Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (96)

Search Parameters:
Keywords = BDNF/CREB1 pathway

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4427 KiB  
Article
Garlic-Derived Allicin Attenuates Parkinson’s Disease via PKA/p-CREB/BDNF/DAT Pathway Activation and Apoptotic Inhibition
by Wanchen Zeng, Yingkai Wang, Yang Liu, Xiaomin Liu and Zhongquan Qi
Molecules 2025, 30(15), 3265; https://doi.org/10.3390/molecules30153265 (registering DOI) - 4 Aug 2025
Abstract
Allicin (ALC), a naturally occurring organosulfur compound derived from garlic (Allium sativum), exhibits potential neuroprotective properties. Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by degeneration of dopaminergic neurons and motor dysfunction. This study utilized bioinformatics and network pharmacology methods [...] Read more.
Allicin (ALC), a naturally occurring organosulfur compound derived from garlic (Allium sativum), exhibits potential neuroprotective properties. Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by degeneration of dopaminergic neurons and motor dysfunction. This study utilized bioinformatics and network pharmacology methods to predict the anti-PD mechanism of ALC and established in vivo and in vitro PD models using 6-hydroxydopamine (6-OHDA) for experimental verification. Network pharmacological analysis indicates that apoptosis regulation and the PKA/p-CREB/BDNF signaling pathway are closely related to the anti-PD effect of ALC, and protein kinase A (PKA) and dopamine transporter (DAT) are key molecular targets. The experimental results show that ALC administration can alleviate the cytotoxicity of SH-SY5Y induced by 6-OHDA and simultaneously improve the motor dysfunction and dopaminergic neuron loss in PD mice. In addition, ALC can also activate the PKA/p-CREB/BDNF signaling pathway and increase the DAT level in brain tissue, regulate the expression of BAX and Bcl-2, and reduce neuronal apoptosis. These results indicate that ALC can exert anti-PD effects by up-regulating the PKA/p-CREB/BDNF/DAT signaling pathway and inhibiting neuronal apoptosis, providing theoretical support for the application of ALC in PD. Full article
(This article belongs to the Topic Natural Products and Drug Discovery—2nd Edition)
Show Figures

Figure 1

42 pages, 2457 KiB  
Review
Therapeutic Potential of Sea Cucumber-Derived Bioactives in the Prevention and Management of Brain-Related Disorders: A Comprehensive Review
by Purnima Rani Debi, Hrishika Barua, Mirja Kaizer Ahmmed and Shuva Bhowmik
Mar. Drugs 2025, 23(8), 310; https://doi.org/10.3390/md23080310 - 30 Jul 2025
Viewed by 208
Abstract
The popularity of bioactive compounds extracted from sea cucumbers is growing due to their wide application in the pharmaceutical industry, particularly in the development of drugs for neurological disorders. Different types of compounds, such as saponins, phenolic compounds, cerebrosides, and glucocerebrosides, are being [...] Read more.
The popularity of bioactive compounds extracted from sea cucumbers is growing due to their wide application in the pharmaceutical industry, particularly in the development of drugs for neurological disorders. Different types of compounds, such as saponins, phenolic compounds, cerebrosides, and glucocerebrosides, are being studied intensively for their efficacy in assessing the treatment of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and brain tumors, among others. Positive results have been observed in the upregulation in the content of p-CREB, p-PL3K, BDNF, SOD, and MDA. Furthermore, the neuroprotective mechanism of the compounds against Alzheimer’s disease revealed that suppressing the phosphorylation of tau protein by the PI3K/Akt/GSK3β pathway leads to improved synaptic plasticity and reduced nerve fiber tangles. This comprehensive review explores recent findings on the therapeutic potential of sea cucumber bioactives in the treatment of brain-related disorders. Full article
Show Figures

Figure 1

22 pages, 5061 KiB  
Article
Urolithin A Exhibits Antidepressant-like Effects by Modulating the AMPK/CREB/BDNF Pathway
by Yaqian Di, Rui Xue, Xia Li, Zijia Jin, Hanying Li, Lanrui Wu, Youzhi Zhang and Lei An
Nutrients 2025, 17(14), 2294; https://doi.org/10.3390/nu17142294 - 11 Jul 2025
Viewed by 478
Abstract
Background/Objectives: Urolithin A (UA), a gut-derived metabolite of ellagitannins or ellagic acid, has recently gained attention for its potential benefits to brain health. The present research aimed to assess the antidepressant-like properties of UA in both in vitro and in vivo models and [...] Read more.
Background/Objectives: Urolithin A (UA), a gut-derived metabolite of ellagitannins or ellagic acid, has recently gained attention for its potential benefits to brain health. The present research aimed to assess the antidepressant-like properties of UA in both in vitro and in vivo models and explored the molecular mechanisms underlying these effects. Methods: We investigated the antidepressant effects and mechanisms of UA in a model of corticosterone-induced damage to PC12 cells and in a model of chronic socially frustrating stress. Results: Our results demonstrate that UA treatment (5 and 10 μM) significantly alleviated cellular damage and inflammation in corticosterone (CORT)-treated PC12 cells. Furthermore, UA administration (50 and 100 mg/kg) significantly reduced immobility time in the mouse tail suspension test (TST) and forced swim test (FST), indicating its antidepressant-like activity. Additionally, treatment with UA led to the activation of the cAMP response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling cascade and triggered the activation of adenosine monophosphate-activated protein kinase (AMPK) during these processes. Importantly, pretreatment with AMPK-specific inhibitor Compound C abolished UA’s cytoprotective effects in PC12 cells, as well as its behavioral efficacy in the FST and TST, and its neurotrophic effects, highlighting the critical role of AMPK activation in mediating these effects. Furthermore, in the chronic social defeat stress (CSDS) mouse model, UA treatment (50 and 100 mg/kg) significantly alleviated depression-like behaviors, including reduced sucrose preference in the sucrose preference test, increased social avoidance behavior in the social interaction test, and anxiety-like behaviors, including diminished exploration, in the elevated plus maze test, suggesting the antidepressant-like and anxiolytic-like activities of UA. Moreover, UA treatment reversed elevated serum stress hormone levels, hippocampal inflammation, and the decreased AMPK/CREB/BDNF signaling pathway in the hippocampus of CSDS mice. Conclusions: Together, these results provide compelling evidence for UA as a viable dietary supplement or therapeutic option for managing depression. Full article
Show Figures

Figure 1

22 pages, 6645 KiB  
Article
Tandem Mass Tags Quantitative Proteomics Reveal the Mechanism by Which Paeoniflorin Regulates the PI3K/AKT and BDNF/CREB Signaling Pathways to Inhibit Parkinson’s Disease
by Zhen Feng, Chang Jin, Yue Zhang, Huiming Xue, Yongxing Ai, Jing Wang, Meizhu Zheng and Dongfang Shi
Int. J. Mol. Sci. 2025, 26(13), 6498; https://doi.org/10.3390/ijms26136498 - 6 Jul 2025
Viewed by 501
Abstract
Paeoniflorin (PF), a monomeric compound extracted from the dry roots of Paeonia lactiflora, has been widely used in the treatment of nervous system diseases, marking it as a critical formula in Parkinson’s disease (PD). However, the action of PF against PD and [...] Read more.
Paeoniflorin (PF), a monomeric compound extracted from the dry roots of Paeonia lactiflora, has been widely used in the treatment of nervous system diseases, marking it as a critical formula in Parkinson’s disease (PD). However, the action of PF against PD and its molecular mechanism are still unclear. In this study, tandem mass tags quantitative proteomics was performed to systematically clarify the underlying mechanism of action of PF against PD and to confirm it using in vivo and in vitro studies. The results showed that PF notably enhanced the viability of PC12 cells and mitigated MPP+-induced mitochondrial dysfunction, oxidative stress, and apoptosis. Tandem mass tag-based quantitative proteome analysis revealed the identification of 6405 proteins, of which 92 were downregulated and 190 were upregulated. Among them, the levels of PI3K, AKT, CREB, and BDNF in the MPP+-induced PC12 cell and MPTP mice were considerably lower than in the control group, indicating the role of the BDNF/CREB pathway in the pathogenesis of neuroprotection. The related DEP (PI3K, AKT, CREB, and BDNF) expression levels were verified by Western blot. PF effectively restored the altered expression of the four DEPs induced by MPP+ and MPTP. Summarily, PF exerted remarkable neuroprotective effects in MPP+-induced PC12 cell and MPTP-induced mice. Further, our research may provide proteomics insights that contribute to the further exploration of PF as a potential treatment for PD. Full article
Show Figures

Figure 1

22 pages, 2690 KiB  
Article
PEMFs Restore Mitochondrial and CREB/BDNF Signaling in Oxidatively Stressed PC12 Cells Targeting Neurodegeneration
by Stefania Merighi, Mercedes Fernandez, Manuela Nigro, Alessia Travagli, Filippo Caldon, Simona Salati, Pier Andrea Borea, Ruggero Cadossi, Katia Varani and Stefania Gessi
Int. J. Mol. Sci. 2025, 26(13), 6495; https://doi.org/10.3390/ijms26136495 - 5 Jul 2025
Viewed by 446
Abstract
Alzheimer’s disease (AD), the most prevalent form of neurodegenerative dementia, is characterized by progressive cognitive decline and neuronal loss. Despite advances in pharmacological treatments, current therapies remain limited in efficacy and often induce adverse effects. Increasing evidence highlights oxidative stress, mitochondrial dysfunction, and [...] Read more.
Alzheimer’s disease (AD), the most prevalent form of neurodegenerative dementia, is characterized by progressive cognitive decline and neuronal loss. Despite advances in pharmacological treatments, current therapies remain limited in efficacy and often induce adverse effects. Increasing evidence highlights oxidative stress, mitochondrial dysfunction, and disrupted neurotrophic signaling as key contributors to AD pathogenesis. Pulsed electromagnetic fields (PEMFs) are emerging as a non-invasive, multifactorial approach with promising biological effects. In this study, we investigated the neuroprotective potential of PEMFs in NGF-differentiated PC12 cells exposed to hydrogen peroxide (H2O2) or amyloid-β peptide (Aβ), both of which model pathological features of AD. PEMF treatment significantly counteracted H2O2- and Aβ-induced cytotoxicity by restoring cell viability, reducing reactive oxygen species production, and improving catalase activity. Furthermore, PEMFs preserved the mitochondrial membrane potential and decreased caspase-3 activation and chromatin condensation. Mechanistically, PEMFs inhibited ERK phosphorylation and enhanced cAMP levels, CREB phosphorylation, and BDNF expression, pathways known to support neuronal survival and plasticity. In conclusion, these findings suggest that PEMFs modulate multiple stress response systems, promoting neuroprotection under oxidative and amyloidogenic conditions. Full article
(This article belongs to the Special Issue Potential Prevention and Treatment of Neurodegenerative Disorders)
Show Figures

Graphical abstract

29 pages, 1086 KiB  
Review
Brain Neurotrophins and Plant Polyphenols: A Powerful Connection
by Marco Fiore, Sergio Terracina and Giampiero Ferraguti
Molecules 2025, 30(12), 2657; https://doi.org/10.3390/molecules30122657 - 19 Jun 2025
Viewed by 1051
Abstract
Neurodegenerative disorders, mental conditions, and cognitive decline represent significant challenges worldwide, with growing pieces of evidence implicating alterations in neurotrophin signaling as central to these diseases. Neurotrophins—such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF)—are indispensable for neuronal survival, differentiation, and [...] Read more.
Neurodegenerative disorders, mental conditions, and cognitive decline represent significant challenges worldwide, with growing pieces of evidence implicating alterations in neurotrophin signaling as central to these diseases. Neurotrophins—such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF)—are indispensable for neuronal survival, differentiation, and synaptic plasticity, and their dysregulation is closely associated with various neuropathological situations. Similarly, dietary plant polyphenols, abundant in vegetables, fruits, wine, tea, and extra virgin olive oil, show powerful anti-inflammatory, antioxidant, and anti-apoptotic activities. This narrative review critically addresses the evolving body of evidence that links plant polyphenols and brain neurotrophins, emphasizing several molecular mechanisms by which polyphenols regulate and modulate neurotrophin signaling. Crucial pathways include mitigation of neuroinflammatory responses, activation of intracellular cascades such as the cAMP response element-binding protein (CREB), epigenetic modulation, and the diminution of oxidative stress. Together, these effects contribute to potentiated enhanced synaptic function, neuronal integrity, and better learning and memory processes. Moreover, this narrative review examines how polyphenol-induced upregulation of neurotrophins may alleviate conditions associated not only with neurodegeneration but also with addiction and mood disorders, suggesting extensive therapeutic approaches. Findings from clinical investigations and animal models are presented to sustain the neuroprotective role of polyphenol-rich diets. Lastly, future research directions are recommended, focusing on polyphenol bioavailability optimization, considering combinatory dietary stratagems, and proposing personalized nutritional interventions. This wide-ranging perspective highlights plant polyphenols as encouraging modulators of neurotrophin pathways and supports their inclusion in approaches aimed at promoting brain health and counteracting neurodegenerative decline. Full article
(This article belongs to the Special Issue Exploring the Natural Antioxidants in Foods)
Show Figures

Graphical abstract

21 pages, 5983 KiB  
Article
Niacin Modulates SIRT1-Driven Signaling to Counteract Radiation-Induced Neurocognitive and Behavioral Impairments
by Erdinç Tunç, Hatice Aygün, Mümin Alper Erdoğan, Yiğit Uyanıkgil and Oytun Erbaş
Int. J. Mol. Sci. 2025, 26(11), 5285; https://doi.org/10.3390/ijms26115285 - 30 May 2025
Viewed by 546
Abstract
Radiation exposure causes neuroinflammation, oxidative stress, and neuronal loss, leading to cognitive and behavioral impairments. This study aims to evaluate the effect of niacin interventions on whole-brain irradiation (WBI)-induced cognitive and behavioral impairment. Female Wistar rats were randomly assigned to Control (Group 1), [...] Read more.
Radiation exposure causes neuroinflammation, oxidative stress, and neuronal loss, leading to cognitive and behavioral impairments. This study aims to evaluate the effect of niacin interventions on whole-brain irradiation (WBI)-induced cognitive and behavioral impairment. Female Wistar rats were randomly assigned to Control (Group 1), Radiation +Saline (Group 2), and Radiation +niacin (Group 3) groups. Rats in the irradiated groups (Groups 2 and 3) received a single dose of 20 Gy photon irradiation. Group 2 received water seven days after irradiation, while Group 3 received niacin (60 mg/kg, 2 mL) oral gavage for 15 days. On days 22, 23, and 24, behavioral assessments were performed, including the Open Field Test, the Sociability Test, and the Passive Avoidance Learning (PAL) task. Biochemical analyses included MDA, BDNF, TNF-α, CREB), SIRT1, and SIRT6 measured by ELISA. Histological assessments included neuronal density and GFAP immunostaining in CA1 and CA3 regions of the hippocampus and cerebellar Purkinje neurons. Radiation exposure importantly increased MDA and TNF-α levels, while SIRT1, SIRT6, BDNF, and CREB were notably reduced. This was accompanied by neuronal loss in the cerebellum and hippocampus, astrogliosis, and behavioral and cognitive deficits. Niacin treatment significantly decreased MDA and TNF-α levels while increasing BDNF, CREB, SIRT1, and SIRT6 expression, attenuating neuronal apoptosis. Immunohistochemical analysis demonstrated that niacin treatment enhanced neuronal density in the CA1 and CA3 regions of the hippocampus and cerebellar Purkinje neurons while reducing GFAP immunoreactivity in the CA1, CA3, and cerebellum following WBI. Behaviorally, niacin treatment improved social interaction, locomotor activity, and memory performance, underscoring its neuroprotective potential against WBI-induced damage. These findings suggest that niacin may ameliorate behavioral and cognitive impairments following whole brain irradiation by activating the SIRT1/CREB/BDNF or SIRT1/SIRT6/MDA/TNF-α signaling pathway. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Graphical abstract

22 pages, 5296 KiB  
Review
The Role of Mitochondrial Energy Metabolism in the Mechanism of Exercise Improving Depression
by Yuwei Liu, Chenghao Zhong, Yuxin Yang, Jianbo Hu, Xiaoyan Yi, Jiating Huang, Haonan Li, Xiaojie Liu, Ke Xue and Xianghe Chen
Curr. Issues Mol. Biol. 2025, 47(5), 382; https://doi.org/10.3390/cimb47050382 - 21 May 2025
Viewed by 1113
Abstract
Depression is the most disabling neuropsychiatric disorder, but its exact mechanisms remain unclear. Mitochondrial energy metabolism may play a key role in the onset and development of depression. Cytokines such as PGC-1α, NLRP3, and BDNF can influence mitochondrial energy metabolism by regulating mitochondrial [...] Read more.
Depression is the most disabling neuropsychiatric disorder, but its exact mechanisms remain unclear. Mitochondrial energy metabolism may play a key role in the onset and development of depression. Cytokines such as PGC-1α, NLRP3, and BDNF can influence mitochondrial energy metabolism by regulating mitochondrial biogenesis, immune inflammation, and neuroplasticity, thereby mediating the occurrence and progression of depression. Exercise can improve depression by regulating mitochondrial energy metabolism. The molecular mechanisms are closely related to the upregulation of exercise-induced PGC-1α, AMPK, SIRT1, and BDNF expression, as well as the downregulation of NLRP3 expression. These factors can activate key factors or pathways such as Nrf2, AMPK, and PKA/CREB, while inhibiting the excessive activation of NF-κB. Through these mechanisms, they regulate the expression of downstream target genes (such as TFAM, NRF1, CREB, and Bcl-2), thereby enhancing mitochondrial biogenesis and improving the quantity and quality of mitochondria. Additionally, they can act to inhibit the release of inflammatory factors to improve immune inflammation, enhance neuroplasticity, promote neuronal growth, and facilitate synapse formation and remodeling, thereby enhancing mitochondrial energy metabolism and improving its dysfunction, which in turn alleviates depression. Currently, there is a lack of systematic and comprehensive research on the mechanisms by which exercise improves depression through mitochondrial energy metabolism. Therefore, this article aims to review and analyze the role of mitochondrial energy metabolism in the improvement of depression through exercise, in order to provide a new theoretical basis and research ideas for the prevention and treatment of depression. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

17 pages, 1524 KiB  
Review
Research Progress on the Mechanism of Bile Acids and Their Receptors in Depression
by Xue Zhao, Iin Zheng, Wenjing Huang, Dongning Tang, Meidan Zhao, Ruiling Hou, Ying Huang, Yun Shi, Weili Zhu and Shenjun Wang
Int. J. Mol. Sci. 2025, 26(9), 4023; https://doi.org/10.3390/ijms26094023 - 24 Apr 2025
Viewed by 1375
Abstract
Depression, a highly prevalent mental disorder worldwide, arises from multifaceted interactions involving neurotransmitter imbalances, inflammatory responses, and gut–brain axis dysregulation. Emerging evidence highlights the pivotal role of bile acids (BAs) and their receptors, including farnesoid X receptor (FXR), Takeda G protein-coupled receptor 5 [...] Read more.
Depression, a highly prevalent mental disorder worldwide, arises from multifaceted interactions involving neurotransmitter imbalances, inflammatory responses, and gut–brain axis dysregulation. Emerging evidence highlights the pivotal role of bile acids (BAs) and their receptors, including farnesoid X receptor (FXR), Takeda G protein-coupled receptor 5 (TGR5), and liver X receptors (LXRs) in depression pathogenesis through modulation of neuroinflammation, gut microbiota homeostasis, and neural plasticity. Clinical investigations demonstrated altered BA profiles in depressed patients, characterized by decreased primary BAs (e.g., chenodeoxycholic acid (CDCA)) and elevated secondary BAs (e.g., lithocholic acid (LCA)), correlating with symptom severity. Preclinical studies revealed that BAs ameliorate depressive-like behaviors via dual mechanisms: direct CNS receptor activation and indirect gut–brain signaling, regulating neuroinflammation, oxidative stress, and BDNF/CREB pathways. However, clinical translation faces challenges including species-specific BA metabolism, receptor signaling complexity, and pharmacological barriers (e.g., limited blood–brain barrier permeability). While FXR/TGR5 agonists exhibit neuroprotective and anti-inflammatory potential, their adverse effects (pruritus, dyslipidemia) require thorough safety evaluation. Future research should integrate multiomics approaches and interdisciplinary strategies to develop personalized BA-targeted therapies, advancing novel treatment paradigms for depression. Full article
Show Figures

Figure 1

20 pages, 7827 KiB  
Article
Neuroprotective Effects of Cilomilast and Chlorogenic Acid Against Scopolamine-Induced Memory Deficits via Modulation of the cAMP/PKA–CREB–BDNF Pathway
by Esraa M. Mosalam, Soha M. Atya, Noha M. Mesbah, Shady Allam and Eman T. Mehanna
Int. J. Mol. Sci. 2025, 26(7), 3108; https://doi.org/10.3390/ijms26073108 - 28 Mar 2025
Cited by 1 | Viewed by 805
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive decline, neuroinflammation and neuronal damage. This study aimed to investigate the neuroprotective effects of cilomilast (CILO), a phosphodiesterase-4 (PDE4) inhibitor, alone and in combination with chlorogenic acid (CGA), a natural polyphenol, against scopolamine [...] Read more.
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive decline, neuroinflammation and neuronal damage. This study aimed to investigate the neuroprotective effects of cilomilast (CILO), a phosphodiesterase-4 (PDE4) inhibitor, alone and in combination with chlorogenic acid (CGA), a natural polyphenol, against scopolamine (SCOP)-induced cognitive impairment in mice. Forty male albino mice were divided into five groups: normal control, SCOP control, CGA + SCOP, CILO + SCOP and CILO + CGA + SCOP. Behavioral assessments, including the Y-maze and pole climbing tests, demonstrated that SCOP significantly impaired cognition, while treatment with CILO and CGA reversed these deficits, with the combination group showing the greatest improvement. Histopathological analyses revealed that CILO and CGA reduced neuronal damage and amyloid beta (Aβ) accumulation. Immunohistochemical and biochemical assessments confirmed a decrease in neuroinflammatory markers, including tumor necrosis factor-alpha (TNF-α) and nuclear factor kappa B (NF-κB). Molecular analyses showed that CILO restored cyclic adenosine monophosphate (cAMP) levels, leading to activation of protein kinase A (PKA), cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF), key regulators of neuronal plasticity and survival. CGA enhanced these effects by further inhibiting PDE4, amplifying the neuroprotective response. These findings suggest that PDE4 inhibitors, particularly in combination with CGA, may represent promising therapeutic strategies for AD-related cognitive impairment. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Graphical abstract

28 pages, 1086 KiB  
Review
Phytochemicals Targeting BDNF Signaling for Treating Neurological Disorders
by Alka Ashok Singh, Shweta Katiyar and Minseok Song
Brain Sci. 2025, 15(3), 252; https://doi.org/10.3390/brainsci15030252 - 27 Feb 2025
Cited by 5 | Viewed by 3552
Abstract
Neurological disorders are defined by a deterioration or disruption of the nervous system’s structure and function. These diseases, which include multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and schizophrenia, are caused by intricate pathological processes that include excitotoxicity, neuroinflammation, oxidative stress, genetic [...] Read more.
Neurological disorders are defined by a deterioration or disruption of the nervous system’s structure and function. These diseases, which include multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and schizophrenia, are caused by intricate pathological processes that include excitotoxicity, neuroinflammation, oxidative stress, genetic mutations, and compromised neurotrophic signaling. Although current pharmaceutical treatments relieve symptoms, their long-term efficacy is limited due to adverse side effects and weak neuroprotective properties. However, when combined with other neuroprotective drugs or adjunct therapy, they may offer additional benefits and improve treatment outcomes. Phytochemicals have emerged as attractive therapeutic agents due to their ability to regulate essential neurotrophic pathways, especially the brain-derived neurotrophic factor (BDNF) signaling cascade. BDNF is an important target for neurodegenerative disease (ND) treatment since it regulates neuronal survival, synaptic plasticity, neurogenesis, and neuroprotection. This review emphasizes the molecular pathways through which various phytochemicals—such as flavonoids, terpenoids, alkaloids, and phenolic compounds—stimulate BDNF expression and modulate its downstream signaling pathways, including GSK-3β, MAPK/ERK, PI3K/Akt/mTOR, CREB, and Wnt/β-catenin. This paper also highlights how phytochemical combinations may interact to enhance BDNF activity, offering new therapeutic options for ND treatment. Despite their potential for neuroprotection, phytochemicals face challenges related to pharmacokinetics, blood–brain barrier (BBB) permeability, and absorption, highlighting the need for further research into combination therapies and improved formulations. Clinical assessment and mechanistic understanding of BDNF-targeted phytotherapy should be the main goals of future studies. The therapeutic efficacy of natural compounds in regulating neurotrophic signaling is highlighted in this review, providing a viable approach to the prevention and treatment of NDs. Full article
(This article belongs to the Section Neuropharmacology and Neuropathology)
Show Figures

Figure 1

13 pages, 3438 KiB  
Article
Puerarin Attenuates the Cytotoxicity Effects of Bisphenol S in HT22 Cells by Regulating the BDNF/TrkB/CREB Signaling Pathway
by Meilin Qin, Xinxin Guo, Nuo Xu, Yan Su, Mengfen Pan, Zhengbao Zhang and Huaicai Zeng
Toxics 2025, 13(3), 162; https://doi.org/10.3390/toxics13030162 - 25 Feb 2025
Viewed by 774
Abstract
Bisphenol S (BPS) is a widespread environmental endocrine disrupter that can cause hepatotoxicity, neurotoxicity and negative effects on reproduction. Puerarin (PUE) has been found to have anti-inflammatory, antioxidant, and neuroprotective properties, however, its potential protective effects against BPS-induced neurotoxicity and the underlying mechanisms [...] Read more.
Bisphenol S (BPS) is a widespread environmental endocrine disrupter that can cause hepatotoxicity, neurotoxicity and negative effects on reproduction. Puerarin (PUE) has been found to have anti-inflammatory, antioxidant, and neuroprotective properties, however, its potential protective effects against BPS-induced neurotoxicity and the underlying mechanisms are still not fully understood. In this study, HT22 cells were exposed to different concentrations of BPS with or without PUE. Cell viability, apoptosis, oxidative damage, and the expression level of axon-injury-related genes and the BDNF/TrkB/CREB pathway were analyzed. The results showed that 40 μM to 180 μM BPS and 100 μM to 180 μM PUE significantly decreased the cell viability of HT22 cells, but in the 80 μM PUE group, the cell viability was higher than control group, and the ratio of 1.1. Meanwhile, BPS increased the production of ROS and MDA but decreased the GSH and SOD. However, supplementation with PUE was alleviated the oxidative damage. PUE also alleviated the apoptosis rate that induced by BPS. Additionally, BPS decreased the expression levels of mRNA and proteins of synaptic-related genes, but inhibited the expression levels of mRNA and proteins of the BDNF/TrkB/CREB signaling pathway. Interestingly, PUE was found to significantly recover the expression of synaptic related genes, but also upregulated the expression of the BDNF/TrkB/CREB pathway. In conclusion, our study proved that PUE can attenuate the neurotoxicity effect of bisphenol S, which related to oxidative damage in HT22 cells by regulating the BDNF/TrkB/CREB signaling pathway. This study is not only the first to demonstrate that PUE can mitigate BPS-induced neurotoxicity through oxidative stress modulation, but also provides a novel therapeutic approach involving the BDNF/TrkB/CREB pathway. These findings offer promising insights into natural-based strategies for protecting against environmental neurotoxins and provide a foundation for future therapeutic developments targeting BPS-induced neurotoxicity. Full article
Show Figures

Graphical abstract

14 pages, 7559 KiB  
Article
The pCREB/BDNF Pathway in the Hippocampus Is Involved in the Therapeutic Effect of Selective 5-HT Reuptake Inhibitors in Adult Male Rats Exposed to Blast Traumatic Brain Injury
by Xiaolin Fan, Hong Wang, Xiaoqiang Lv, Qi Wang, Boya Yu, Xiao Li, Liang Li, Yuhao Zhang, Ning Ma, Qing Lu, Airong Qian and Junhong Gao
Brain Sci. 2025, 15(3), 236; https://doi.org/10.3390/brainsci15030236 - 24 Feb 2025
Cited by 1 | Viewed by 1451
Abstract
Background: Blast traumatic brain injury (bTBI) can result in depression-like behaviors in the acute and chronic phases. SSRIs have been shown to significantly alleviate depression-like behaviors in animal models of traumatic brain injury (TBI) by increasing serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) [...] Read more.
Background: Blast traumatic brain injury (bTBI) can result in depression-like behaviors in the acute and chronic phases. SSRIs have been shown to significantly alleviate depression-like behaviors in animal models of traumatic brain injury (TBI) by increasing serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) in the hippocampus. However, the therapeutic effects of SSRIs on depression caused by bTBI remain unclear. Objective: Therefore, this study was aimed at investigating the therapeutic effects of SSRIs on depression-like behaviors in bTBI models. Methods: We created a rat model to study mild TBI by subjecting rats to increased blast overpressures (BOP) and injecting fluoxetine and escitalopram SSRIs intraperitoneally for 28 days. Results: On day 14 post-BOP exposure, rats treated with SSRIs showed decreased depression-like behaviors. This finding was accompanied by higher 5-HT levels in the hippocampus and increased numbers of Nestin-positive cells in the dentate gyrus. Furthermore, rats treated with SSRIs exhibited increased pCREB and BDNF protein expression in the hippocampus on days 7, 14, and 28 after bTBI. Conclusions: Overall, our findings indicate that SSRI-induced recovery from depression-like behaviors after mild bTBI is associated with the upregulation of 5-HT levels, pCREB and BDNF expression, and neurogenesis in the hippocampus. Full article
Show Figures

Figure 1

23 pages, 7563 KiB  
Article
Hesperetin-Enhanced Metformin to Alleviate Cognitive Impairment via Gut–Brain Axis in Type 2 Diabetes Rats
by Danyang Zhang, Xiaoshi He, Yinbo Wang, Xiaoyu Wang, Xiao Han, Haodong Liu, Yan Xing, Bo Jiang, Zhilong Xiu, Yongming Bao and Yuesheng Dong
Int. J. Mol. Sci. 2025, 26(5), 1923; https://doi.org/10.3390/ijms26051923 - 23 Feb 2025
Cited by 1 | Viewed by 1253
Abstract
Diabetes constitutes a risk factor for cognitive impairment, whereas insulin resistance serves as the shared pathogenesis underlying both diabetes and cognitive decline. The use of metformin for treating cognitive impairment remains controversial. The present study found that hesperetin, a flavanone derived from citrus [...] Read more.
Diabetes constitutes a risk factor for cognitive impairment, whereas insulin resistance serves as the shared pathogenesis underlying both diabetes and cognitive decline. The use of metformin for treating cognitive impairment remains controversial. The present study found that hesperetin, a flavanone derived from citrus peel, enhanced metformin’s efficacy in reducing blood sugar levels, improving insulin sensitivity, and ameliorating cognitive impairment in diabetic rats. Additionally, it reduced the required dosage of metformin to one-third of its conventional dose. Transcriptome analysis and 16S rRNA sequencing revealed that the activation of insulin and cyclic-adenosine monophosphate response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF) pathways benefited from the regulation of gut microbiota and the promotion of short-chain fatty acid (SCFA) producers such as Romboutsia. Furthermore, this study demonstrated that hesperetin supplementation counteracted the upregulation of β-site amyloid precursor protein cleaving enzyme 1 (BACE1), a pathological factor of Alzheimer’s disease (AD) that was induced by metformin. Our findings reveal that hesperetin can be used in supplementary treatment for cognitive impairment associated with diabetes. Full article
(This article belongs to the Special Issue Plant Phenolic Accumulation and Application in Human Diseases)
Show Figures

Figure 1

16 pages, 2816 KiB  
Article
Antidepressant Activity of Agarwood Essential Oil: A Mechanistic Study on Inflammatory and Neuroprotective Signaling Pathways
by Shunan Zhang, Xiqin Chen, Canhong Wang, Yuanyuan Sun, Bao Gong, Dan Li, Yulan Wu, Yangyang Liu and Jianhe Wei
Pharmaceuticals 2025, 18(2), 255; https://doi.org/10.3390/ph18020255 - 14 Feb 2025
Cited by 1 | Viewed by 1753
Abstract
Background: Depression ranks among the most severe mental health conditions, and poses a burden on global health. Agarwood, an aromatic medicinal plant, has shown potential for improving mental symptoms. As a common folk medicine, agarwood has been applied as an alternative method [...] Read more.
Background: Depression ranks among the most severe mental health conditions, and poses a burden on global health. Agarwood, an aromatic medicinal plant, has shown potential for improving mental symptoms. As a common folk medicine, agarwood has been applied as an alternative method for mental disorders such as depression through aromatherapy. Previous studies have found that the therapeutic effects of agarwood aromatherapy are primarily related to its volatile components. This study aimed to examine the antidepressant properties and underlying mechanisms of agarwood essential oil (AEO), a collection of the volatile components of agarwood utilized through aromatherapy inhalation and injection administration in mice. Methods: A lipopolysaccharide (LPS)-induced inflammatory depression model was used to evaluate the effects of AEO inhalation and injection on depression-like symptoms. Behavioral assessments included the open-field, tail suspension, and forced swimming tests. Western blot (WB) and ELISA techniques were used to further verify the mechanistic insights. Results: In the LPS-induced depression-like model, AEO inhalation and injection significantly improved depression-like symptoms, decreased immobility duration in both the tail suspension and forced swimming tests in model mice, and reduced the levels of inflammatory cytokines IL-1β, IL-6, and TNF-α. WB experiments demonstrated that AEO inhibited the NF-κB/IκB-α inflammatory pathway and activated the BDNF/TrkB/CREB pathway in the hippocampus of the LPS-depression model mice. Notably, AEO extracted by hydrodistillation was more effective in alleviating LPS-induced depressive-like behaviors than using supercritical CO2 fluid extraction. Conclusions: Both the inhalation and the injection administration of AEO exerted notable antidepressant effects, potentially associated with reducing inflammation levels in the brain, downregulating inflammatory NF-κB/IκB-α, and upregulating the neuroprotective BDNF/TrkB/CREB signaling pathway. In the future, it is necessary to further determine the pharmacodynamic components, key targets and specific molecular mechanisms of AEO’s antidepressant effects so as to provide more support for the neuroprotective research of medicinal plants. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

Back to TopTop