Figure 1

24 pages, 5076 KiB  
Article
Lactococcus lactis Subsp. lactis LL-1 and Lacticaseibacillus paracasei LP-16 Influence the Gut Microbiota and Metabolites for Anti-Obesity and Hypolipidemic Effects in Mice
by Peng Gao, Yuanyang Nie, Lili Zhao, Jing Zhang and Wupeng Ge
Antioxidants 2025, 14(5), 547; https://doi.org/10.3390/antiox14050547 - 1 May 2025
Viewed by 721
Abstract
This study utilized a high-fat diet-induced obese male C57BL/6 mice model to investigate the anti-obesity and lipid-lowering effects of Lactococcus lactis subsp. lactis LL-1 and Lacticaseibacillus paracasei LP-16. A gut microbiota analysis via 16S rRNA sequencing, along with measurements of body weight, lipids, [...] Read more.
This study utilized a high-fat diet-induced obese male C57BL/6 mice model to investigate the anti-obesity and lipid-lowering effects of Lactococcus lactis subsp. lactis LL-1 and Lacticaseibacillus paracasei LP-16. A gut microbiota analysis via 16S rRNA sequencing, along with measurements of body weight, lipids, inflammation markers, and gut metabolites, revealed that lactic acid bacteria (LAB) significantly reduced body weight, blood lipid levels, and liver oxidative stress. They also enhanced gut microbiota diversity and evenness, potentially by modulating the Firmicutes/Bacteroidetes ratio to limit excess energy absorption. Malondialdehyde (MDA) showed extremely significant positive correlations with Lachnospiraceae, Blautia, and Colidextribacter, and a significant positive correlation with Helicobacter, while superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) exhibited opposite trends. Specifically, Muribaculaceae, Bacteroides, and Lactobacillus showed negative correlations with MDA levels and positive correlations with SOD and GSH-Px. Short-chain fatty acids (SCFAs) positively correlated with Muribaculaceae, Bacteroides, Mucispirillum, and Lactobacillus, but negatively correlated with Lachnospiraceae, Blautia, Colidextribacter, Alistipes, and Helicobacter. They increased SCFA levels by promoting beneficial bacteria and reducing pathogens, alleviating obesity and hyperlipidemia. Additionally, they regulated the gut microbiota, decreasing bile acids and long-chain fatty acids while increasing SCFAs, short peptides, and vitamins, thereby improving gut metabolic disorders and enhancing host gut health. Full article
Show Figures

Figure 1

Back to TopTop