Comparison of East Asian Summer Monsoon Simulation between an Atmospheric Model and a Coupled Model: An Example from CAS-ESM
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Model
2.3. ENSO Event Selection
3. Results
3.1. The Cycle of ENSO Simulated by CAS-ESM2
3.2. The East Asian Summer Monsoon Simulated by CAS-ESM2
3.3. The East Asian Summer Monsoon Related to ENSO Simulated by CAS-ESM2
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, K. The enigma of southeast monsoon in China. Acta Geogr. Sin. 1934, 1, 1–27. (In Chinese) [Google Scholar]
- Tu, C.; Huang, S. The monsoon advance and retreat in China. Acta Meteorol. Sin. 1944, 18, 81–92. (In Chinese) [Google Scholar]
- Ding, Y.H. Summer monsoon rainfall in China. J. Meteorol. Soc. Japan. Ser II 1992, 70, 373–396. [Google Scholar] [CrossRef] [Green Version]
- Tao, S.Y.; Chen, L.X. A review of recent research on the East Asian summer monsoon in China. In Monsoon Meteorology; Chang, C.-P., Krishnamurti, T.N., Eds.; Oxford University Press: Oxford, UK, 1987; pp. 60–92. [Google Scholar]
- Huang, R.; Zhou, L.; Chen, W. The progresses of recent studies on the variabilities of the East Monsoon and their causes. Adv. Atmos. Sci. 2003, 20, 55–69. [Google Scholar] [CrossRef]
- Huang, R.H.; Sun, F.Y. Impact of the tropical western Pacific on the East Asian summer monsoon. J. Meteorol. Soc. Jpn. Ser. II 1992, 70, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Lin, R.; Fan, F. Comparison of the two modes of the western Pacific subtropical high between early and late summer. Atmos. Sci. Lett. 2017, 18, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; He, C. Zonal displacement of the western north Pacific subtropical high from early to late summer. Int. J. Climatol. 2020, 40, 5029–5041. [Google Scholar] [CrossRef]
- Wu, B.; Zhou, T.; Li, T. Seasonally Evolving Dominant Interannual Variability Modes of East Asian Climate. J. Clim. 2009, 22, 2992–3005. [Google Scholar] [CrossRef]
- Huang, R.-H.; Wu, Y.-F. The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci. 1989, 6, 21–33. [Google Scholar]
- Ashok, K.; Yamagata, T. Climate change: The El Niño with a difference. Nature 2009, 461, 481–484. [Google Scholar] [CrossRef]
- Webster, P.J.; Yang, S. Monsoon and ENSO: Selectively interactive systems. Q. J. R. Meteorol. Soc. 2010, 118, 877–926. [Google Scholar] [CrossRef]
- Fu, C.; Teng, X. Climate anomalies in China associated with El Niño/Southern Oscillation. Chin. J. Atmos. Sci. 1988, 12, 133–141. (In Chinese) [Google Scholar]
- Zhang, R.H.; Sumi, A.; Kimoto, M. Impact of El Niño on the East Asian monsoon: A diagnostic study of the ‘86/87’ and ‘91/92’ events. J. Meteorol. Soc. Jpn. Ser. II 1996, 74, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Xue, F.; Liu, C.-Z. Influence of moderate ENSO on summer precipitation in eastern China and its comparison with strong ENSO. Chin. Sci. Bull. 2007, 52, 2798–2805. (In Chinese) [Google Scholar]
- Kawatani, Y.; Ninomiya, K.; Tokioka, T. The north Pacic subtropical high characterized separately for June, July, and August: Zonal displacement associated with submonthly variability. J. Meteorol. Soc. Jpn. Ser. II 2008, 86, 505–530. [Google Scholar] [CrossRef] [Green Version]
- Su, T.-H.; Xue, F. Two northward jumps of the summertime western Pacific subtropical high and their associations with the tropical SST anomalies. Atmos. Ocean. Sci. Lett. 2011, 4, 98–102. [Google Scholar]
- Wu, B.; Zhou, T.J. Relationships between the East Asian-western north pacific monsoon and ENSO simulated by FGOALS-s2. Adv. Atmos. Sci. 2013, 30, 713–725. [Google Scholar] [CrossRef]
- Wu, B.; Zhou, T.J. Relationships between ENSO and the East Asian-western North Pacific monsoon: Observations versus 18 CMIP5 models. J. Clim. 2016, 46, 729–743. [Google Scholar] [CrossRef]
- Zhou, T.; Wu, B.; Guo, Z.; Chao, H.; Zou, L.; Chen, X.; Zhang, L.; Man, W.; Li, P.-X.; Li, D.-H. A Review of East Asian Summer Monsoon Simulation and Projection: Achievements and Problems, Opportunities and Challenges. Chin. J. Atmos. Sci. 2018, 42, 902–934. (In Chinese) [Google Scholar]
- Zhang, R.-H.; Yu, Y.-Q.; Song, Z.-Y.; Ren, H.-L.; Tang, Y.-M.; Qiao, F.-L.; Wu, T.-W.; Gao, C.; Hu, J.-Y.; Tian, F.; et al. A review of progress in coupled ocean-atmosphere model developments for ENSO studies in China. J. Oceanol. Limnol. 2020, 38, 930–961. [Google Scholar] [CrossRef]
- Dong, X.; Fan, F.; Lin, R.; Jin, J.; Lian, R. Simulation of the western north Pacific subtropical high in El Niño decaying summers by CMIP5 AGCMs. Atmos. Ocean. Sci. Lett. 2017, 10, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Lin, R.; Dong, X.; Fan, F. Can coupled models perform better in the simulation of sub-seasonal evolution of the western north Pacific subtropical high than atmospheric models in boreal summer? Atmos. Sci. Lett. 2018, 2018, e862. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Lin, R. Climatological increased precipitation from July to August in the western north Pacific region simulated by CMIP6 models. Atmosphere 2021, 12, 664. [Google Scholar] [CrossRef]
- Lin, R.; Zhu, J.; Zheng, F. The application of the SVD method to reduce coupled model biases in seasonal predictions of rainfall. J. Geophys. Res. Atmos. 2019, 124, 11837–11849. [Google Scholar] [CrossRef]
- Zhou, Z.-Q.; Xie, S.-P.; Zhang, G.-J.; Zhou, W. Evaluating AMIP skill in simulating interannual variability of summer rainfall over the Indo-Western Pacific. J. Clim. 2018, 31, 2253–2265. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.-K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1644. [Google Scholar] [CrossRef]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.-P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.; Bolvin, D.; et al. The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present). J. Hydrometeorol. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Chepurin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H.-M. Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- Smith, T.M.; Reynolds, R.W.; Peterson, T.C.; Lawrimore, J. Improvements to NOAA’s Historical Merged Land–Ocean Surface Temperature Analysis (1880–2006). J. Clim. 2008, 21, 2283–2296. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, M.; Zeng, Q.-C. Sensitivity of Simulated Climate to Two Atmospheric Models: Interpretation of Differences between Dry Models and Moist Models. Mon. Weather Rev. 2013, 141, 1558–1576. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, X.; Li, W.; Yu, Y.-Q. An Eddy-Permitting Oceanic General Circulation Model and Its Preliminary Evaluation. Adv. Atmos. Sci. 2004, 21, 675–690. [Google Scholar]
- Dong, X.; Jin, J.-B.; Liu, H.-L.; Zhang, H. CAS-ESM2.0 model datasets for the CMIP6 Ocean Model Intercomparison Project Phase 1 (OMIP1). Adv. Atmos. Sci. 2021, 38, 307–316. [Google Scholar] [CrossRef]
- Jin, J.; Zhang, H.; Dong, X.; Liu, H.; Zhang, M.; Gao, X.; He, J.-X.; Chai, Z.; Zeng, Q.; Zhou, G. CAS-ESM2.0 Model Datasets for CMIP6 Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP). Adv. Atmos. Sci. 2021, 38, 296–306. [Google Scholar] [CrossRef]
- Dai, Y.-J.; Zeng, X.-B.; Dickinson, R.; Baker, I. The common land model (CLM). Bull. Am. Meteorol. Soc. 2003, 84, 1013–1023. [Google Scholar] [CrossRef] [Green Version]
- Ji, D.-Y.; Wang, L.; Feng, J.-M.; Wu, Q.-Z. Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1. Geosci. Model Dev. 2014, 7, 2039–2064. [Google Scholar] [CrossRef] [Green Version]
- Hunke, C.H.; Lipscomb, W.H. CICE: The Los Alamos Sea Ice Model Documentation and Software User’s Manual Version 4.0 LA-CC-06-012; Los Alamos National Laboratory: Santa Fe, NM, USA, 2008. [Google Scholar]
- Dong, X.; Xue, F.; Zhang, H.; Zeng, Q. Evaluation of surface air temperature change over China and the globe during the twentieth century in IAP AGCM4.0. Atmos. Ocean. Sci. Lett. 2012, 5, 435–438. [Google Scholar]
- Dong, X.; Su, T.; Wang, J.; Lin, R. Decadal variation of the Aleutian Low-Icelandic Low seesaw simulated by a climate system model (CAS-ESM-C). Atmos. Ocean. Sci. Lett. 2014, 7, 110–114. [Google Scholar]
- Dong, X.; Xue, F. Phase transition of the Pacific decadal oscillation and decadal variation of the East Asian summer monsoon in the 20th century. Adv. Atmos. Sci. 2016, 33, 330–338. [Google Scholar] [CrossRef]
- Lin, R.; Zhu, J.; Zheng, F. Decadal shifts of East Asian summer monsoon in a climate model free of explicit GHGs and aerosols. Sci. Rep. 2016, 6, 38546. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Zheng, F.; Lin, R.-P.; Yang, H.-P. A reasonable mean dynamic topography state on improving the ability of assimilating the altimetry observations into a coupled climate system model: An example with CAS-ESM-C. J. Geophys. Res. Oceans 2021, 126, e2020JC016760. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.; Stevens, R.J.; Stouffer, R.J.; Taylor, K.E. Overview of the coupled model intercomparison project phase 6 (CMIP 6) experimental design and organization. Geosci. Model Dev. 2015, 8, 10539–10583. [Google Scholar]
- Zhang, H.; Zhang, M.-H.; Jin, J.-B.; Fei, K. Description and climate simulation performance of CAS-ESM Version 2. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002210. [Google Scholar] [CrossRef]
- Xue, F.; Dong, X.; Fan, F.-X. Anomalous western Pacific subtropical high in El Niño developing summer and its comparison with the decaying summer. Adv. Atmos. Sci. 2018, 35, 360–367. [Google Scholar] [CrossRef]
- Dong, X. Influences of the Pacific Decadal Oscillation on the East Asian Summer Monsoon in non-ENSO years. Atmos. Sci. Lett. 2016, 17, 115–120. [Google Scholar] [CrossRef]
- Wang, B.; Ding, Q.; Fu, X.; Kang, I.-S.; Jin, K.; Shukla, J.; Doblas-Reyes, F. Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett. 2005, 32, L15711. [Google Scholar] [CrossRef] [Green Version]
- Kosaka, Y.; Nakamura, H. Structure and dynamics of the summertime Pacific-Japan teleconnection pattern. Q. J. R. Meteorol. Soc. 2010, 132, 2009–2030. [Google Scholar] [CrossRef]
- Nitta, T. Convective activities in the tropical wetern Pacific and their impact on the northern hemisphere summer circulation. J. Meteorol. Soc. Jpn. Ser. II 1987, 65, 373–390. [Google Scholar] [CrossRef] [Green Version]
- Su, T.-H.; Xue, F.; Sun, H.-C.; Zhou, G.-Q. The El Niño-Southern Oscillation cycle simulated by the climate system model of Chinese Academy of Sciences. Acta Oceanol. Sin. 2015, 34, 55–65. [Google Scholar] [CrossRef]
- Lin, Z.-H.; Wang, H.-J.; Zhou, G.-Q.; Chen, H.; Lang, X.-M.; Zhao, Y.; Zeng, Q.-C. Recent Advances in Dynamical Extra-Seasonal to Annual Climate Prediction at IAP/CAS. Adv. Atmos. Sci. 2004, 21, 456–466. [Google Scholar]
- Zhang, R.-H. A hybrid coupled model for the Pacific ocean-atmosphere system. Part I: Description and basic performance. Adv. Atmos. Sci. 2015, 32, 301–318. [Google Scholar] [CrossRef]
- Zhang, R.-H. Structure and effect of ocean biology-induced heating (OBH) in the tropical Pacific, diagnosed from a hybrid coupled model simulation. Clim. Dyn. 2015, 44, 695–715. [Google Scholar] [CrossRef]
- Zhang, R.-H.; Gao, C.; Feng, L.C. Recent ENSO evolution and its real-time prediction challenges. Natl. Sci. Rev. 2022, 9, nwac052. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.P.; Hu, K.M.; Hafner, J.; Tokinaga, H.; Du, Y.; Huang, G.; Sampe, T. Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Clim. 2009, 22, 730–747. [Google Scholar] [CrossRef]
- Xie, S.P.; Kosaka, Y.; Du, Y.; Hu, K.; Chowdary, J.S.; Huang, G. Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci. 2016, 33, 411–432. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Xue, F.; Jin, J.; Dong, X.; Zhang, H.; Lin, R. Comparison of East Asian Summer Monsoon Simulation between an Atmospheric Model and a Coupled Model: An Example from CAS-ESM. Atmosphere 2022, 13, 998. https://doi.org/10.3390/atmos13070998
Zhang W, Xue F, Jin J, Dong X, Zhang H, Lin R. Comparison of East Asian Summer Monsoon Simulation between an Atmospheric Model and a Coupled Model: An Example from CAS-ESM. Atmosphere. 2022; 13(7):998. https://doi.org/10.3390/atmos13070998
Chicago/Turabian StyleZhang, Wen, Feng Xue, Jiangbo Jin, Xiao Dong, He Zhang, and Renping Lin. 2022. "Comparison of East Asian Summer Monsoon Simulation between an Atmospheric Model and a Coupled Model: An Example from CAS-ESM" Atmosphere 13, no. 7: 998. https://doi.org/10.3390/atmos13070998
APA StyleZhang, W., Xue, F., Jin, J., Dong, X., Zhang, H., & Lin, R. (2022). Comparison of East Asian Summer Monsoon Simulation between an Atmospheric Model and a Coupled Model: An Example from CAS-ESM. Atmosphere, 13(7), 998. https://doi.org/10.3390/atmos13070998