Decadal Change of Meiyu Onset over Yangtze River and Its Causes
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Decadal Changes in Meiyu Onset and Associated Circulation Modulation
3.2. Possible Cause of the Epochal Changes in CISO
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CISO | climatological intraseasonal oscillation |
EASM | East Asian summer monsoon |
ISO | intraseasonal oscillation |
OLR | outgoing longwave radiation |
SST | sea surface temperature |
WNP | western North Pacific |
References
- Ding, Y.H.; Chan, J.C.L. The East Asian summer monsoon: An overview. Meteor. Atmos. Phys. 2005, 89, 117–142. [Google Scholar]
- Gan, N. “China Has Just Contained the Coronavirus. Now It’s Battling Some of the Worst Floods in Decades”. Available online: https://edition.cnn.com/2020/07/14/asia/china-flood-coronavirus-intl-hnk/index.html (accessed on 14 July 2020).
- Ding, Y.H.; Liang, P.; Liu, Y.; Zhang, Y.C. Multiscale variability of Meiyu and its prediction: A new review. J. Geophys. Res. Atmos. 2020, 125, e2019JD031496. [Google Scholar] [CrossRef]
- Chang, C.P.; Krishnamurti, T.N. Monsoon Meteorology, 1st ed.; Oxford University Press: New York, NY, USA, 1987; pp. 60–92. [Google Scholar]
- Ninomiya, K.; Shibagaki, Y. Multi-scale features of the Meiyu-Baiu front and associated precipitation systems. J. Meteor. Soc. Jpn. 2007, 85, 103–122. [Google Scholar] [CrossRef] [Green Version]
- Sampe, T.; Xie, S.-P. Large-scale dynamics of the Meiyu-Baiu rainband: Environmental forcing by the westerly jet. J. Clim. 2010, 23, 113–134. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.H.; Zhu, C.W.; Su, J.Z.; Liu, B.Q. Coupling modes of climatological intraseasonal oscillation in the East Asian summer monsoon. J. Clim. 2016, 29, 6363–6382. [Google Scholar] [CrossRef]
- Liu, B.Q.; Zhu, C.W. Extremely late onset of the 2018 South China Sea summer monsoon following a La Niña event: Effects of triple SST anomaly mode in the North Atlantic and a weaker Mongolian cyclone. Geophys. Res. Lett. 2019, 46, 2956–2963. [Google Scholar] [CrossRef]
- Wang, B.; Xu, X. Northern Hemisphere summer monsoon singularities and climatological intraseasonal oscillation. J. Clim. 1997, 10, 1071–1085. [Google Scholar] [CrossRef] [Green Version]
- Li, J.Y.; Liu, B.Q.; Mao, J.Y. Climatological intraseasonal oscillation in the middle–upper troposphere and its effect on the northward migration of the East Asian westerly jet and rain belt over eastern China. Int. J. Climatol. 2021, 41, 5084–5099. [Google Scholar] [CrossRef]
- Liang, P.; Ding, Y.H. Climatology of intraseasonal oscillation of East Asia Meiyu. Acta. Meteor. Sin. 2012, 3, 418–435. (In Chinese) [Google Scholar]
- Gu, W.; Li, C.Y.; Wang, X.; Zhou, W.; Li, W.J. Linkage between mei-yu precipitation and North Atlantic SST on the decadal timescale. Adv. Atmos. Sci. 2009, 26, 101–108. [Google Scholar] [CrossRef]
- Zhu, J.; Huang, D.-Q.; Zhang, Y.C.; Huang, A.-N.; Kuang, X.-Y.; Huang, Y. Decadal changes of Meiyu rainfall around 1991 and its relationship with two types of ENSO. J. Geophys. Res. 2003, 118, 9766–9777. [Google Scholar] [CrossRef]
- Sun, B.; Wang, H.J.; Zhou, B.T.; Li, H. Interdecadal variation in the synoptic features of Mei-Yu in the Yangtze River Valley Region and relationship with the Pacific decadal oscillation. J. Clim. 2009, 32, 6251–6270. [Google Scholar] [CrossRef]
- Li, H.; He, S.P.; Fan, K.; Wang, H.J. Relationship between the onset date of the Meiyu and the South Asian anticyclone in April and the related mechanisms. Clim. Dyn. 2019, 52, 209–226. [Google Scholar] [CrossRef]
- Yao, Y.H.; Lin, H.; Wu, Q. Linkage between interannual variation of the East Asian intraseasonal oscillation and Mei-Yu onset. J. Clim. 2019, 32, 145–160. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; Bechtold, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Liebmann, B.; Smith, A.C. Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc. 1996, 77, 1275–1277. [Google Scholar]
- Reynolds, R.W.; Smith, T.M.; Liu, C.Y.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Epstein, E.S. Statistical Inference and Prediction In Climatology: A Bayesian Approach; American Meteorological Society: Boston, MA, USA, 1985; p. 199. [Google Scholar]
- Chu, P.-S.; Zhao, X. Bayesian change-point analysis of tropical cyclone activity: The central North Pacific case. J. Clim. 2004, 17, 4893–4901. [Google Scholar] [CrossRef] [Green Version]
- Hsu, P.-C.; Chu, P.S.; Murakami, H.; Zhao, X. An abrupt decrease in the late-season typhoon activity over the western North Pacific. J. Clim. 2014, 27, 4296–4312. [Google Scholar] [CrossRef]
- Rodionov, S.N. A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett. 2004, 31, L09204. [Google Scholar] [CrossRef] [Green Version]
- Duchon, C.E. Lanczos filtering in one and two Dimensions. J. Appl. Meteor. Climatol. 1979, 18, 1016–1022. [Google Scholar] [CrossRef]
- Roeckner, E.; Arpe, K.; Bengtsson, L.; Christoph, M.; Dumenil, L.; Esch, M.; Giorgetta, M.; Schlese, U.; Schulzweida, U. The Atmospheric General Circulation Model ECHAM-4: Model Description and Simulation of Present-day Climate; Max-Planck Institute for Meteorology: Hamburg, Germany, 1996; p. 90. [Google Scholar]
- Sperber, K.R.; Gualdi, S.; Legutke, S.; Gayler, V. The Madden–Julian Oscillation in ECHAM4 coupled and uncoupled general circulation models. Climate. Dyn. 2005, 25, 117–140. [Google Scholar] [CrossRef]
- Lin, J.-L.; Kiladis, G.N.; Mapes, B.E.; Weickmann, K.M.; Sperber, K.R.; Lin, W.Y.; Wheeler, M.C.; Schubert, S.D.; Genio, A.D.; Donner, L.J. Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Clim. 2006, 19, 2665–2690. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.X.; Hsu, P.-C.; Li, T. Effects of high-frequency activity on latent heat flux of MJO. Clim. Dyn. 2019, 52, 1471–1485. [Google Scholar] [CrossRef]
- Tsou, C.-H.; Hsu, P.-C.; Kau, W.-S.; Hsu, H.-H. Northward and northwestward propagation of 30–60 day oscillations in the tropical and extratropical western North Pacific. J. Meteor. Soc. Jpn. 2005, 83, 711–726. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Xie, X. Low-frequency equatorial waves in vertically sheared zonal flow. Part I: Stable waves. J. Atmos. Sci. 1996, 53, 449–467. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Wang, B. Critical Roles of the Stratiform Rainfall in Sustaining the Madden–Julian Oscillation: GCM Experiments. J. Clim. 2009, 22, 3939–3959. [Google Scholar] [CrossRef]
- Ahn, M.S.; Kim, D.; Sperber, K.R.; Kang, I.-S.; Maloney, E.; Waliser, D.; Hendon, H. MJO simulation in CMIP5 climate models: MJO skill metrics and process-oriented diagnosis. Clim. Dyn. 2017, 49, 4023–4045. [Google Scholar] [CrossRef] [Green Version]
- Boyle, J.S.; Klein, S.A.; Lucas, D.D.; Ma, H.-Y.; Tannahill, J.; Xie, S. The parametric sensitivity of CAM5′s MJO. J. Geophys. Res. 2015, 120, 1424–1444. [Google Scholar] [CrossRef]
- Kim, D.; Sperber, K.; Stern, W.; Waliser, D.; Kang, I.-S.; Maloney, E.; Wang, W.; Weickmann, K.; Benedict, J.; Khairoutdinov, M.; et al. Application of MJO simulation diagnostics to climate models. J. Clim. 2009, 22, 6413–6436. [Google Scholar] [CrossRef] [Green Version]
- Hsu, P.-C.; Li, T. Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden-Julian oscillation. J. Clim. 2012, 25, 4914–4931. [Google Scholar] [CrossRef] [Green Version]
Meiyu Features | E1 (1989–2001) | E2 (2002–2014) | Epochal Diff. (E1-E2) |
---|---|---|---|
Onset date | 6 June | 19 June | −13 * |
Retreat date | 11 July | 17 July | −6 |
Meiyu precipitation amount | 324.6 | 259.8 | 64.8 |
Precipitation intensity | 7.78 | 7.11 | 0.67 |
Experiment | Low Boundary Conditions | Integration Length | Purposes |
---|---|---|---|
EXP_CTRL | Climatological monthly SST | 30 years | Assessing the simulation skill |
EXP_WP | Epochal change (E1 minus E2) in SST over the western Pacific (100° E–180°, 0°–25° N) superimposed on climatological SST | 20 years | Clarifying the regional SST effects on WNP background states and CISO intensity |
EXP_IO | Epochal change (E1 minus E2) in SST over the Indian Ocean (40°–100° E, −20°–20° N) superimposed on climatological SST | ||
EXP_NA | Epochal change (E1 minus E2) in SST over the North Atlantic (90° W–0°, 0°–80° N) superimposed on climatological SST |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, Y.; Hsu, P.; Fu, Z.; Liu, Y.; Li, Q. Decadal Change of Meiyu Onset over Yangtze River and Its Causes. Sustainability 2022, 14, 5085. https://doi.org/10.3390/su14095085
Qian Y, Hsu P, Fu Z, Liu Y, Li Q. Decadal Change of Meiyu Onset over Yangtze River and Its Causes. Sustainability. 2022; 14(9):5085. https://doi.org/10.3390/su14095085
Chicago/Turabian StyleQian, Yong, Pangchi Hsu, Zhen Fu, Yunyun Liu, and Qiaoping Li. 2022. "Decadal Change of Meiyu Onset over Yangtze River and Its Causes" Sustainability 14, no. 9: 5085. https://doi.org/10.3390/su14095085