Curcumin Ameliorates DSS-Induced Colitis in Mice Through Modulation of Gut Microbiota and Metabolites
Abstract
1. Introduction
2. Results
2.1. The Effects of Curcumin on Mice Body Weight and DAI in Mice
2.2. The Effects of Curcumin on Spleen Size, Colon Length, and Histopathology in Mice
2.3. The Effects of Curcumin on Inflammatory Factors in the Colon of Mice
2.4. The Effect of Curcumin on Gut Microbiota Diversity
2.5. The Effect of Curcumin on Gut Microbiota Species Abundance
2.6. Analysis of Major Components of Fecal Metabolites
2.7. Differential Metabolite Analysis of Feces
3. Discussion
4. Materials and Methods
4.1. Animal Experiment Protocol
4.2. Analysis of Morphology
4.3. RNA Extraction, cDNA Synthesis, and Real-Time Polymerase Chain Reaction (PCR) Analysis
4.4. Analysis of Gut Microbiota
4.5. Fecal Sample Preparation for Metabolomics Analysis
4.6. LC-MS Analysis
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Q.; Fang, Z.; Yang, Z.; Xv, X.; Yang, M.; Hou, H.; Li, Z.; Chen, Y.; Gong, A. Lactobacillus plantarum-Derived Extracellular Vesicles Modulate Macrophage Polarization and Gut Homeostasis for Alleviating Ulcerative Colitis. J. Agric. Food Chem. 2024, 72, 14713–14726. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, A.; Young, K.N.; Moniruzzaman, M.; Beyene, A.M.; Do, K.; Kalaiselvi, S.; Min, T. Curcumin and Its Modified Formulations on Inflammatory Bowel Disease (IBD): The Story So Far and Future Outlook. Pharmaceutics 2021, 13, 484. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Ren, X.; Chalamaiah, M.; Ma, H. Simulated gastrointestinal digests of corn protein hydrolysate alleviate inflammation in caco-2 cells and a mouse model of colitis. J. Food Sci. Technol. 2020, 57, 2079–2088. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, Z.H.; Zabed, H.M.; Yun, J.; Zhang, G.; Qi, X. An Insight into the Roles of Dietary Tryptophan and Its Metabolites in Intestinal Inflammation and Inflammatory Bowel Disease. Mol. Nutr. Food Res. 2021, 65, e2000461. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Song, P.; Li, J.; Tao, Y.; Li, G.; Li, X.; Yu, Z. The Disease Burden and Clinical Characteristics of Inflammatory Bowel Disease in the Chinese Population: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2017, 14, 238. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.C.; Shen, Y.; Shu, W.H.; Jin, W.G.; Bai, F.; Wang, J.L.; Zhang, Y.H.; El-Seedi, H.; Sun, Q.C.; Yuan, L. Sturgeon hydrolysates alleviate DSS-induced colon colitis in mice by modulating NF-κB, MAPK, and microbiota composition. Food Funct. 2020, 11, 6987–6999. [Google Scholar] [CrossRef] [PubMed]
- He, X.X.; Li, Y.H.; Yan, P.G.; Meng, X.C.; Chen, C.Y.; Li, K.M.; Li, J.N. Relationship between clinical features and intestinal microbiota in Chinese patients with ulcerative colitis. World J. Gastroenterol. 2021, 27, 4722–4737. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.X.; Cai, M.; Wang, T.T.; Liu, T.T.; Huang, J.B.; Wang, Y.J.; Granato, D. Ameliorative effects of L-theanine on dextran sulfate sodium induced colitis in C57BL/6J mice are associated with the inhibition of inflammatory responses and attenuation of intestinal barrier disruption. Food Res. Int. 2020, 137, 109409. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Wang, X.X.; Wang, S.Y.; Wu, Z.P.; Zhou, Z.R.; Shao, G.B.; Ren, C.F.; Kuang, M.Q.; Zhou, Y.; Jiang, A.Q.; et al. Treatment of inflammatory bowel disease: Potential effect of NMN on intestinal barrier and gut microbiota. Curr. Res. Food Sci. 2022, 5, 1403–1411. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Xiao, X.A.; Ji, T.T.; Wang, X.Y.; Xu, Y.X.; Xiao, J.B.; Cao, H.; Chen, Z.Y.; Liu, H.F.; Gao, Y.Q.; et al. Reveal the pharmacodynamic substances and mechanism of an edible medicinal plant Rhodiola crenulate in DSS-induced colitis through plasma pharmacochemistry and metabolomics. Food Sci. Hum. Wellness 2024, 13, 2116–2131. [Google Scholar] [CrossRef]
- Sreedhar, R.; Arumugam, S.; Thandavarayan, R.A.; Karuppagounder, V.; Watanabe, K. Curcumin as a therapeutic agent in the chemoprevention of inflammatory bowel disease. Drug Discov. Today 2016, 21, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Coelho, M.R.; Romi, M.D.; Ferreira, D.; Zaltman, C.; Soares-Mota, M. The Use of Curcumin as a Complementary Therapy in Ulcerative Colitis: A Systematic Review of Randomized Controlled Clinical Trials. Nutrients 2020, 12, 2296. [Google Scholar] [CrossRef] [PubMed]
- Grammatikopoulou, M.G.; Gkiouras, K.; Theodoridis, X.; Asteriou, E.; Forbes, A.; Bogdanos, D.P. Oral Adjuvant Curcumin Therapy for Attaining Clinical Remission in Ulcerative Colitis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2018, 10, 1737. [Google Scholar] [CrossRef] [PubMed]
- Giordano, A.; Tommonaro, G. Curcumin and Cancer. Nutrients 2019, 11, 2376. [Google Scholar] [CrossRef] [PubMed]
- Jabczyk, M.; Nowak, J.; Hudzik, B.; Zubelewicz-Szkodzinska, B. Curcumin and Its Potential Impact on Microbiota. Nutrients 2021, 13, 2004. [Google Scholar] [CrossRef] [PubMed]
- Pluta, R.; Januszewski, S.; Ulamek-Koziol, M. Mutual Two-Way Interactions of Curcumin and Gut Microbiota. Int. J. Mol. Sci. 2020, 21, 1055. [Google Scholar] [CrossRef] [PubMed]
- Scazzocchio, B.; Minghetti, L.; D’Archivio, M. Interaction between Gut Microbiota and Curcumin: A New Key of Understanding for the Health Effects of Curcumin. Nutrients 2020, 12, 2499. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Wang, J.Y.; Xiong, F.; Wu, B.H.; Luo, M.H.; Yu, Z.C.; Liu, T.T.; Li, D.F.; Tang, Q.; Li, Y.X.; et al. Curcumin ameliorates DSS-induced colitis in mice by regulating the Treg/Th17 signaling pathway. Mol. Med. Rep. 2021, 23, 34. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Zhao, S.; Zhou, J.; Yan, J.; Wang, L.; Du, X.; Li, H.; Chen, Y.; Cai, W.; Wu, J. Curcumin alleviates DSS-induced colitis via inhibiting NLRP3 inflammsome activation and IL-1β production. Mol. Immunol. 2018, 104, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Xu, Y.; Geng, R.; Qiu, J.; He, X. Curcumin Alleviates Dextran Sulfate Sodium-Induced Colitis in Mice Through Regulating Gut Microbiota. Mol. Nutr. Food Res. 2022, 66, e2100943. [Google Scholar] [CrossRef] [PubMed]
- Pituch-Zdanowska, A.; Dembiński, Ł.; Banaszkiewicz, A. Old but Fancy: Curcumin in Ulcerative Colitis-Current Overview. Nutrients 2022, 14, 5249. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yan, X.; Zhang, Y.; Yang, M.; Ma, Y.; Zhang, Y.; Xu, Q.; Tu, K.; Zhang, M. Oral administration of turmeric-derived exosome-like nanovesicles with anti-inflammatory and pro-resolving bioactions for murine colitis therapy. J. Nanobiotechnol. 2022, 20, 206. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.Y.; Zhong, X.; Yum, H.W.; Lee, H.J.; Kundu, J.K.; Na, H.K.; Surh, Y.J. Curcumin Inhibits STAT3 Signaling in the Colon of Dextran Sulfate Sodium-treated Mice. J. Cancer Prev. 2013, 18, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Baliga, M.S.; Joseph, N.; Venkataranganna, M.V.; Saxena, A.; Ponemone, V.; Fayad, R. Curcumin, an active component of turmeric in the prevention and treatment of ulcerative colitis: Preclinical and clinical observations. Food Funct. 2012, 3, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Noti, M.; Corazza, N.; Mueller, C.; Berger, B.; Brunner, T. TNF suppresses acute intestinal inflammation by inducing local glucocorticoid synthesis. J. Exp. Med. 2010, 207, 1057–1066. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, Q.; Duan, P.; Yang, L. Curcumin as a therapeutic agent for blocking NF-κB activation in ulcerative colitis. Immunopharmacol. Immunotoxicol. 2018, 40, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Samba-Mondonga, M.; Constante, M.; Fragoso, G.; Calvé, A.; Santos, M.M. Curcumin induces mild anemia in a DSS-induced colitis mouse model maintained on an iron-sufficient diet. PLoS ONE 2019, 14, e0208677. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.M.; Ke, X.; Hitchcock, D.; Jeanfavre, S.; Avila-Pacheco, J.; Nakata, T.; Arthur, T.D.; Fornelos, N.; Heim, C.; Franzosa, E.A.; et al. Bacteroides-Derived Sphingolipids Are Critical for Maintaining Intestinal Homeostasis and Symbiosis. Cell Host Microbe 2019, 25, 668–680.e667. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, C.; Zhang, C.; Luo, Y.; Cheng, Q.; Yu, L.; Sun, Z. Evaluation of the Effects of Different Bacteroides vulgatus Strains against DSS-Induced Colitis. J. Immunol. Res. 2021, 2021, 9117805. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Xu, M.; Lan, R.; Hu, D.; Li, X.; Qiao, L.; Zhang, S.; Lin, X.; Yang, J.; Ren, Z.; et al. Bacteroides vulgatus attenuates experimental mice colitis through modulating gut microbiota and immune responses. Front. Immunol. 2022, 13, 1036196. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Shen, J. Bacteroides vulgatus diminishes colonic microbiota dysbiosis ameliorating lumbar bone loss in ovariectomized mice. Bone 2021, 142, 115710. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Xu, J.; Li, J.; Deng, M.; Shen, Z.; Nie, K.; Luo, W.; Zhang, C.; Ma, K.; Chen, X.; et al. Bacteroides vulgatus alleviates dextran sodium sulfate-induced colitis and depression-like behaviour by facilitating gut-brain axis balance. Front. Microbiol. 2023, 14, 1287271. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Wang, J.; Xu, Y.; Yang, H.; Wang, J.; Xue, C.; Yan, X.; Su, L. Anti-inflammation effects of fucosylated chondroitin sulphate from Acaudina molpadioides by altering gut microbiota in obese mice. Food Funct. 2019, 10, 1736–1746. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Ni, Y.; Wang, Z.; Tu, W.; Ni, L.; Zhuge, F.; Zheng, A.; Hu, L.; Zhao, Y.; Zheng, L.; et al. Spermidine improves gut barrier integrity and gut microbiota function in diet-induced obese mice. Gut Microbes 2020, 12, 1832857. [Google Scholar] [CrossRef] [PubMed]
- Truax, A.D.; Chen, L.; Tam, J.W.; Cheng, N.; Guo, H.; Koblansky, A.A.; Chou, W.C.; Wilson, J.E.; Brickey, W.J.; Petrucelli, A.; et al. The Inhibitory Innate Immune Sensor NLRP12 Maintains a Threshold against Obesity by Regulating Gut Microbiota Homeostasis. Cell Host Microbe 2018, 24, 364–378.e366. [Google Scholar] [CrossRef] [PubMed]
- Vacca, M.; Celano, G.; Calabrese, F.M.; Portincasa, P.; Gobbetti, M.; De Angelis, M. The Controversial Role of Human Gut Lachnospiraceae. Microorganisms 2020, 8, 573. [Google Scholar] [CrossRef] [PubMed]
- Balaji, S.; Jeyaraman, N.; Jeyaraman, M.; Ramasubramanian, S.; Muthu, S.; Santos, G.S.; da Fonseca, L.F.; Lana, J.F. Impact of curcumin on gut microbiome. World J. Exp. Med. 2025, 15, 100275. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.P.; Zhong, Y.B.; Kang, Z.P.; Huang, J.Q.; Fang, W.Y.; Wei, S.Y.; Long, J.; Li, S.S.; Zhao, H.M.; Liu, D.Y. Curcumin regulates the homeostasis of Th17/Treg and improves the composition of gut microbiota in type 2 diabetic mice with colitis. Phytother. Res. PTR 2022, 36, 1708–1723. [Google Scholar] [CrossRef] [PubMed]
- Gerin, F.; Erman, H.; Erboga, M.; Sener, U.; Yilmaz, A.; Seyhan, H.; Gurel, A. The Effects of Ferulic Acid Against Oxidative Stress and Inflammation in Formaldehyde-Induced Hepatotoxicity. Inflammation 2016, 39, 1377–1386. [Google Scholar] [CrossRef] [PubMed]
- Jalali, J.; Ghasemzadeh Rahbardar, M. Ameliorative effects of Portulaca oleracea L. (purslane) and its active constituents on nervous system disorders: A review. Iran. J. Basic. Med. Sci. 2023, 26, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, J.; Xu, F.; Chu, C.; Li, X.; Shi, X.; Zheng, W.; Wang, Z.; Jia, Y.; Xiao, W. Use of Ferulic Acid in the Management of Diabetes Mellitus and Its Complications. Molecules 2022, 27, 6010. [Google Scholar] [CrossRef] [PubMed]
- Neto-Neves, E.M.; da Silva Maia Bezerra Filho, C.; Dejani, N.N.; de Sousa, D.P. Ferulic Acid and Cardiovascular Health: Therapeutic and Preventive Potential. Mini Rev. Med. Chem. 2021, 21, 1625–1637. [Google Scholar] [CrossRef] [PubMed]
- Capaldo, C.T.; Powell, D.N.; Kalman, D. Layered defense: How mucus and tight junctions seal the intestinal barrier. J. Mol. Med. (Berl) 2017, 95, 927–934. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Liu, F.; Xu, L.; Yin, P.; Li, D.; Mei, C.; Jiang, L.; Ma, Y.; Xu, J. Protective Effects of Ferulic Acid against Heat Stress-Induced Intestinal Epithelial Barrier Dysfunction In Vitro and In Vivo. PLoS ONE 2016, 11, e0145236. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Yang, C.; Du, Y.; Wang, Q. Colon-Targeted Release of Turmeric Nonextractable Polyphenols and Their Anticolitis Potential via Gut Microbiota-Dependent Alleviation on Intestinal Barrier Dysfunction in Mice. J. Agric. Food Chem. 2023, 71, 11627–11641. [Google Scholar] [CrossRef] [PubMed]
- Koh, Y.C.; Tsai, Y.W.; Lee, P.S.; Nagabhushanam, K.; Ho, C.T.; Pan, M.H. Amination Potentially Augments the Ameliorative Effect of Curcumin on Inhibition of the IL-6/Stat3/c-Myc Pathway and Gut Microbial Modulation in Colitis-Associated Tumorigenesis. J. Agric. Food Chem. 2022, 70, 14744–14754. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.Y.; Zhong, X.; Kim, S.J.; Kim, D.H.; Kim, H.S.; Lee, J.S.; Yum, H.W.; Lee, J.; Na, H.K.; Surh, Y.J. Comparative Effects of Curcumin and Tetrahydrocurcumin on Dextran Sulfate Sodium-induced Colitis and Inflammatory Signaling in Mice. J. Cancer Prev. 2018, 23, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Jiang, A.; Wang, X.; Zhou, Y.; Tang, W.; Ren, C.; Qian, X.; Zhou, Z.; Gong, A. NMN Maintains Intestinal Homeostasis by Regulating the Gut Microbiota. Front. Nutr. 2021, 8, 714604. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Wang, S.; Wu, Z.; Zhou, Z.; Kuang, M.; Ren, C.; Qian, X.; Jiang, A.; Zhou, Y.; Wang, X.; et al. Correlations of ALD, Keap-1, and FoxO4 expression with traditional tumor markers and clinicopathological characteristics in colorectal carcinoma. Medicine 2022, 101, e30222. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Tang, W.; Shen, R.; Ju, X.; Shao, G.; Xu, X.; Jiang, A.; Qian, X.; Chen, M.; Zhou, Z.; et al. Analysis of candidate biomarkers and related transcription factors involved in the development and restoration of stress-induced gastric ulcer by transcriptomics. Cell Stress Chaperones 2020, 25, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Zhou, Z.; Shi, F.; Shao, G.; Wang, R.; Wang, J.; Wang, K.; Ding, W. Effects of the IGF-1/PTEN/Akt/FoxO signaling pathway on male reproduction in rats subjected to water immersion and restraint stress. Mol. Med. Rep. 2016, 14, 5116–5124. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Zhou, Y.; Tang, W.; Ren, C.; Jiang, A.; Wang, X.; Qian, X.; Zhou, Z.; Gong, A. Long-term treatment of Nicotinamide mononucleotide improved age-related diminished ovary reserve through enhancing the mitophagy level of granulosa cells in mice. J. Nutr. Biochem. 2022, 101, 108911. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward | Reverse |
---|---|---|
Mouse β-actin | CCCGCGAGTACAACCTTCTTG | ACCCATACCCACCATCACAC |
Mouse IL-1β | ATGCCACCTTTTGACAGTGATG | TGATGTGCTGCTGCGAGATT |
Mouse IL-6 | TTTCCTCTGGTCTTCTGGAGT | TCTGTGACTCCAGCTTATCTCTTG |
Mouse IL-10 | TGAATTCCCTGGGTGAGAAGC | CACCTTGGTCTTGGAGCTTATT |
Mouse TNF-α | CCCTCACACTCACAAACCAC | ACAAGGTACAACCCATCGGC |
Parameter Category | Positive Mode | Negative Mode |
---|---|---|
ESI Source | Gas1/Gas2/CUR = 60/60/30 Temp = 600 °C ISVF = +5500 V | Gas1/Gas2/CUR = 60/60/30 Temp = 600 °C ISVF = −5500 V |
MS Acquisition | m/z 60–1000 Da Accumulation time = 0.20 s/spectrum | m/z 60–1000 Da Accumulation time = 0.20 s/spectrum |
MS/MS (IDA Mode) | m/z 25–1000 Da Accumulation time = 0.05 s/spectrum CE = 35 V ± 15 eV DP = +60 V Isotope exclusion = 4 Da Ions/cycle = 10 | m/z 25–1000 Da Accumulation time = 0.05 s/spectrum CE = 35 V ± 15 eV DP = −60 V Isotope exclusion = 4 Da Ions/cycle = 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, C.; Xia, Y.; Yan, J.; Xia, W.; Wang, H.; Mao, F.; Huang, P. Curcumin Ameliorates DSS-Induced Colitis in Mice Through Modulation of Gut Microbiota and Metabolites. Life 2025, 15, 1153. https://doi.org/10.3390/life15071153
Yi C, Xia Y, Yan J, Xia W, Wang H, Mao F, Huang P. Curcumin Ameliorates DSS-Induced Colitis in Mice Through Modulation of Gut Microbiota and Metabolites. Life. 2025; 15(7):1153. https://doi.org/10.3390/life15071153
Chicago/Turabian StyleYi, Chengxue, Yuxuan Xia, Jiajing Yan, Wen Xia, Haoyu Wang, Fei Mao, and Pan Huang. 2025. "Curcumin Ameliorates DSS-Induced Colitis in Mice Through Modulation of Gut Microbiota and Metabolites" Life 15, no. 7: 1153. https://doi.org/10.3390/life15071153
APA StyleYi, C., Xia, Y., Yan, J., Xia, W., Wang, H., Mao, F., & Huang, P. (2025). Curcumin Ameliorates DSS-Induced Colitis in Mice Through Modulation of Gut Microbiota and Metabolites. Life, 15(7), 1153. https://doi.org/10.3390/life15071153