Fertilization Alters Indicator Species Serving as Bioindicators for Evaluating Agricultural Practices Related to Maize Grain Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Fertilization and Management
2.3. Sample Collection and Processing
2.4. DNA Extraction, PCR, and High-Throughput Sequencing
2.5. Bioinformatics Analysis
2.6. Statistical Analysis
3. Results
3.1. Fertilization and Cropping–Tillage Practice Effects on Soil Properties and Maize Productivity
3.2. Microbial Community Across Cropping–Tillage Practices in Soils
3.3. Dominant Taxa and Indicator Species Across Cropping–Tillage Practices
3.4. Correlations Between Key Taxa and Maize Productivity
4. Discussion
4.1. Agricultural Practices Are the Main Drivers of Maize Productivity Improvement and Soil Microbial Community Alteration
4.2. Soil Microbial Taxa Reactions to Agricultural Practices Alter Under Different Fertilizer Treatments
4.3. Soil Bacterial and Fungal Indicator Species Are Closely Related to the Maize Yield
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, Y.W.; Li, F.; Gao, J.X.; Wang, B.L.; Liu, C.C.; Gao, X.T. Evaluation of the Radiation Benefits of Soil Conservation Services in the Longdong Loess Plateau Important Eco-Function Area in China. Disaster Adv. 2012, 5, 146–151. [Google Scholar]
- Fan, X.L.; Zhang, F.S. Soil water, fertility and sustainable agricultural production in arid and semiarid regions on the loess plateau. J. Plant Nutr. Soil Sci. 2000, 163, 107–113. [Google Scholar] [CrossRef]
- Zhang, L.L.; Feng, H.; Cao, H.X. Winter Wheat Yield Gaps Across the Loess Plateau of China. Int. J. Plant Prod. 2022, 16, 1–15. [Google Scholar] [CrossRef]
- Hendricks, S.; Zechmeister-Boltenstern, S.; Kandeler, E.; Sandén, T.; Diaz-Pines, E.; Schnecker, J.; Alber, O.; Miloczki, J.; Spiegel, H. Agricultural management affects active carbon and nitrogen mineralisation potential in soils. J. Plant Nutr. Soil Sci. 2022, 185, 513–528. [Google Scholar] [CrossRef]
- Li, X.F.; Wang, Z.G.; Bao, X.G.; Sun, J.H.; Yang, S.C.; Wang, P.; Wang, C.B.; Wu, J.P.; Liu, X.R.; Tian, X.L.; et al. Long-term increased grain yield and soil fertility from intercropping. Nat. Sustain. 2021, 4, 943–950. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhu, H.; Shutes, B.; Yan, B.X.; Lyu, J.; Zhang, F.M. Nutrient runoff loss from saline-alkali paddy fields in Songnen Plain of Northeast China via different runoff pathways: Effects of nitrogen fertilizer types. Environ. Sci. Pollut. Res. 2023, 30, 97977–97989. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Javed, T.; Hussain, S.; Guo, S.Q.; Guo, R.; Yang, L.H.; Liu, X.T.; Cai, T.; Zhang, P.; Jia, Z.K.; et al. Maize/peanut rotation intercropping improves ecosystem carbon budget and economic benefits in the dry farming regions of China. J. Environ. Manag. 2024, 353, 120090. [Google Scholar] [CrossRef]
- Sonneveld, B.G.J.S.; Keyzer, M.A.; Ndiaye, D. Quantifying the impact of land degradation on crop production: The case of Senegal. Solid. Earth 2016, 7, 93–103. [Google Scholar] [CrossRef]
- Xu, H.P.; Zhang, J.; Pang, X.P.; Wang, Q.; Zhang, W.N.; Wang, J.; Guo, Z.G. Responses of plant productivity and soil nutrient concentrations to different alpine grassland degradation levels. Environ. Monit. Assess. 2019, 191, 678. [Google Scholar] [CrossRef]
- Imran; Ortas, I. Mechanism in Soil Health Improvement with Soil Microbial Actions and Its Role in Potential Agriculture. Commun. Soil Sci. Plan. 2025, 56, 2066–2087. [Google Scholar] [CrossRef]
- Rojas, R.V.; Achouri, M.; Maroulis, J.; Caon, L. Healthy soils: A prerequisite for sustainable food security. Environ. Earth Sci. 2016, 75, 180. [Google Scholar] [CrossRef]
- Duan, X.W.; Rong, L.; Zhang, G.L.; Hu, J.M.; Fang, H.Y. Soil productivity in the Yunnan province: Spatial distribution and sustainable utilization. Soil Tillage Res. 2015, 147, 10–19. [Google Scholar] [CrossRef]
- Murphy, C.J.; Baggs, E.M.; Morley, N.; Wall, D.P.; Paterson, E. Nitrogen availability alters rhizosphere processes mediating soil organic matter mineralisation. Plant Soil 2017, 417, 499–510. [Google Scholar] [CrossRef]
- Hao, C.K.; Dungait, J.A.J.; Wei, X.M.; Ge, T.D.; Kuzyakov, Y.; Cui, Z.L.; Tian, J.; Zhang, F.S. Maize root exudate composition alters rhizosphere bacterial community to control hotspots of hydrolase activity in response to nitrogen supply. Soil Biol. Biochem. 2022, 170, 108717. [Google Scholar] [CrossRef]
- Liu, S.L.; Li, H.M.; Xie, X.Y.; Chen, Y.X.; Lang, M.; Chen, X.P. Long-term moderate fertilization increases the complexity of soil microbial community and promotes regulation of phosphorus cycling genes to improve the availability of phosphorus in acid Soil. Appl. Soil Ecol. 2024, 194, 105178. [Google Scholar] [CrossRef]
- Mikanová, O.; Simon, T.; Kopecky, J.; Ságová-Marecková, M. Soil biological characteristics and microbial community structure in a field experiment. Open Life Sci. 2015, 10, 249–259. [Google Scholar] [CrossRef]
- Byers, A.K.; Wakelin, S.A.; Condron, L.; Black, A. Land Use Change Disrupts the Network Complexity and Stability of Soil Microbial Carbon Cycling Genes Across an Agricultural Mosaic Landscape. Microb. Ecol. 2024, 87, 167. [Google Scholar] [CrossRef] [PubMed]
- Linton, N.F.; Ferrari Machado, P.V.; Deen, B.; Wagner-Riddle, C.; Dunfield, K.E. Long-term diverse rotation alters nitrogen cycling bacterial groups and nitrous oxide emissions after nitrogen fertilization. Soil Biol. Biochem. 2020, 149, 107917. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, Y.; Duan, C.; Wang, X.; Zhang, X.; Ju, W.; Chen, H.; Yue, S.; Wang, Y.; Li, S.; et al. Ecoenzymatic stoichiometry reveals microbial phosphorus limitation decreases the nitrogen cycling potential of soils in semi-arid agricultural ecosystems. Soil Tillage Res. 2020, 197, 104463. [Google Scholar] [CrossRef]
- Yuan, L.; Zhu, W.; Xiao, L.; Yang, L.Y. Phosphorus cycling between the colonial cyanobacterium Microcystis aeruginosa and attached bacteria, Pseudomonas. Aquat. Ecol. 2009, 43, 859–866. [Google Scholar] [CrossRef]
- Dai, Z.M.; Liu, G.F.; Chen, H.H.; Chen, C.R.; Wang, J.K.; Ai, S.Y.; Wei, D.; Li, D.M.; Ma, B.; Tang, C.X.; et al. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems. ISME J. 2020, 14, 757–770. [Google Scholar] [CrossRef] [PubMed]
- Lupwayi, N.Z.; Harker, K.N.; Clayton, G.W.; Turkington, T.K.; Rice, W.A.; O’Donovan, J.T. Soil microbial biomass and diversity after herbicide application. Can. J. Plant Sci. 2004, 84, 677–685. [Google Scholar] [CrossRef]
- Qin, K.; Dong, X.J.; Jifon, J.; Leskovar, D.I. Rhizosphere microbial biomass is affected by soil type, organic and water inputs in a bell pepper system. Appl. Soil Ecol. 2019, 138, 80–87. [Google Scholar] [CrossRef]
- Houlden, A.; Timms-Wilson, T.M.; Day, M.J.; Bailey, M.J. Influence of plant developmental stage on microbial community structure and activity in the rhizosphere of three field crops. Fems Microbiol. Ecol. 2008, 65, 193–201. [Google Scholar] [CrossRef]
- Levy-Booth, D.J.; Prescott, C.E.; Grayston, S.J. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol. Biochem. 2014, 75, 11–25. [Google Scholar] [CrossRef]
- Li, H.; Yang, S.; Xu, Z.; Yan, Q.; Li, X.; van Nostrand, J.D.; He, Z.; Yao, F.; Han, X.; Zhou, J.; et al. Responses of soil microbial functional genes to global changes are indirectly influenced by aboveground plant biomass variation. Soil Biol. Biochem. 2017, 104, 18–29. [Google Scholar] [CrossRef]
- Li, F.; Chen, L.; Zhang, J.; Yin, J.; Huang, S. Bacterial Community Structure after Long-term Organic and Inorganic Fertilization Reveals Important Associations between Soil Nutrients and Specific Taxa Involved in Nutrient Transformations. Front. Microbiol. 2017, 8, 00187. [Google Scholar] [CrossRef]
- Duan, T.T.; Zhang, J.; Wang, Z. Responses and Indicators of Composition, Diversity, and Productivity of Plant Communities at Different Levels of Disturbance in a Wetland Ecosystem. Diversity 2021, 13, 252. [Google Scholar] [CrossRef]
- Zuber, S.M.; Behnke, G.D.; Nafziger, E.D.; Villamil, M.B. Multivariate assessment of soil quality indicators for crop rotation and tillage in Illinois. Soil Tillage Res. 2017, 174, 147–155. [Google Scholar] [CrossRef]
- Zhao, Z.B.; He, J.Z.; Quan, Z.; Wu, C.F.; Sheng, R.; Zhang, L.M.; Geisen, S. Fertilization changes soil microbiome functioning, especially phagotrophic protists. Soil Biol. Biochem. 2020, 148, 107863. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Tang, Z.H.; Wang, J.D.; Zhang, Y.C. Long-term organic fertilization reshapes the communities of bacteria and fungi and enhances the activities of C- and P-cycling enzymes in calcareous alluvial Soil. Appl. Soil Ecol. 2024, 194, 105204. [Google Scholar] [CrossRef]
- Schutz, L.; Gattinger, A.; Meier, M.; Muller, A.; Boller, T.; Mader, P.; Mathimaran, N. Improving Crop Yield and Nutrient Use Efficiency via Biofertilization-A Global Meta-analysis. Front. Plant Sci. 2018, 8, 2204. [Google Scholar] [CrossRef]
- Guo, W.; Li, Z.W.; Shen, W.P.; Wang, X.Y.; Zeng, G.M.; Chen, X.L.; Zhang, X.; Zhang, Y.N.; Liu, G.P.; Wang, S.G. Effects of soil and water conservation and its interactions with soil properties on soil productivity. J. Cent. South. Univ. 2012, 19, 2279–2285. [Google Scholar] [CrossRef]
- Kimmel, K.; Furey, G.N.; Hobbie, S.E.; Isbell, F.; Tilman, D.; Reich, P.B. Diversity-dependent soil acidification under nitrogen enrichment constrains biomass productivity. Glob. Chang. Biol. 2020, 26, 6594–6603. [Google Scholar] [CrossRef] [PubMed]
- Goll, D.S.; Joetzjer, E.; Huang, M.; Ciais, P. Low Phosphorus Availability Decreases Susceptibility of Tropical Primary Productivity to Droughts. Geophys. Res. Lett. 2018, 45, 8231–8240. [Google Scholar] [CrossRef]
- Wu, T.H.; Milner, H.; Díaz-Pérez, J.C.; Ji, P.S. Effects of soil management practices on soil microbial communities and development of southern blight in vegetable production. Appl. Soil Ecol. 2015, 91, 58–67. [Google Scholar] [CrossRef]
- Kaur, N.; Singh, G.; Gangmei, T.P.; Kumar, A.; Sandal, S.K.; Manuja, S. Nutrient Balance and Soil Fertility of Rainfed Maize-Wheat Cropping System Under Different Seed Priming, Tillage and Nutrient Management Practices. Commun. Soil Sci. Plan. 2024, 55, 1593–1612. [Google Scholar] [CrossRef]
- Cross, A.T.; Aronson, J. Plant-soil-microbe interactions and drivers in ecosystem development and ecological restoration. Front. Ecol. Evol. 2023, 11, 1216016. [Google Scholar] [CrossRef]
- Kim, H.; Jeon, J.; Lee, K.K.; Lee, Y.H. Compositional Shift of Bacterial, Archaeal, and Fungal Communities Is Dependent on Trophic Lifestyles in Rice Paddy Soil. Front. Microbiol. 2021, 12, 719486. [Google Scholar] [CrossRef]
- Sharma, I.P.; Sharma, A.K. Above and below-ground involvement in cyclic energy transformation that helps in the establishment of rhizosphere microbial communities. Symbiosis 2021, 85, 21–30. [Google Scholar] [CrossRef]
- Vincze, E.B.; Becze, A.; Laslo, E.; Mara, G. Beneficial Soil Microbiomes and Their Potential Role in Plant Growth and Soil Fertility. Agriculture 2024, 14, 152. [Google Scholar] [CrossRef]
- Hartman, K.; Tringe, S.G. Interactions between plants and soil shaping the root microbiome under abiotic stress. Biochem. J. 2019, 476, 2705–2724. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, J.M.; Sheflin, A.M.; Manter, D.K.; Vivanco, J.M. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils 2012, 48, 489–499. [Google Scholar] [CrossRef]
- van der Heijden, M.G.A.; Wagg, C. Soil microbial diversity and agro-ecosystem functioning. Plant Soil 2013, 363, 1–5. [Google Scholar] [CrossRef]
- Trivedi, P.; Delgado-Baquerizo, M.; Anderson, I.C.; Singh, B.K. Response of Soil Properties and Microbial Communities to Agriculture: Implications for Primary Productivity and Soil Health Indicators. Front. Plant Sci. 2016, 7, 990. [Google Scholar] [CrossRef]
- Hartman, K.; van der Heijden, M.G.A.; Wittwer, R.A.; Banerjee, S.; Walser, J.C.; Schlaeppi, K. Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome 2018, 6, 14, Erratum in Microbiome 2018, 6, 74; Erratum in Microbiome 2020, 8, 66. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, N.; Zhang, S.Y.; Zhu, X.Y.; Wang, H.; Xiu, W.M.; Zhao, J.N.; Liu, H.M.; Zhang, H.F.; Yang, D.L. Soil bacterial community composition is altered more by soil nutrient availability than pH following long-term nutrient addition in a temperate steppe. Front. Microbiol. 2024, 15, 1455891. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.Y.; Liu, W.J.; Huang, H.; Ye, Q.X.; Zhu, S.X.; Peng, Z.H.; Li, Y.D.; Deng, L.J.; Yang, Z.P.; Chen, H.L.; et al. Meta-Analysis of Organic Fertilization Effects on Soil Bacterial Diversity and Community Composition in Agroecosystems. Plants 2023, 12, 3801. [Google Scholar] [CrossRef]
- Sun, R.B.; Guo, X.S.; Wang, D.Z.; Chu, H.Y. Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. Appl. Soil Ecol. 2015, 95, 171–178. [Google Scholar] [CrossRef]
- Zhang, Z.M.; He, P.; Hao, X.X.; Li, L.J. Long-term mineral combined with organic fertilizer supports crop production by increasing microbial community complexity. Appl. Soil Ecol. 2023, 188, 104930. [Google Scholar] [CrossRef]
- Eliseu, E.E.; Lima, T.M.; Gaspar, P.D. Sustainable Development Strategies and Good Agricultural Practices for Enhancing Agricultural Productivity: Insights and Applicability in Developing Contexts-The Case of Angola. Sustainability 2024, 16, 9878. [Google Scholar] [CrossRef]
- Sukayat, Y.; Setiawan, I.; Suharfaputra, U.; Kurnia, G. Determining Factors for Farmers to Engage in Sustainable Agricultural Practices: A Case from Indonesia. Sustainability 2023, 15, 10548. [Google Scholar] [CrossRef]
- Olayemi, O.P.; Schneekloth, J.P.; Wallenstein, M.D.; Trivedi, P.; Calderon, F.J.; Corwin, J.; Fonte, S.J. Soil macrofauna and microbial communities respond in similar ways to management drivers in an irrigated maize system of Colorado (USA). Appl. Soil Ecol. 2022, 178, 104562. [Google Scholar] [CrossRef]
- Hao, M.M.; Hu, H.Y.; Liu, Z.; Dong, Q.L.; Sun, K.; Feng, Y.P.; Li, G.; Ning, T.Y. Shifts in microbial community and carbon sequestration in farmland soil under long-term conservation tillage and straw returning. Appl. Soil Ecol. 2019, 136, 43–54. [Google Scholar] [CrossRef]
- Zhu, X.C.; Sun, L.Y.; Song, F.B.; Liu, S.Q.; Liu, F.L.; Li, X.N. Soil microbial community and activity are affected by integrated agricultural practices in China. Eur. J. Soil Sci. 2018, 69, 924–935. [Google Scholar] [CrossRef]
- Tautges, N.E.; Sullivan, T.S.; Reardon, C.L.; Burke, I.C. Soil microbial diversity and activity linked to crop yield and quality in a dryland organic wheat production system. Appl. Soil Ecol. 2016, 108, 258–268. [Google Scholar] [CrossRef]
- Jia, J.Y.; de Goede, R.; Li, Y.Z.; Zhang, J.Z.; Wang, G.Z.; Zhang, J.L.; Creamer, R. Unlocking soil health: Are microbial functional genes effective indicators? Soil Biol. Biochem. 2025, 204, 109768. [Google Scholar] [CrossRef]
- Griffiths, B.S.; Faber, J.; Bloem, J. Applying Soil Health Indicators to Encourage Sustainable Soil Use: The Transition from Scientific Study to Practical Application. Sustainability 2018, 10, 3021. [Google Scholar] [CrossRef]
- Xie, J.H.; Wang, L.L.; Li, L.L.; Coulter, J.A.; Chai, Q.; Zhang, R.Z.; Luo, Z.Z.; Carberry, P.; Rao, K.P.C. Subsoiling increases grain yield, water use efficiency, and economic return of maize under a fully mulched ridge-furrow system in a semiarid environment in China. Soil Till Res. 2020, 199, 104584. [Google Scholar] [CrossRef]
- Yin, Y.L.; Yuan, Y.; Zhang, X.W.; Huhe; Cheng, Y.X.; Borjigin, S. Comparison of the Responses of Soil Fungal Community to Straw, Inorganic Fertilizer, and Compost in a Farmland in the Loess Plateau. Microbiol. Spectr. 2022, 10, e02230-21. [Google Scholar] [CrossRef]
- Zhang, W.; Li, S.Q.; Shen, Y.F.; Yue, S.C. Film mulching affects root growth and function in dryland maize-soybean intercropping. Field Crops Res. 2021, 271, 108240. [Google Scholar] [CrossRef]
- Fan, Z.; Liu, P.Z.; Lin, Y.R.; Qiang, B.B.; Li, Z.P.; Cheng, M.W.; Guo, Q.H.; Liu, J.P.; Ren, X.L.; Zhao, X.N.; et al. Root plasticity improves the potential of maize/soybean intercropping to stabilize the yield. Soil Till Res. 2025, 251, 106553. [Google Scholar] [CrossRef]
- Liu, J.S.; Zhang, X.; Wang, H.; Hui, X.L.; Wang, Z.H.; Qiu, W.H. Long-term nitrogen fertilization impacts soil fungal and bacterial community structures in a dryland soil of Loess Plateau in China. J. Soils Sediments 2018, 18, 1632–1640. [Google Scholar] [CrossRef]
- Yu, H.L.; Ling, N.; Wang, T.T.; Zhu, C.; Wang, Y.; Wang, S.J.; Gao, Q. Responses of soil biological traits and bacterial communities to nitrogen fertilization mediate maize yields across three soil types. Soil Till Res. 2019, 185, 61–69. [Google Scholar] [CrossRef]
- Soman, C.; Li, D.F.; Wander, M.M.; Kent, A.D. Long-term fertilizer and crop-rotation treatments differentially affect soil bacterial community structure. Plant Soil 2017, 413, 145–159. [Google Scholar] [CrossRef]
- Xu, N.; Tan, G.C.; Wang, H.Y.; Gai, X.P. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur. J. Soil Biol. 2016, 74, 1–8. [Google Scholar] [CrossRef]
- Jiao, S.; Chen, W.M.; Wang, J.L.; Du, N.N.; Li, Q.P.; Wei, G.H. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome 2018, 6, 146. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Holmes, S.P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017, 11, 2639–2643. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microb. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Abarenkov, K.; Nilsson, R.H.; Larsson, K.H.; Alexander, I.J.; Eberhardt, U.; Erland, S.; Høiland, K.; Kjøller, R.; Larsson, E.; Pennanen, T. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. New Phytol. 2010, 186, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Paradis, E.; Claude, J.; Strimmer, K. APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 2004, 20, 289–290. [Google Scholar] [CrossRef]
- Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Ju, W.Y.; Li, J.X.; Yu, W.R.; Zhang, R.C. iGraph: An incremental data processing system for dynamic graph. Front. Comput. Sci. 2016, 10, 462–476. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Chen, Y.X.; Duan, P.P.; Lu, H.B.; Gao, Y.J.; Xu, K.W. Microbially mediated mechanisms underlie the increased soil N2O emissions under nitrogen fertilization in purple Soil. Appl. Soil Ecol. 2024, 204, 105725. [Google Scholar] [CrossRef]
- Yu, Q.; Jiao, X.Y.; Wang, C.Y.; Wang, Y.B.; Xu, X.Y.; Liu, Z.Y.; Ren, G.X.; Feng, Y.Z. Straw Retention with Reduced Fertilization Enhances Soil Properties, Crop Yields, and Emergy Sustainability of Wheat-Soybean Rotation. Plants 2024, 13, 1812. [Google Scholar] [CrossRef]
- Han, B.; He, Y.C.; Chen, J.; Wang, Y.F.; Shi, L.A.; Lin, Z.R.; Yu, L.; Wei, X.T.; Zhang, W.T.; Geng, Y.Y.; et al. Different microbial functional traits drive bulk and rhizosphere soil phosphorus mobilization in an alpine meadow after nitrogen input. Sci. Total Environ. 2024, 931, 172904. [Google Scholar] [CrossRef]
- Kraut-Cohen, J.; Zolti, A.; Shaltiel-Harpaz, L.; Argaman, E.; Rabinovich, R.; Green, S.J.; Minz, D. Effects of tillage practices on soil microbiome and agricultural parameters. Sci. Total Environ. 2020, 705, 135791. [Google Scholar] [CrossRef] [PubMed]
- Mihelic, R.; Pecnik, J.; Glavan, M.; Pintar, M. Impact of Sustainable Land Management Practices on Soil Properties: Example of Organic and Integrated Agricultural Management. Land 2021, 10, 8. [Google Scholar] [CrossRef]
- Abbate, C.; Scavo, A.; Pesce, G.R.; Fontanazza, S.; Restuccia, A.; Mauromicale, G. Soil Bioplastic Mulches for Agroecosystem Sustainability: A Comprehensive Review. Agriculture 2023, 13, 197. [Google Scholar] [CrossRef]
- Wang, S.S.; Zhang, X.J.; Li, X.J.; Shen, J.Z.; Sun, L.T.; Zaman, S.; Wang, Y.; Ding, Z.T. Different changes of bacterial diversity and soil metabolites in tea plants-legume intercropping systems. Front. Plant Sci. 2023, 14, 1110623. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.E.; Vannette, R.L.; Igwe, A.; Blundell, R.; Casteel, C.L.; Gaudin, A.C.M. Effects of Agricultural Management on Rhizosphere Microbial Structure and Function in Processing Tomato Plants. Appl. Environ. Microb. 2020, 86, e01279-20. [Google Scholar] [CrossRef]
- Li, W.X.; Wang, C.; Zheng, M.M.; Cai, Z.J.; Wang, B.R.; Shen, R.F. Fertilization strategies affect soil properties and abundance of N-cycling functional genes in an acidic agricultural Soil. Appl. Soil Ecol. 2020, 156, 103704. [Google Scholar] [CrossRef]
- Wang, L.M.; Huang, D.F. Soil microbial community composition in a paddy field with different fertilization managements. Can. J. Microbiol. 2021, 67, 864–874. [Google Scholar] [CrossRef]
- Ren, B.H.; Ma, X.W.; Li, D.Y.; Bai, L.; Li, J.H.; Yu, J.X.; Meng, M.; Li, H.Y. Nitrogen-cycling microbial communities respond differently to nitrogen addition under two contrasting grassland soil types. Front. Microbiol. 2024, 15, 1290248. [Google Scholar] [CrossRef]
- Lang, M.; Zou, W.X.; Chen, X.X.; Zou, C.Q.; Zhang, W.; Deng, Y.; Zhu, F.; Yu, P.; Chen, X.P. Soil Microbial Composition and phoD Gene Abundance Are Sensitive to Phosphorus Level in a Long-Term Wheat-Maize Crop System. Front. Microbiol. 2021, 11, 605955. [Google Scholar] [CrossRef]
- Purushe, J.; Fouts, D.E.; Morrison, M.; White, B.A.; Mackie, R.I.; Coutinho, P.M.; Henrissat, B.; Nelson, K.E.; Bacteria, N.A.C.R. Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: Insights into their environmental niche. Microb. Ecol. 2010, 60, 721–729. [Google Scholar] [CrossRef]
- Goldfarb, K.C.; Karaoz, U.; Hanson, C.A.; Santee, C.A.; Bradford, M.A.; Treseder, K.K.; Wallenstein, M.D.; Brodie, E.L. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Front. Microbiol. 2011, 2, 94. [Google Scholar] [CrossRef] [PubMed]
- Ardley, J.K.; Parker, M.A.; De Meyer, S.E.; Trengove, R.D.; O’Hara, G.W.; Reeve, W.G.; Yates, R.J.; Dilworth, M.J.; Willems, A.; Howieson, J.G. Microvirga lupini sp. nov., Microvirga lotononidis sp. nov., and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int. J. Syst. Evol. Microbiol. 2012, 62, 2579–2588. [Google Scholar] [CrossRef] [PubMed]
- Li, H.F.; Chen, S.Y.; Wang, M.Y.; Shi, S.S.; Zhao, W.J.; Xiong, G.Y.; Zhou, J.; Qu, J.H. Phosphate solubilization and plant growth properties are promoted by a lactic acid bacterium in calcareous Soil. Appl. Microbiol. Biot. 2024, 108, 17. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.T.; Ruan, L.Y.; Wu, N.N.; Mao, D.M.; He, J.; Wang, S.M.; Jiang, J.D.; Shen, Q.R. sp. nov., isolated from river sediment. Int. J. Syst. Evol. Microbiol. 2024, 74, 006532. [Google Scholar] [CrossRef]
- Park, Y.; Liu, Q.Z.; Maeng, S.; Choi, W.J.; Chang, Y.; Im, W.T. Nocardioides convexus sp. nov. and Nocardioides anomalus sp. nov., isolated from soil and mineral water. Int. J. Syst. Evol. Microbiol. 2020, 70, 6402–6407. [Google Scholar] [CrossRef]
- DeBruyn, J.M.; Fawaz, M.N.; Peacock, A.D.; Dunlap, J.R.; Nixon, L.T.; Cooper, K.E.; Radosevich, M. Gemmatirosa kalamazoonesis gen. nov., sp. nov., a member of the rarely-cultivated bacterial phylum Gemmatimonadetes. J. Gen. Appl. Microbiol. 2013, 59, 305–312. [Google Scholar] [CrossRef]
- Jin, D.C.; Wang, P.; Bai, Z.H.; Jin, B.; Yu, Z.S.; Wang, X.X.; Zhuan, G.Q.; Zhang, H.X. Terrimonas pekingensis sp nov., isolated from bulking sludge, and emended descriptions of the genus Terrimonas, Terrimonas ferruginea, Terrimonas lutea and Terrimonas aquatica. Int. J. Syst. Evol. Microbiol. 2013, 63, 1658–1664. [Google Scholar] [CrossRef]
- Song, L.; Chen, X.J.; Gu, Y.W.; Wang, Q. Complete mitochondrial genome sequence and annotation of Rhinogobius lentiginis (Gobiiformes: Gobiidae: Gobionellinae). Mitochondrial DNA B 2023, 8, 418–421. [Google Scholar] [CrossRef]
- You, M.C.; Zhao, Q.Y.; Liu, Y.S.; Zhang, W.H.; Shen, Z.W.; Ren, Z.X.; Xu, C.G. Insights into lignocellulose degradation: Comparative genomics of anaerobic and cellulolytic-type species. Front. Microbiol. 2023, 14, 1288286. [Google Scholar] [CrossRef]
- Akter, S.; Huq, M.A.; Yi, T.H. sp nov., a bacterium isolated from rice field. Arch. Microbiol. 2016, 198, 1005–1012. [Google Scholar] [CrossRef]
- Fudou, R.; Jojima, Y.; Iizuka, T.; Yamanaka, S. Haliangium ochraceum gen. nov., sp. nov. and Haliangium tepidum sp. nov.: Novel moderately halophilic myxobacteria isolated from coastal saline environments. J. Gen. Appl. Microbiol. 2002, 48, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Everest, G.J.; Curtis, S.M.; De Leo, F.; Urzì, C.; Meyers, P.R. Kribbella albertanoniae sp. nov., isolated from a Roman catacomb, and emended description of the genus Kribbella. Int. J. Syst. Evol. Microbiol. 2013, 63, 3591–3596. [Google Scholar] [CrossRef] [PubMed]
- Mondaca, P.; Celis-Diez, J.L.; Díaz-Siefer, P.; Olmos-Moya, N.; Montero-Silva, F.; Molina, S.; Fontúrbel, F.E.; Aponte, H.; Mandakovic, D.; Bastidas, B.; et al. Effects of sustainable agricultural practices on soil microbial diversity, composition, and functions. Agric. Ecosyst. Environ. 2024, 370, 109053. [Google Scholar] [CrossRef]
Soil Properties | Fertilizer | Cropping–Tillage Practice | R2m | R2c | |||
---|---|---|---|---|---|---|---|
CTMC | CTIC | RFMC | RFIC | ||||
Moisture (%) | Control | 16.89 ± 0.83 a | 17.17 ± 0.12 a | 17.84 ± 0.47 a | 17.35 ± 0.26 a | 0.114 | 0.307 |
Fertilized | 16.52 ± 0.22 a | 17.30 ± 0.51 a | 17.45 ± 0.28 a | 17.56 ± 0.46 a | 0.226 | 0.410 | |
pH | Control | 8.41 ± 0.03 a | 8.39 ± 0.03 a | 8.43 ± 0.01 a | 8.39 ± 0.03 a | 0.095 | 0.646 |
Fertilized | 8.37 ± 0.02 a | 8.32 ± 0.06 a | 8.34 ± 0.02 a | 8.35 ± 0.02 a | 0.075 | 0.506 | |
TC (g/kg) | Control | 17.28 ± 0.30 a | 17.20 ± 0.32 a | 17.03 ± 0.37 a | 16.91 ± 0.43 a | 0.039 | 0.384 |
Fertilized | 17.09 ± 0.21 a | 17.19 ± 0.31 a | 16.88 ± 0.09 a | 16.94 ± 0.13 a | 0.091 | 0.519 | |
TN (g/kg) | Control | 0.95 ± 0.02 a | 0.95 ± 0.03 a | 0.93 ± 0.02 a | 0.95 ± 0.03 a | 0.045 | 0.733 |
Fertilized | 0.96 ± 0.02 a | 0.99 ± 0.02 a | 0.99 ± 0.01 a | 0.94 ± 0.02 a | 0.258 | 0.258 | |
C:N | Control | 18.13 ± 0.16 a | 18.22 ± 0.28 a | 18.46 ± 0.20 a | 17.80 ± 0.28 a | 0.212 | 0.551 |
Fertilized | 17.76 ± 0.12 a | 17.43 ± 0.29 a | 17.14 ± 0.24 a | 18.00 ± 0.27 a | 0.033 | 0.033 | |
DOC (mg/kg) | Control | 65.92 ± 14.27 a | 72.96 ± 17.08 a | 64.52 ± 13.89 a | 75.85 ± 15.04 a | 0.025 | 0.250 |
Fertilized | 36.86 ± 15.01 a | 28.66 ± 9.63 a | 24.13 ± 8.39 a | 30.68 ± 8.49 a | 0.046 | 0.046 | |
NH4+-N (mg/kg) | Control | 2.22 ± 0.14 b | 1.61 ± 0.09 a | 2.29 ± 0.20 b | 2.26 ± 0.14 b | 0.490 | 0.807 |
Fertilized | 2.38 ± 0.38 a | 2.98 ± 0.18 a | 3.28 ± 0.31 a | 3.31 ± 0.33 a | 0.279 | 0.370 | |
NO3−-N (mg/kg) | Control | 1.75 ± 0.18 a | 1.52 ± 0.08 a | 1.73 ± 0.30 a | 1.62 ± 0.16 a | 0.060 | 0.461 |
Fertilized | 2.39 ± 0.42 a | 2.36 ± 0.28 a | 2.05 ± 0.24 a | 1.94 ± 0.34 a | 0.085 | 0.085 | |
MBC (mg/kg) | Control | 132.74 ± 16.69 a | 140.55 ± 13.31 a | 131.75 ± 6.51 a | 133.28 ± 21.71 a | 0.013 | 0.605 |
Fertilized | 162.50 ± 16.96 a | 178.97 ± 17.66 a | 170.30 ± 4.25 a | 175.13 ± 12.58 a | 0.049 | 0.334 | |
MBN (mg/kg) | Control | 28.30 ± 4.29 a | 26.80 ± 2.83 a | 24.99 ± 4.02 a | 27.58 ± 2.32 a | 0.033 | 0.461 |
Fertilized | 32.43 ± 5.02 a | 30.15 ± 1.89 a | 33.51 ± 2.76 a | 33.84 ± 2.40 a | 0.050 | 0.113 |
Alpha Diversity | Fertilizer | Cropping–Tillage Practices | R2m | R2c | ||||
---|---|---|---|---|---|---|---|---|
CTMC | CTIC | RFMC | RFIC | |||||
Bacteria | Richness | Control | 1069.75 ± 41.41 a | 1210.75 ± 54.07 a | 1055.25 ± 71.48 a | 1228.00 ± 46.68 a | 0.357 | 0.357 |
Fertilized | 1214.75 ± 54.76 a | 1211.50 ± 60.29 a | 1129.75 ± 27.41 a | 1300.00 ± 32.95 a | 0.313 | 0.313 | ||
Shannon | Control | 6.29 ± 0.25 a | 6.67 ± 0.04 a | 6.34 ± 0.17 a | 6.53 ± 0.09 a | 0.202 | 0.295 | |
Fertilized | 6.67 ± 0.05 b | 6.63 ± 0.06 ab | 6.37 ± 0.10 a | 6.74 ± 0.02 b | 0.563 | 0.617 | ||
Fungi | Richness | Control | 391.25 ± 14.64 a | 359.00 ± 8.75 a | 373.75 ± 19.44 a | 363.25 ± 3.20 a | 0.196 | 0.511 |
Fertilized | 315.00 ± 8.98 a | 314.25 ± 17.31 a | 365.00 ± 15.70 b | 328.00 ± 15.72 ab | 0.342 | 0.694 | ||
Shannon | Control | 3.90 ± 0.13 a | 4.09 ± 0.11 a | 4.21 ± 0.06 a | 4.03 ± 0.02 a | 0.294 | 0.294 | |
Fertilized | 3.85 ± 0.11 bc | 3.72 ± 0.16 ab | 3.96 ± 0.12 c | 3.57 ± 0.16 a | 0.233 | 0.881 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Liu, J.; Zhang, W.; Hu, J.; Shi, P.; Wei, G. Fertilization Alters Indicator Species Serving as Bioindicators for Evaluating Agricultural Practices Related to Maize Grain Yield. Microorganisms 2025, 13, 1384. https://doi.org/10.3390/microorganisms13061384
Li G, Liu J, Zhang W, Hu J, Shi P, Wei G. Fertilization Alters Indicator Species Serving as Bioindicators for Evaluating Agricultural Practices Related to Maize Grain Yield. Microorganisms. 2025; 13(6):1384. https://doi.org/10.3390/microorganisms13061384
Chicago/Turabian StyleLi, Guoqiang, Jiaqing Liu, Wenya Zhang, Jvshui Hu, Peng Shi, and Gehong Wei. 2025. "Fertilization Alters Indicator Species Serving as Bioindicators for Evaluating Agricultural Practices Related to Maize Grain Yield" Microorganisms 13, no. 6: 1384. https://doi.org/10.3390/microorganisms13061384
APA StyleLi, G., Liu, J., Zhang, W., Hu, J., Shi, P., & Wei, G. (2025). Fertilization Alters Indicator Species Serving as Bioindicators for Evaluating Agricultural Practices Related to Maize Grain Yield. Microorganisms, 13(6), 1384. https://doi.org/10.3390/microorganisms13061384