Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = Asian summer monsoon anticyclone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5536 KiB  
Article
Synergistic Impact of Midlatitude Westerly and East Asian Summer Monsoon on Mid-Summer Precipitation in North China
by Ke Shang, Xiaodong Liu, Xiaoning Xie, Yingying Sha, Xuan Zhao, Jiahuimin Liu and Anqi Wang
Atmosphere 2025, 16(6), 658; https://doi.org/10.3390/atmos16060658 - 29 May 2025
Viewed by 408
Abstract
Midlatitude westerly and East Asian summer monsoon (EASM) are crucial circulation systems in the upper and lower troposphere of East Asia that significantly influence mid-summer precipitation pattern. However, their synergistic effect on mid-summer precipitation in North China (NC) remains unclear. In this study, [...] Read more.
Midlatitude westerly and East Asian summer monsoon (EASM) are crucial circulation systems in the upper and lower troposphere of East Asia that significantly influence mid-summer precipitation pattern. However, their synergistic effect on mid-summer precipitation in North China (NC) remains unclear. In this study, the concurrent variations of mid-summer westerly and EASM are categorized into two configurations: strong westerly–strong EASM (SS) and weak westerly–weak EASM (WW). At the synoptic timescale, the SS configuration significantly enhances precipitation in NC, whereas the WW configuration suppresses mid-summer rainfall. The underlying mechanism is that the SS pattern stimulates an anomalous quasi-barotropic cyclone–anticyclone pair over the Mongolian Plateau–Yellow Sea region. Two anomalous water vapor channels (westerly-driven and EASM-driven water vapor transport) are established in the southern and western peripheries of this cyclone–anticyclone pair, ensuring abundant moisture supply over NC. Meanwhile, frequently occurring westerly jet cores in northern NC form a jet entrance region, favoring strong upper-level divergent pumping and deep accents in its southern flank. This synergy between strong westerlies and EASM enhances both the moisture transports and ascending movements, thereby increasing precipitation over NC. Conversely, the atmospheric circulation associated with the WW pattern exhibits opposite characteristics, resulting in decreased NC rainfall. Our findings elucidate the synoptic-scale influences of westerly–monsoon synergy on mid-summer rainfall, through regulating moisture transports and westerly jet-induced dynamic uplift, potentially improving predictive capabilities for mid-summer precipitation forecasting. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

20 pages, 14849 KiB  
Article
Comparison of the Impacts of Sea Surface Temperature in the Western Pacific and Indian Ocean on the Asian Summer Monsoon Anticyclone and Water Vapor in the Upper Troposphere
by Luyao Chao, Hongying Tian, Xiaoxu Tu, Jiaying Jiang and Kailong Shen
Remote Sens. 2024, 16(16), 2922; https://doi.org/10.3390/rs16162922 - 9 Aug 2024
Viewed by 1484
Abstract
The variation in the Asian summer monsoon anticyclone (ASMA) has long been of interest due to its effects on the weather and climate, as well as the vertical transport of pollutants in South Asia and East Asia. This study employs composite analysis to [...] Read more.
The variation in the Asian summer monsoon anticyclone (ASMA) has long been of interest due to its effects on the weather and climate, as well as the vertical transport of pollutants in South Asia and East Asia. This study employs composite analysis to investigate the differences in the influences of sea surface temperature (SST) anomalies in the Western Pacific (WP) and the Indian Ocean (IO) on the ASMA and water vapor in the upper troposphere during summer. The underlying physical mechanisms were further explored. The results indicate that the warm SSTs in the WP have a greater impact on the intensity of the ASMA than those in the IO in summer. On the contrary, the cold SSTs in the IO have a greater impact on intensity of the ASMA than those in the WP in summer. The difference in the impact of SSTs in the WP and IO on the boundaries of the ASMA is relatively small. During positive SST anomalies in the WP, the increase in tropospheric temperature in South Asia and the strengthening of Walker circulation in the WP both contribute to the enhancement of the ASMA. The variations in tropospheric temperature and Walker circulation caused by positive SST anomalies in the IO are similar to those in the WP, except that the rising branch of the Walker circulation is located in the central and western IO. The decrease in SST in the WP region causes insignificant changes in the ASMA. During the cold SST period in the IO, the significant decrease in tropospheric temperature and the weakening of the Walker circulation in the IO region lead to a significant decrease in the intensity of the ASMA at the southern ASMA. When the SST in the WP and IO regions is warmer, the high value centers of water vapor in the troposphere generally coincide with the high value centers of temperature, accompanied by enhanced convection, significantly increasing the water vapor south of the ASMA. The anomalous sinking movement in the Western Pacific leads to relatively small changes in water vapor from the near-surface to 150 hPa over the southeast of the ASMA. Full article
Show Figures

Figure 1

14 pages, 5259 KiB  
Article
Impacts of a Recent Interdecadal Shift in the Summer Arctic Dipole on the Variability in Atmospheric Circulation over Eurasia
by Xuanwen Zhang, Xueqi Pang, Xiang Zhang and Bingyi Wu
Atmosphere 2024, 15(1), 71; https://doi.org/10.3390/atmos15010071 - 7 Jan 2024
Cited by 2 | Viewed by 1735
Abstract
This study investigated the relationship between the summer Arctic Dipole (AD) anomaly and the climatic variability in Eurasia during the period 1979–2021. It was found that the summer AD anomaly experienced a phase shift from frequent negative phases before 2006 to positive phases [...] Read more.
This study investigated the relationship between the summer Arctic Dipole (AD) anomaly and the climatic variability in Eurasia during the period 1979–2021. It was found that the summer AD anomaly experienced a phase shift from frequent negative phases before 2006 to positive phases after 2007, as manifested by the shift of the center of the positive (negative) AD anomaly to Greenland (in the Laptev Sea and East Siberian Seas) in the more recent period (2007–2021) from the vicinity of the Kara Sea and Laptev Sea (the Canadian archipelago) in the earlier period (1979–2006). Before the mid-2000s, a wave train was shown in the middle troposphere of Eurasia, and this teleconnection pattern of atmospheric circulation could have resulted in local warm and wet (cool and dry) anomalies over northern Russia and East Asia (Western Europe and the Far east). Since the mid-2000s, the wave train has experienced a notable adjustment that was conducive to East Asian and Arctic cooling, displaying anticyclonic anomalies around northern Eurasia and two cyclonic anomalies centered near the Arctic and East Asia. The presence of a cold Arctic anomaly was found to enhance westerly winds at high latitudes by modulating the meridional temperature gradient (MTG) and impeding the southward propagation of cold Arctic air. Additionally, the warmth of northern Eurasia may have also resulted in a reduction in the MTG between northern Eurasia and the mid-lower latitudes, favoring a weakening of zonal winds over the central region of Eurasia. The increased upper-level westerly winds over southern East Asia implied a weakened East Asian Summer Monsoon, which inhibited precipitation in northeast China. Full article
(This article belongs to the Special Issue Arctic Atmosphere–Sea Ice Interaction and Impacts)
Show Figures

Figure 1

15 pages, 11885 KiB  
Article
Regional Characteristics of Summer Precipitation Anomalies in the Northeastern Maritime Continent
by Qi Xu, Zhaoyong Guan, Dachao Jin, Wei Chen and Jing Zhu
Atmosphere 2023, 14(7), 1059; https://doi.org/10.3390/atmos14071059 - 22 Jun 2023
Cited by 1 | Viewed by 1493
Abstract
Based on the monthly mean reanalysis data from NCEP/NCAR (National Centers for Environmental Prediction/ National Center for Atmospheric Research) and GPCP (Global Precipitation Climatology Project) (1979–2020), the regional characteristics of precipitation in the warm pool side of the Maritime Continent (MC) and the [...] Read more.
Based on the monthly mean reanalysis data from NCEP/NCAR (National Centers for Environmental Prediction/ National Center for Atmospheric Research) and GPCP (Global Precipitation Climatology Project) (1979–2020), the regional characteristics of precipitation in the warm pool side of the Maritime Continent (MC) and the relationships between different precipitation patterns and atmospheric circulations are studied. The results show that there are significant correlations as well as differences between the precipitation in the east of the Philippines (area A) and that in the Pacific Ocean near the Northern Mariana Islands (area B). Precipitation in area A is closely related to the eastern Pacific ENSO (El Nino-Southern Oscillation) and EAP/PJ (East Asia-Pacific/Pacific-Japan) teleconnection pattern, while precipitation in area B is linked to the Indian Ocean basin-wide and the South China Sea summer monsoon. When the precipitation anomaly in area A is positive, the East Asian summer monsoon is weak. A cyclone appears to the northwest of area A at 850 hPa with convergence airflow. After filtering out the effects of precipitation in area B, the cyclone retreats to the west, and an anticyclone appears to the southeast of area A. When the precipitation is above normal in area B, the circulation and water vapor transportation are similar to that in area A but more to the east. The updraft and downdrafts to both north and south sides of area B form two closed meridional vertical circulations. When the influence of area A is moved out, the circulation center in the warm pool area moves eastward. This research contributes to a better understanding of the regional characteristics of the Maritime Continent and the East Asian summer monsoon. Full article
Show Figures

Figure 1

19 pages, 5357 KiB  
Article
Different Characteristics and Drivers of the Extraordinary Pakistan Rainfall in July and August 2022
by Yuanyuan Ma, Xiaoxue Hu, Yiting Chen, Zhiyuan Hu, Taichen Feng and Guolin Feng
Remote Sens. 2023, 15(9), 2311; https://doi.org/10.3390/rs15092311 - 27 Apr 2023
Cited by 12 | Viewed by 3419
Abstract
The unprecedented and long-lasting abnormal monsoon rainfall attacked Pakistan in the summer of 2022, causing severe flooding. This study investigated the sub-seasonal characteristics and mechanisms of this distinctively extreme precipitation event. The historical rainfall in July and August and extreme precipitation mainly occurred [...] Read more.
The unprecedented and long-lasting abnormal monsoon rainfall attacked Pakistan in the summer of 2022, causing severe flooding. This study investigated the sub-seasonal characteristics and mechanisms of this distinctively extreme precipitation event. The historical rainfall in July and August and extreme precipitation mainly occurred in northern Pakistan. Both the monthly rainfall in July and August 2022 and the extreme precipitation during the summer were far exceeding the historical record and involved unique spatial distribution. The rainfall in July 2022 is nationwide and mainly located in northern Pakistan, while the rainfall in August and extreme precipitation occurred in southern Pakistan. Different physical processes are responsible for the precipitation in July and August 2022. In July, the South Asian high (SAH) and Iranian high extended eastward. Meanwhile, the anticyclonic circulation anomalies occurred in northwestern Pakistan and the easterly winds enhanced in the south side of the Tibetan Plateau (TP), which strengthened water vapor transporting from the Bay of Bengal and cooperated with the cyclonic system over the Arabian Sea to enhance the precipitation over Pakistan. In August, the SAH further extended eastward and the Western Pacific Subtropical High extended westward to the TP. Meanwhile, the European blocking (EB) developed, and a deep trough appeared over northwestern Pakistan. This weakened the easterly flow along southern TP but enhanced the southerly flow accompanying the cyclone over the Bay of Bengal and the Arabian Sea, and thus guided the water vapor transporting to southern Pakistan and enhanced the precipitation. The extreme precipitation in July was mainly attributed to the unusually strong Indian monsoon, while the extreme precipitation in August was the result of a combination of the Indian monsoon and EB. The study provided important information about extreme precipitation in Pakistan, which will help policymakers take measures to deal with the effects of flooding. Full article
Show Figures

Figure 1

16 pages, 5935 KiB  
Article
Spatiotemporal and Vertical Distribution of Asian Tropopause Aerosol Layer Using Long-Term Multi-Source Data
by Hongchao Liu, Ren Li and Junjie Ma
Remote Sens. 2023, 15(5), 1315; https://doi.org/10.3390/rs15051315 - 27 Feb 2023
Cited by 2 | Viewed by 2288
Abstract
The Asian tropopause aerosol layer (ATAL) is an enhanced aerosol concentration layer in the upper troposphere and lower stratosphere over Asia, and it has important effects on radiation balance, atmospheric circulation, regional climate, and atmospheric chemical processes. However, despite its importance, the specific [...] Read more.
The Asian tropopause aerosol layer (ATAL) is an enhanced aerosol concentration layer in the upper troposphere and lower stratosphere over Asia, and it has important effects on radiation balance, atmospheric circulation, regional climate, and atmospheric chemical processes. However, despite its importance, the specific structure and long-term variation trend of the ATAL have been rarely analyzed, which is critical for assessing the impact of ATAL on climate change and evaluating the performance of climate models. This study compared and analyzed the three-dimensional spatial distribution characteristics and temporal variability using CALIPSO, SAGEII, and MERRA-2 data and discussed the possible causes of the variation. The results showed that the ATAL began to appear in the mid-to-late 1990s and then strengthened rapidly until 2010, after which this trend was no longer observed. Moreover, significant heterogeneity existed in the distribution of aerosol concentration in the ATAL, showing north–south differences (NSDs) in both time and space. In addition, it was found that besides surface emissions, atmospheric circulation, the strength of convective transport, and stratosphere–troposphere exchange processes also contribute to this pattern. This study has important implications for quantifying the climate consequences of the ATAL. Full article
Show Figures

Figure 1

13 pages, 15827 KiB  
Technical Note
Spatiotemporal Distribution of CO in the UTLS Region in the Asian Summer Monsoon Season: Analysis of MLS Observations and CMIP6 Simulations
by Ziling Liang, Fangrui Zhu, Tian Liang, Fuhai Luo and Jiali Luo
Remote Sens. 2023, 15(2), 367; https://doi.org/10.3390/rs15020367 - 7 Jan 2023
Cited by 4 | Viewed by 1839
Abstract
In this study, CO is used as a tracer to evaluate the chemical field related to the Asian summer monsoon anticyclone (ASMA) in the upper troposphere and lower stratosphere (UTLS) region simulated by Coupled Model Intercomparison Project Phase 6 (CMIP6) climate models from [...] Read more.
In this study, CO is used as a tracer to evaluate the chemical field related to the Asian summer monsoon anticyclone (ASMA) in the upper troposphere and lower stratosphere (UTLS) region simulated by Coupled Model Intercomparison Project Phase 6 (CMIP6) climate models from a multi-spatiotemporal perspective. The results show that the simulations of the six selected CMIP6 global climate models are well correlated with the MLS observations, while each model has its own advantages and disadvantages in the simulation of the ASMA and related chemical and geopotential height fields. Compared with MLS data, all six CMIP6 models can reasonably simulate the high CO values and the corresponding anticyclone, although certain biases exist in the simulations. Each model output has certain degrees of deviation in the simulation of the ASMA center position. In terms of time series, the six CMIP6 global models all exhibit an interannual variation CO mixing ratio over the ASM region while the interannual variation features are different from that in MLS. In general, it is impossible to identify a single determined model that can well reproduce the observations. In future work to assess the development trend and location of the ASMA, simulations of CESM2-WACCM and GFDL-ESM4 might be used due to their better performance than other models. Full article
Show Figures

Figure 1

14 pages, 3072 KiB  
Article
Optical Turbulence Characteristics in the Upper Troposphere–Lower Stratosphere over the Lhasa within the Asian Summer Monsoon Anticyclone
by Kun Zhang, Feifei Wang, Ningquan Weng, Xiaoqing Wu, Xuebin Li and Tao Luo
Remote Sens. 2022, 14(16), 4104; https://doi.org/10.3390/rs14164104 - 21 Aug 2022
Cited by 3 | Viewed by 2371
Abstract
The high elevation, complex topography, and unique atmospheric circulations of the Tibetan Plateau (TP) make its optical turbulence characteristics different from those in low-elevation regions. In this study, the characteristics of the atmospheric refractive index structure constant (Cn2) profiles [...] Read more.
The high elevation, complex topography, and unique atmospheric circulations of the Tibetan Plateau (TP) make its optical turbulence characteristics different from those in low-elevation regions. In this study, the characteristics of the atmospheric refractive index structure constant (Cn2) profiles in the Lhasa area at different strength states of the Asian summer monsoon anticyclone (ASMA) are analyzed based on precious in situ sounding data measured over the Lhasa in August 2018. Cn2 in the upper troposphere–lower stratosphere fluctuates significantly within a few days during the ASMA, particularly in the upper troposphere. The effect of the ASMA on Cn2 varies among the upper troposphere, tropopause, and lower stratosphere. The stronger and closer the ASMA is to Lhasa, the more pronounced is the “upper highs and lower lows” pressure field structure, which is beneficial for decreasing the potential temperature lapse rate. The decrease in static stability is an important condition for developing optical turbulence, elevating the tropopause height, and reducing the tropopause temperature. However, if strong high-pressure activity occurs at the lower pressure layer, such as at 500 hPa, an “upper highs and lower highs” pressure field structure forms over the Lhasa, increasing the potential temperature lapse rate and suppressing the convective intensity. Being almost unaffected by low-level atmospheric high-pressure activities, the ASMA, as the main influencing factor, mainly inhibits Cn2 in the tropopause and lower stratosphere. The variations of turbulence intensity in UTLS caused by ASMA activities also have a great influence on astronomical parameters, which will have certain guiding significance for astronomical site testing and observations. Full article
Show Figures

Figure 1

23 pages, 20831 KiB  
Article
Influence of 30–60 Days Intraseasonal Oscillation of East Asian Summer Monsoon on Precipitation in Southwest China
by Yingsi Wang, Tiangui Xiao, Xuefeng Dong, Yueqing Li, Wei Huang and Jie Tan
Atmosphere 2022, 13(8), 1222; https://doi.org/10.3390/atmos13081222 - 2 Aug 2022
Cited by 2 | Viewed by 2019
Abstract
The intraseasonal oscillation (ISO) of the East Asian summer monsoon (EASM) is an important factor affecting summer precipitation in China, but the relationship between the ISO of the EASM and summer precipitation in southwest China is currently still unclear. The relationship between the [...] Read more.
The intraseasonal oscillation (ISO) of the East Asian summer monsoon (EASM) is an important factor affecting summer precipitation in China, but the relationship between the ISO of the EASM and summer precipitation in southwest China is currently still unclear. The relationship between the two is discussed, and the following conclusions are drawn: (1) there is a significant positive correlation between East Asian monsoon surge intensity and summer precipitation in southwest China. When the monsoon surge is stronger (weaker), the precipitation in southwest China is more (less). However, the areas where the monsoon surge has a more obvious effect on the summer precipitation in southwest China are mainly located east of 105° E, and the monsoon surge has no obvious effect on the area west of 105° E. This may be more (less) the case in monsoon surge years, when a low-frequency oscillation of 30–60 days (10–20 days) plays a dominant role. The East Asian region has a longitudinal wave train of “+ − +” (“− + −“), the western Pacific subtropical high is westerly (easterly), the South China Sea and western Pacific is affected by anticyclone (cyclone), the EASM is active (suppressive), eastern southwest China has water vapor convergence (divergence) and upward (downward) airflow. (2) We found that 1998 was a typical year for the 30–60 days ISO of the EASM. There are two obvious 30–60 days oscillation cycles. In this year, when the intensity of the ISO of the EASM increases (decreases), the range of positive precipitation anomaly region in southwest China extends (decreases). The atmospheric circulation characteristics show that, when the western Pacific subtropical high is west (east) and south (north), and there is obvious anticyclonic (cyclonic) circulation in China–western Pacific, and the EASM is stronger (weaker), which leads to more (less) precipitation in southwest China. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

14 pages, 3894 KiB  
Technical Note
Contributions of Various Sources to the Higher-Concentration Center of CO within the ASM Anticyclone Based on GEOS-Chem Simulations
by Yuepeng Yang, Qian Li, Haoyue Wang, Zhixuan Bai, Dan Li, Weiguo Wang and Jianchun Bian
Remote Sens. 2022, 14(14), 3322; https://doi.org/10.3390/rs14143322 - 10 Jul 2022
Cited by 3 | Viewed by 2066
Abstract
Satellite observations show that carbon monoxide (CO) concentration centers exist in the tropopause region of the Tibetan Plateau, while their sources and formation mechanism still remain uncertain. In this paper, the 3-D chemical transport model GEOS-Chem is used to conduct sensitivity analysis in [...] Read more.
Satellite observations show that carbon monoxide (CO) concentration centers exist in the tropopause region of the Tibetan Plateau, while their sources and formation mechanism still remain uncertain. In this paper, the 3-D chemical transport model GEOS-Chem is used to conduct sensitivity analysis in 2016. Combined with the analysis data and satellite data, the contribution of three important emission sources (South Asia, East Asia and Southeast Asia) and two important chemical reaction species (CH4 and nonmethane volatile organic compounds (NMVOCs)) to CO in the upper troposphere and lower stratosphere (UTLS) are studied. The results show that in the Asian monsoon region CO emissions originating from the surface are transported to the upper troposphere via a deep convection process and then enter the Asian Summer Monsoon (ASM) anticyclone. The strong ASM anticyclone isolates the mixing process of air inside and outside the anticyclone, upon entry of carbon monoxide-rich air. In the lower stratosphere, the intensity of the ASM anticyclone declines and the air within the anticyclone flows southwestward with monsoon circulation. We found that in the summer Asian monsoon region, South Asia exhibited the highest carbon monoxide concentration transported to the UTLS. CH4 imposed the greatest influence on the CO concentration in the UTLS region. According to the model simulation results, the CO concentrations in the Asian monsoon region at 100 hPa altitudes were higher than those in other regions at the same latitudes. Regarding effects, 43.18% originated from CH4 chemical reactions, 20.81% originated from NMVOC chemical reactions, and 63.33% originated from surface CO emissions, while sinks yielded a negative contribution of −27.32%. Regarding surface CO emissions, East Asia contributed 13.56%, South Asia contributed 39.27%, and Southeast Asia contributed 7.15%. Full article
Show Figures

Figure 1

16 pages, 5267 KiB  
Article
Comparison of East Asian Summer Monsoon Simulation between an Atmospheric Model and a Coupled Model: An Example from CAS-ESM
by Wen Zhang, Feng Xue, Jiangbo Jin, Xiao Dong, He Zhang and Renping Lin
Atmosphere 2022, 13(7), 998; https://doi.org/10.3390/atmos13070998 - 21 Jun 2022
Cited by 3 | Viewed by 2088
Abstract
In this study, the Chinese Academy of Sciences’ Earth System Model Version 2 (CAS-ESM2) and its atmospheric component were evaluated for the ability to simulate the East Asian summer monsoon (EASM), in terms of climatology and composites in El Niño decaying years (EN) [...] Read more.
In this study, the Chinese Academy of Sciences’ Earth System Model Version 2 (CAS-ESM2) and its atmospheric component were evaluated for the ability to simulate the East Asian summer monsoon (EASM), in terms of climatology and composites in El Niño decaying years (EN) and La Niña years (LN). The results show that the model can realistically simulate the El Niño Southern Oscillation (ENSO) annual cycle, the interannual variation, the evolution process, and the prerequisites of ENSO, but the trend of developing and decaying is faster than that of the observations. With regard to the climatological mean state in the EASM, the coupled model run can largely improve the precipitation and 850 hPa wind simulated in the atmospheric model. Moreover, the coupled run can also reduce the mid-latitude bias in the atmospheric model simulation. Composite methods were then adopted to examine performance in different phases of the ENSO, from a mature winter to a decaying summer. The atmospheric model can well reproduce the Western North Pacific Anomalous Anticyclone (WNPAC)/Western North Pacific Anomalous Cyclone (WNPC) during EN/LN well, but the westerly/easterly anomalies and the associated precipitation anomalies over the equatorial Central Eastern Pacific are somewhat overestimated. Compared with the atmospheric model, these anomalies are all underestimated in the coupled model, which may be related to the ENSO-related SST bias appearing in the Eastern Indian Ocean. Due to the ENSO and ITCZ bias in the historical simulations, the simulated ENSO-related SST and the precipitation anomaly are too equator-trapped in comparison with the observations, and the cold tongue overly extends westward. This limits the ability of the model to simulate ENSO-related EASM variability. For the subseasonal simulations, though atmospheric model simulations can reproduce the westward extension of the Western Pacific subtropic high (WPSH) in EN decaying summers, the eastward retreat of the WPSH in LN is weak. The historical simulations show limited improvement, indicating that the subseasonal variation in the EASM is still a considerable challenge for current generation models. Full article
(This article belongs to the Special Issue Coupled Climate System Modeling)
Show Figures

Figure 1

15 pages, 5041 KiB  
Article
Decadal Change of Meiyu Onset over Yangtze River and Its Causes
by Yong Qian, Pangchi Hsu, Zhen Fu, Yunyun Liu and Qiaoping Li
Sustainability 2022, 14(9), 5085; https://doi.org/10.3390/su14095085 - 23 Apr 2022
Cited by 5 | Viewed by 2273
Abstract
Meiyu onset marks the beginning of the rainfall season in the densely populated Yangtze River Basin, whether the Meiyu initiates early or late in June, and thus has a profound effect on the several hundred million people living there. Applying a Bayesian change-point [...] Read more.
Meiyu onset marks the beginning of the rainfall season in the densely populated Yangtze River Basin, whether the Meiyu initiates early or late in June, and thus has a profound effect on the several hundred million people living there. Applying a Bayesian change-point analysis to data from 1960–2014, we objectively detected an abrupt change of Meiyu onset around 2002. The Meiyu onset date averaged over 2002–2014 was 19 June, delayed by about two weeks compared to that of 1989–2001 (6 June). This decadal change is attributable to the distinct amplitude of moisture transport toward the Yangtze River Basin induced by the changes in climatological intraseasonal oscillation (CISO). The CISO emerges as the annual cycle interacts with the transient intraseasonal perturbations. The wet/dry phases of the CISO are consistent with the climatological active/break stages of the East Asian summer monsoon. In early June, the northwestward-propagating CISO convective/cyclonic anomalies over the western North Pacific (WNP) show weaker amplitude during the earlier-onset epoch compared to the delayed-onset epoch. Thus, relative to the delayed onset epoch, a quasi-barotropic anticyclonic CISO anomaly appears over the WNP in early June during the earlier-onset years. This anticyclonic anomaly was conducive to the westward extension of the WNP subtropical high, conveying warm, moist air from the tropics toward the Yangtze River Basin for the rainy season onset. Model experiments suggest that the decadal changes in WNP CISO intensity were associated with the epochal changes in large-scale background circulation and sea surface temperature over the WNP. Full article
Show Figures

Figure 1

16 pages, 5588 KiB  
Article
Influence of Indian Summer Monsoon on Tropopause, Trace Gases and Aerosols in Asian Summer Monsoon Anticyclone Observed by COSMIC, MLS and CALIPSO
by Ghouse Basha, Madineni Venkat Ratnam, Jonathan H. Jiang, Pangaluru Kishore and Saginela Ravindra Babu
Remote Sens. 2021, 13(17), 3486; https://doi.org/10.3390/rs13173486 - 2 Sep 2021
Cited by 12 | Viewed by 3302
Abstract
The existence of the Asian Summer Monsoon Anticyclone (ASMA) during the summer in the northern hemisphere, upper troposphere and lower stratosphere (UTLS) region plays a significant role in confining the trace gases and aerosols for a long duration, thus affecting regional and global [...] Read more.
The existence of the Asian Summer Monsoon Anticyclone (ASMA) during the summer in the northern hemisphere, upper troposphere and lower stratosphere (UTLS) region plays a significant role in confining the trace gases and aerosols for a long duration, thus affecting regional and global climate. Though several studies have been carried out, our understanding of the trace gases and aerosols variability in the ASMA is limited during different phases of the Indian monsoon. This work quantifies the role of Indian Summer Monsoon (ISM) activity on the tropopause, trace gases (Water Vapor (WV), Ozone (O3), Carbon Monoxide (CO)) and aerosols (Attenuated Scattering Ratio (ASR)) obtained from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC), Microwave Limb Sounder (MLS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite observations, respectively, during the period 2006–2016. Enhancement in the tropopause altitude, WV, CO, ASR and low tropopause temperatures, O3 in the ASMA region is clearly noticed during peak monsoon months (July and August) with large inter-annual variability. Further, a significant increase in the WV and CO, and decrease in O3 during the active phase of the ISM, strong monsoon years and strong La Niña years in the ASMA is noticed. An enhancement in the ASR values during the strong monsoon years and strong La Niña years is also observed. In addition, our results showed that the presence of deep convection spreading from India land regions to the Bay of Bengal with strong updrafts can transport the trace gases and aerosols to the upper troposphere during active spells, strong monsoon years and La Niña years when compared to their counterparts. Observations show that the ASMA is very sensitive to active spells, strong monsoon years and La Niña years compared to break spells, weak monsoon years and El Niño years. It is concluded that the dynamics play a significant role in constraining several trace gases and aerosols in the ASMA and suggested considering the activity of the summer monsoon while dealing with them at sub-seasonal scales. Full article
Show Figures

Figure 1

13 pages, 5313 KiB  
Article
Effect of the El Niño Decaying Pace on the East Asian Summer Monsoon Circulation Pattern during Post-El Niño Summers
by Wenping Jiang, Gen Li and Gongjie Wang
Atmosphere 2021, 12(2), 140; https://doi.org/10.3390/atmos12020140 - 22 Jan 2021
Cited by 10 | Viewed by 3522
Abstract
El Niño events vary from case to case with different decaying paces. In this study, we demonstrate that the different El Niño decaying paces have distinct impacts on the East Asian monsoon circulation pattern during post-El Niño summers. For fast decaying (FD) El [...] Read more.
El Niño events vary from case to case with different decaying paces. In this study, we demonstrate that the different El Niño decaying paces have distinct impacts on the East Asian monsoon circulation pattern during post-El Niño summers. For fast decaying (FD) El Niño summers, a large-scale anomalous anticyclone dominates over East Asia and the North Pacific from subtropical to mid-latitude; whereas, the East Asian monsoon circulation display a dipole pattern with anomalous northern cyclone and southern anticyclone for slow decaying (SD) El Niño summers. The difference in anomalous East Asian monsoon circulation patterns was closely associated with the sea surface temperature (SST) anomaly patterns in the tropics. In FD El Niño summers, the cold SST anomalies in the tropical central-eastern Pacific and warm SST anomalies in the Maritime Continent induce the anticyclone anomalies over the Northwest Pacific. In contrast, the warm Kelvin wave anchored over the tropical Indian Ocean during SD El Niño summers plays a crucial role in sustaining the anticyclone anomalies over the Northwest Pacific. In particular, the opposite atmospheric circulation anomaly patterns over Northeast Asia and the mid-latitude North Pacific are mainly modulated by the stationary Rossby wave trains triggered by the opposite SST anomalies in the tropical eastern Pacific during FD and SD El Niño summers. Finally, the effect of distinct summer monsoon circulation patterns associated with the El Niño decay pace on the summer climate over East Asia are also discussed. Full article
(This article belongs to the Special Issue Asian Summer Monsoon Variability, Teleconnections and Projections)
Show Figures

Figure 1

14 pages, 2218 KiB  
Article
Possible Impacts of Snow Darkening Effects on the Hydrological Cycle over Western Eurasia and East Asia
by Jeong Sang, Maeng-Ki Kim, William K. M. Lau and Kyu-Myong Kim
Atmosphere 2019, 10(9), 500; https://doi.org/10.3390/atmos10090500 - 27 Aug 2019
Cited by 6 | Viewed by 2898
Abstract
In this paper, we investigated the possible impact of snow darkening effect (SDE) by light-absorbing aerosols on the regional changes of the hydrological cycle over Eurasia using the NASA GEOS-5 Model with aerosol tracers and a state-of-the-art snow darkening module, the Goddard SnoW [...] Read more.
In this paper, we investigated the possible impact of snow darkening effect (SDE) by light-absorbing aerosols on the regional changes of the hydrological cycle over Eurasia using the NASA GEOS-5 Model with aerosol tracers and a state-of-the-art snow darkening module, the Goddard SnoW Impurity Module (GOSWIM) for the land surface. Two sets of ten-member ensemble experiments for 10 years were carried out forced by prescribed sea surface temperature (2002–2011) with different atmospheric initial conditions, with and without SDE, respectively. Results show that SDE can exert a significant regional influence in partitioning the contributions of evaporative and advective processes on the hydrological cycle, during spring and summer season. Over western Eurasia, SDE-induced rainfall increase during early spring can be largely explained by the increased evaporation from snowmelt. Rainfall, however, decreases in early summer due to the reduced evaporation as well as moisture divergence and atmospheric subsidence associated with the development of an anomalous mid- to upper-tropospheric anticyclonic circulation. On the other hand, in the East Asian monsoon region, moisture advection from the adjacent ocean is a main contributor to rainfall increase in the melting season. A warmer land-surface caused by earlier snowmelt and subsequent drying further increases moisture transport and convergence significantly enhancing rainfall over the region. Our findings suggest that the SDE may play an important role in leading to hotter and drier summers over western Eurasia, through coupled land-atmosphere interaction, while enhancing East Asian summer monsoonal precipitation via enhanced land-ocean thermal contrast and moisture transport due to the SDE-induced warmer Eurasian continent. Full article
(This article belongs to the Special Issue Analysis of Oceanic and Terrestrial Atmospheric Moisture Sources)
Show Figures

Figure 1

Back to TopTop