Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = Arecaceae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2190 KiB  
Review
Systematic Review of the State of Knowledge About Açaí-Do-Amazonas (Euterpe precatoria Mart., Arecaceae)
by Sabrina Yasmin Nunes da Rocha, Maria Julia Ferreira, Charles R. Clement and Ricardo Lopes
Plants 2025, 14(15), 2439; https://doi.org/10.3390/plants14152439 - 6 Aug 2025
Abstract
Euterpe precatoria Mart. is an increasingly important palm for subsistence and income generation in central and western Amazonia with growing demand for its fruit pulp, which is an alternative source of açaí juice for domestic and international markets. This study synthesizes current knowledge [...] Read more.
Euterpe precatoria Mart. is an increasingly important palm for subsistence and income generation in central and western Amazonia with growing demand for its fruit pulp, which is an alternative source of açaí juice for domestic and international markets. This study synthesizes current knowledge on its systematics, ecology, fruit production in natural populations, fruit quality, uses, population management, and related areas, identifying critical research gaps. A systematic literature survey was conducted across databases including Web of Science, Scopus, Scielo, CAPES, and Embrapa. Of 1568 studies referencing Euterpe, 273 focused on E. precatoria, with 90 addressing priority themes. Genetic diversity studies suggest the E. precatoria may represent a complex of species. Its population abundance varies across habitats: the highest variability occurs in terra firme, followed by baixios and várzeas. Várzeas exhibit greater productivity potential, with more bunches per plant and higher fruit weight than baixios; no production data exist for terra firme. Additionally, E. precatoria has higher anthocyanin content than E. oleracea, the primary commercial açaí species. Management of natural populations and cultivation practices are essential for sustainable production; however, studies in these fields are still limited. The information is crucial to inform strategies aiming to promote the sustainable production of the species. Full article
(This article belongs to the Section Plant Systematics, Taxonomy, Nomenclature and Classification)
Show Figures

Figure 1

13 pages, 3735 KiB  
Article
The Genus Tegonotus Nalepa (Acariformes: Eriophyidae: Phyllocoptinae): Description of a New Species and Key to Valid Species
by Eid Muhammad Khan, Jawwad Hassan Mirza, Muhammad Kamran and Fahad Jaber Alatawi
Diversity 2025, 17(7), 465; https://doi.org/10.3390/d17070465 - 2 Jul 2025
Viewed by 268
Abstract
The genus Tegonotus Nalepa (Acariformes: Eriophyidae: Phyllocoptinae) is recorded for the first time from Saudi Arabia with the description of a new species, T. saudiensis sp. nov., collected from the inner fronds of Phoenix dactylifera L. (Arecaceae), described and illustrated based on females. [...] Read more.
The genus Tegonotus Nalepa (Acariformes: Eriophyidae: Phyllocoptinae) is recorded for the first time from Saudi Arabia with the description of a new species, T. saudiensis sp. nov., collected from the inner fronds of Phoenix dactylifera L. (Arecaceae), described and illustrated based on females. The individuals of the new species were vagrant on the abaxial leaf surface, causing no apparent damage to the host plant. The taxonomic status of the genus and its species was thoroughly assessed through the literature-based analysis of morphological characters. Consequently, the diagnosis of the genus Tegonotus is updated, and a key to 47 valid species is provided. Eight Tegonotus species are suggested to be transferred to three different genera within the tribe. A brief discussion on the taxonomic status of these species is provided. The position of scapular tubercles and setae (sc), and shape of the dorsal pedipalp genu seta (d), were found to be significant for the generic designation. Full article
(This article belongs to the Special Issue Diversity, Ecology, and Conservation of Mites)
Show Figures

Figure 1

17 pages, 5321 KiB  
Article
Addressing Increased Temperatures in Cities: Determination of Pedestrian Routes with Thermal Comfort in Barranquilla, Colombia
by Hernando José Bolívar-Anillo, Shersy Vega Benites, Giovanna Reyes Almeida, Samuel de Jesús Ortega Llanos, Valentina Taba-Charris, Keyla Andrea Acuña-Ruiz, Byron Standly Reales Vargas, Paula Fernanda Chapuel Aguillón, Hernando Sánchez Moreno, María Auxiliadora Iglesias-Navas and Giorgio Anfuso
Sustainability 2025, 17(11), 5211; https://doi.org/10.3390/su17115211 - 5 Jun 2025
Viewed by 584
Abstract
Thermal stress due to high temperatures has different negative effects on citizens as it generates a decrease in physical capacity and causes cardiovascular and respiratory alterations, which is especially true for pedestrians. In this paper, using a drone, routes for pedestrians with the [...] Read more.
Thermal stress due to high temperatures has different negative effects on citizens as it generates a decrease in physical capacity and causes cardiovascular and respiratory alterations, which is especially true for pedestrians. In this paper, using a drone, routes for pedestrians with the best thermal comfort were traced between the different headquarters of the Simón Bolívar University (Barranquilla, Colombia). Maps were created for three time intervals, from 10 a.m. to 1 p.m., from 1 to 2 p.m. and from 2 to 3 p.m., and variations in temperature and relative humidity of both natural and artificial shadow areas were identified. The routes with the best thermal comfort were those with natural shade that presented ca. 3 °C less than the unshaded areas. The predominant trees’ genera in most of the traced pedestrian routes were Arecaceae (palm), Tabebuia (purple oak), Mangifera (mango), and Delonix (red acacia). Some of them lose their leaves between March and June, which gives rise to an increase in the temperature along those routes. The developed cell phone application allows for the selection of walking environments with the best thermal comfort, favoring the mobility of the pedestrians along the considered area. Full article
Show Figures

Figure 1

18 pages, 3887 KiB  
Article
Arecoline Triggers Psychostimulant Responses by Modulating the Intestinal Microbiota to Influence Neurotransmitter Levels and Digestive Enzyme Activity
by Jiaxin Di, Shiqin Xie, Junxi Shen, Leyao Fang, Zhoujin Tan and Xuejuan Liang
Pharmaceuticals 2025, 18(6), 794; https://doi.org/10.3390/ph18060794 - 25 May 2025
Viewed by 578
Abstract
Background: Areca catechu L. is an evergreen tree belonging to the Arecaceae family. As an important traditional Chinese medicine, it has wide applications in the field of herbal medicine. Arecoline is the main active component responsible for its medicinal effects and plays [...] Read more.
Background: Areca catechu L. is an evergreen tree belonging to the Arecaceae family. As an important traditional Chinese medicine, it has wide applications in the field of herbal medicine. Arecoline is the main active component responsible for its medicinal effects and plays a key role in its central nervous system (CNS) stimulant properties. Methods: This study investigated the excitatory effects of arecoline by analyzing behavioral changes in mice, neurotransmitter levels, the intestinal microbiota composition, and enzymatic activities. We further explored the bidirectional interactions between the intestinal microbial ecosystem and the nervous system following arecoline exposure. Results: Arecoline administration significantly increased the activity time ratio in mice (p < 0.05). It also elevated fecal lactase and amylase activities (p < 0.05), suggesting enhanced carbohydrate metabolism that may be one of the reasons for the increased activity time of mice. Serum analysis showed decreased 5-hydroxytryptamine (5-HT, p < 0.05), increased dopamine (DA) and brain-derived neurotrophic factor (BDNF) levels (p < 0.001), and no significant change in γ-aminobutyric acid (GABA). These findings suggest that arecoline may also play a role in modulating neurotransmitter balance. At the genus level, Escherichia was significantly enriched and positively correlated with DA, BDNF, and GABA, while Clostridium abundance decreased and was positively correlated with 5-HT. Conclusions: Arecoline administration altered multiple enzymatic activities and the microbial composition abundance in the mouse intestine, eliciting psychostimulant effects while maintaining neurotransmitter homeostasis. This study provides an experimental foundation for further pharmacological exploitation of arecoline. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

26 pages, 7613 KiB  
Article
Orthodox vs. Recalcitrant? Germination and Early Growth of Phoenix Species (Arecaceae) Stored for up to Ten Years
by Concepción Obón, Sofía Pardo-Pina, Dennis Johnson and Diego Rivera
Horticulturae 2025, 11(5), 537; https://doi.org/10.3390/horticulturae11050537 - 15 May 2025
Viewed by 662
Abstract
This study investigated seed storage behavior and seedling development patterns in the genus Phoenix L. (Arecaceae), addressing the knowledge gap regarding orthodox versus recalcitrant characteristics in these ecologically and economically significant palms. We examined the germination capacity and subsequent growth in [...] Read more.
This study investigated seed storage behavior and seedling development patterns in the genus Phoenix L. (Arecaceae), addressing the knowledge gap regarding orthodox versus recalcitrant characteristics in these ecologically and economically significant palms. We examined the germination capacity and subsequent growth in 31 seed samples from various Phoenix species stored for up to 10 years at approximately 5 °C, at the Germplasm Bank at the Escuela Politécnica Superior de Orihuela, comprising 465 seeds monitored over a one-year period. The seed germination trials involved planting seeds in pots placed in an open-air greenhouse after ambient temperatures consistently exceeded 20 °C, typically after mid-June. Phoenix dactylifera, P. canariensis, P. theophrasti, the hybrid P. dactylifera × P. canariensis, and P. × “Palmeri” demonstrated orthodox seed storage behavior, maintaining viability for up to nine years. Conversely, P. sylvestris, P. pusilla, P. rupicola, and P. loureiroi consistently failed to germinate despite previous germination success, suggesting potential recalcitrant characteristics. Statistical analyses revealed that species identity and geographic origin exerted greater influence on germination success than seed age. Seedling development exhibited a conserved seasonal pattern across all species, with synchronized leaf emergence in September and March–July, followed by winter dormancy. Significant intraspecific variation was observed, particularly within P. dactylifera varieties, in both leaf production and final leaf length. These findings provide valuable insights into germplasm preservation and cultivation strategies, demonstrating that while some Phoenix species are suitable for long-term seed banking, others may require alternative conservation approaches. The observed species-specific and variety-specific differences offer important selection criteria for horticultural applications and conservation efforts. Full article
(This article belongs to the Special Issue Advances in Sustainable Cultivation of Horticultural Crops)
Show Figures

Graphical abstract

33 pages, 7765 KiB  
Article
Bayesian Morphometric Analysis for Archaeological Seed Identification: Phoenix (Arecaceae) Palms from the Canary Islands (Spain)
by Diego Rivera, Manuel Martínez-Rico, Jacob Morales, Francisco Alcaraz, Javier Valera, Dennis Johnson, Pedro A. Sosa, Javier Abellán, Jose Antonio Palazón, Diego José Rivera-Obón, Emilio Laguna and Concepción Obón
Seeds 2025, 4(2), 19; https://doi.org/10.3390/seeds4020019 - 3 Apr 2025
Viewed by 720
Abstract
The taxonomic complexity of Phoenix palms in the Canary Islands, where multiple morphotypes representing at least four taxa currently exist, presents significant challenges for archaeobotanical identification. We developed a Bayesian probabilistic framework to identify archaeological Phoenix seeds within the context of genus-wide morphological [...] Read more.
The taxonomic complexity of Phoenix palms in the Canary Islands, where multiple morphotypes representing at least four taxa currently exist, presents significant challenges for archaeobotanical identification. We developed a Bayesian probabilistic framework to identify archaeological Phoenix seeds within the context of genus-wide morphological diversity. Our analysis incorporated thousands of specimens including modern reference collections, archaeological materials from pre-Hispanic sites in Gran Canaria and La Gomera (3–16th centuries CE), and fossil remains. We recorded quantitative measurements and qualitative characteristics for each specimen. To understand taphonomic effects, we conducted experimental carbonization of modern P. canariensis seeds and documented the resulting morphological alterations. We performed a hierarchical cluster analysis using Ward’s minimum variance method and calculated taxonomic assignment probabilities for archaeological specimens using Bayesian inference, where likelihood was derived from taxon proportions within assigned clusters. The results indicated a high probability (0.69–1.00) that the archaeological specimens belong to P. canariensis var. canariensis, with no evidence for P. dactylifera presence. These findings provide critical insights into pre-Hispanic exploitation of Phoenix palms, particularly the endemic P. canariensis, which served as a vital resource, providing food, fiber, and construction materials. Our methodological approach offers a robust framework for addressing taxonomic uncertainty in archaeobotanical research while enhancing understanding of historical palm biogeography and resource use patterns in the Canary Islands. Full article
Show Figures

Figure 1

12 pages, 4820 KiB  
Article
A Checklist of the Ornamental Vascular Flora of Sicily
by Emilio Di Gristina, Giulio Barone, Gianniantonio Domina, Emilio Badalamenti, Maria Letizia Gargano, Giuseppe Venturella and Raimondo Pardi
Plants 2025, 14(5), 795; https://doi.org/10.3390/plants14050795 - 4 Mar 2025
Viewed by 915
Abstract
Based on literature data and new field investigations, a checklist of the ornamental vascular flora of Sicily is presented. Trees, shrubs, herbaceous, and succulent plants growing in street trees, parks, private gardens, and historic villas of Sicily are included in the checklist. For [...] Read more.
Based on literature data and new field investigations, a checklist of the ornamental vascular flora of Sicily is presented. Trees, shrubs, herbaceous, and succulent plants growing in street trees, parks, private gardens, and historic villas of Sicily are included in the checklist. For each taxon, information on growth forms, geographical and biome origin, resident time, and status (native/alien) in Italy is provided. A total of 928 taxa (including 823 species s. str., 33 cultivars, 31 hybrids, 24 varieties, 9 subspecies, and 8 forms), belonging to 486 genera included in 138 families, were recorded. Fabaceae, Rosaceae, Asteraceae, Cactaceae, Asparagaceae, Arecaceae, and Malvaceae are the richest families in taxa. Phanerophytes are the prevalent growth form, and the main part of such flora consists of Asiatic and American taxa. Taxa from subtropical and tropical biomes showed a prevalent presence; this is a peculiarity which characterizes the Sicilian ornamental flora. Delonix regia emerges as a peculiar case, representing the only documented cases of open-air cultivation in both Sicily and the entire country. A significant percentage of taxa (41%) is included in the list of alien vascular flora of Italy, showing a strong predominance of casual and naturalized neophytes alien species. Full article
Show Figures

Figure 1

21 pages, 45648 KiB  
Article
A Big Data Approach for the Regional-Scale Spatial Pattern Analysis of Amazonian Palm Locations
by Matthew J. Drouillard and Anthony R. Cummings
Remote Sens. 2025, 17(5), 784; https://doi.org/10.3390/rs17050784 - 24 Feb 2025
Viewed by 564
Abstract
Arecaceae (palms) are an important resource for indigenous communities as well as fauna populations across Amazonia. Understanding the spatial patterns and the environmental factors that determine the habitats of palms is of considerable interest to rainforest ecologists. Here, we utilize remotely sensed imagery [...] Read more.
Arecaceae (palms) are an important resource for indigenous communities as well as fauna populations across Amazonia. Understanding the spatial patterns and the environmental factors that determine the habitats of palms is of considerable interest to rainforest ecologists. Here, we utilize remotely sensed imagery in conjunction with topography and soil attribute data and employ a generalized cluster identification algorithm, Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN), to study the underlying patterns of palms in two areas of Guyana, South America. The results of the HDBSCAN assessment were cross-validated with several point pattern analysis methods commonly used by ecologists (the quadrat test for complete spatial randomness, Morista Index, Ripley’s L-function, and the pair correlation function). A spatial logistic regression model was generated to understand the multivariate environmental influences driving the placement of cluster and outlier palms. Our results showed that palms are strongly clustered in the areas of interest and that the HDBSCAN’s clustering output correlates well with traditional analytical methods. The environmental factors influencing palm clusters or outliers, as determined by logistic regression, exhibit qualitative similarities to those identified in conventional ground-based palm surveys. These findings are promising for prospective research aiming to integrate remote flora identification techniques with traditional data collection studies. Full article
(This article belongs to the Special Issue Advancements in Environmental Remote Sensing and GIS)
Show Figures

Figure 1

16 pages, 4678 KiB  
Article
Genetic Characterization of SWEET Genes in Coconut Palm
by Jiepeng Chen, Weiming Zeng, Jiali Mao, Runan Chen, Ran Xu, Ying Wang, Ruibo Song, Zifen Lao, Zhuang Yang, Zhihua Mu, Ruohan Li, Hongyan Yin, Yong Xiao, Jie Luo and Wei Xia
Plants 2025, 14(5), 686; https://doi.org/10.3390/plants14050686 - 23 Feb 2025
Viewed by 844
Abstract
Sugar-Will-Eventually-be-Exported Transporters (SWEETs) play a crucial role in sugar transport in plants, mediating both plant development and stress responses. Despite their importance, there has been limited research characterizing the functional characteristics of CnSWEET genes in coconut (Cocos nucifera). In this study, [...] Read more.
Sugar-Will-Eventually-be-Exported Transporters (SWEETs) play a crucial role in sugar transport in plants, mediating both plant development and stress responses. Despite their importance, there has been limited research characterizing the functional characteristics of CnSWEET genes in coconut (Cocos nucifera). In this study, we conducted a systematic analysis of SWEET genes in coconut using bioinformatics, subcellular localization studies, in silico promoter analysis, and functional assays with yeast mutants. A total of 16 CnSWEET genes were identified and grouped into four clades. Clade I contained the highest number of genes (eight), derived from four pairs of duplicated genomic segments. In contrast, the other clades had fewer genes (one to four) compared to those in Arabidopsis and other species in the Arecaceae family. An extensive analysis of gene expansion using MSCanX indicated significant divergence in gene expansion patterns, both between and within monocots and dicots, as well as among closely related species within the same family. Notable variations in conserved protein motifs and the number of transmembrane helices (TMHs) were detected within Clade I compared to other clades, affecting the subcellular localization of CnSWEET proteins. Specifically, seven TMHs were associated with proteins located in the cell membrane, while CnSWEET2A, which had five TMHs, was found in both the cell membrane and cytosol. Promoter analysis revealed that some CnSWEET genes contained endosperm or seed specific motifs associated with specific endosperm expression, consistent with expression patterns observed in transcriptome data. Functional analysis of five CnSWEET genes, with transcript sequences supported by transcriptome data, was conducted using yeast mutant complementation assays. This analysis demonstrated diverse transport activities for sucrose, fructose, glucose, galactose, and mannose. Our findings provide valuable insights into the functional diversity of SWEET genes in coconuts and their potential roles in stress responses and plant development. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

94 pages, 17473 KiB  
Article
Exploring the Diversity and Ecological Dynamics of Palm Leaf Spotting Fungi—A Case Study on Ornamental Palms in Portugal
by Diana S. Pereira and Alan J. L. Phillips
J. Fungi 2025, 11(1), 43; https://doi.org/10.3390/jof11010043 - 7 Jan 2025
Viewed by 1769
Abstract
Palm trees (Arecaceae) are among the most popular ornamental plants worldwide. Despite extensive research on the fungi associated with Arecaceae, the diversity and ecological dynamics of fungi affecting ornamental palms remain poorly studied, although they have significant impact on palm [...] Read more.
Palm trees (Arecaceae) are among the most popular ornamental plants worldwide. Despite extensive research on the fungi associated with Arecaceae, the diversity and ecological dynamics of fungi affecting ornamental palms remain poorly studied, although they have significant impact on palm health and economic value. Furthermore, while research on palm fungal diversity has traditionally focused on tropical assemblages, ornamental palms in temperate climates offer a unique opportunity to explore the diversity of palm fungi in non-native habitats. The present study conducted a preliminary assessment of the diversity and ecology of potential phytopathogenic fungi associated with foliar lesions on various ornamental palm host species in Portugal, combining morphological examination, PCR-based genomic fingerprinting, and biodiversity data analysis. The examination of 134 foliar lesions sampled from 100 palm trees resulted in a collection of 2064 palm leaf spotting fungi (PLSF), representing a diverse fungal assemblage of 320 molecular operational taxonomic units (MOTUs) across 97 genera. The overall fungal community composition revealed a distinct assemblage dominated by Neosetophoma, Alternaria, Phoma, and Cladosporium, with a profusion of infrequent and rare taxa consistent with a logseries distribution. Significantly positive co-occurrence (CO) patterns among prevalent and uncommon taxa suggest potential synergistic interactions enhancing fungal colonisation, persistence, and pathogenicity. The taxonomic structures of the PLSF contrasted markedly from tropical palm fungi, especially in the prevalence of pleosporalean coelomycetes of the Didymellaceae and Phaeosphaeriaceae, including recently introduced or not previously documented genera on Arecaceae. This novel assemblage suggests that climatic constraints shape the structure of palm fungal communities, resulting in distinctive temperate and tropical assemblages. In addition, the fungal assemblages varied significantly across palm host species, with temperate-native palms hosting more diverse, coelomycete-enriched communities. The present findings highlight foliar lesions as hyperdiverse microhabitats harbouring fungal communities with intricate interactions and a complex interplay of climatic, host, and ecological factors. With climate change altering environmental conditions, the identification of fungi thriving in or inhabiting these microhabitats becomes crucial for predicting shifts in pathogen dynamics and mitigating future fungal disease outbreaks. Understanding these complex ecological dynamics is essential for identifying potential phytopathogenic threats and developing effective management strategies for the health and sustainability of ornamental plants. Full article
(This article belongs to the Special Issue Diversity of Microscopic Fungi)
Show Figures

Figure 1

16 pages, 6188 KiB  
Article
Species Diversity of the Family Arecaceae: What Are the Implications of Their Biogeographical Representation? An Analysis in Amazonas, Northeastern Peru
by Freddy Miranda, José-Walter Coronel-Chugden, Jaris Veneros, Ligia García, Grobert A. Guadalupe and Erick Arellanos
Forests 2025, 16(1), 76; https://doi.org/10.3390/f16010076 - 5 Jan 2025
Cited by 2 | Viewed by 1334
Abstract
The understanding of species distribution in Peru is limited, in part due to cartographic representations that traditionally use political rather than biogeographical boundaries. The objective of this study was to determine the distribution of Arecaceae species in the department of Amazonas by representing [...] Read more.
The understanding of species distribution in Peru is limited, in part due to cartographic representations that traditionally use political rather than biogeographical boundaries. The objective of this study was to determine the distribution of Arecaceae species in the department of Amazonas by representing them in biogeographical regions. To this end, geographic information systems and global databases were used to map and analyze the species in four categories: Ecosystems Map, Ecoregions Map, Peru Climate Classification Map, and Protected Natural Areas Map. Subsequently, diversity metrics were estimated, revealing high diversity in Amazonas, with 22 genera and 90 species of Arecaceae representing 51.16% and 41.28% of the records in Peru, respectively. In addition, predominant genera and species were identified, and diversity was evaluated in biogeographic units. Of a total of 336,029 records, 45 genera were found, with Geonoma and Bactris being the most representative, and of the 218 species found in total, the records that stood out the most varied according to biogeographical regions. For each Biogeographic unit by category, different responses were obtained, for example, for Index Margalef, between 0.000 (low in Agricultural Area), 7.2489 (medium in Eastern Cordillera Real Montane Forests), and 13.2636 (high in Non-protected Areas). Similarly, for the Shannon–Wiener diversity index (H¯), where values were obtained between 0.000 (low in Jalca (Andean High Grasslands), (medium in Reserved Zonez) and 3.7054 (high in Non-protected Areas). The results suggest high under-recording, evidencing gaps in knowledge and information, as analyses based on detailed studies of diversity in specific biogeographic categories in these other families, as well as future research to determine, for example, genomes and Hill numbers, will be carried out. The conclusions highlight the high correlation between the diversity metrics analyzed, confirm the theoretical validity, and allow us to recommend species richness and the Margalef Index as useful and relevant metrics due to their applicability and ease of interpretation. This study offers key information for decision makers in policies for the conservation of Arecaceae diversity and motivates us to project research of this type in other families in Peru. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

22 pages, 8609 KiB  
Article
Revealing the Impact of Understory Fires on Stem Survival in Palms (Arecaceae): An Experimental Approach Using Predictive Models
by Marcus Vinicius de Athaydes Liesenfeld
Fire 2025, 8(1), 2; https://doi.org/10.3390/fire8010002 - 24 Dec 2024
Cited by 1 | Viewed by 942
Abstract
Amid increasing deforestation, surface fires reaching the forest understory are one of the primary threats to Amazonian ecosystems. Despite extensive research on post-fire mortality in woody species, the literature on palm resilience to fire is scant. This study investigates post-fire mortality in four [...] Read more.
Amid increasing deforestation, surface fires reaching the forest understory are one of the primary threats to Amazonian ecosystems. Despite extensive research on post-fire mortality in woody species, the literature on palm resilience to fire is scant. This study investigates post-fire mortality in four understory palms, namely Bactris maraja Mart., Chamaedorea pauciflora Mart., Geonoma deversa (Poit.) Kunth, Hyospathe elegans Mart., and juvenile individuals of Euterpe precatoria Mart. (açaí palm). The objectives included (a) comparing post-fire responses; (b) developing mortality models based on severity variables; and (c) evaluating if diameter protects bud stems from heat flux. Conducted at the edge of an Ombrophylous Forest in Alto Juruá Acre, Brazil (7°45′ S, 72°22′ W), the experiment subjected 85 individuals to controlled burning in a 1 m2 area near the palm stem, with temperature sampling using K thermocouples. The results showed varying mortality rates among species, with a larger palm stem diameter correlating to reduced mortality. Crown burning patterns significantly influenced mortality, especially for Euterpe precatoria. The species exhibited diverse regrowth capacities, with B. maraja showing the highest number and tallest basal resprouts. The variation in morphology among species appeared to be more important than the amount of heat flux applied to each individual involved in the experiment, as no significant difference was observed in the time–temperature history measured. This study underscores post-fire plant mortality as a critical indicator of fire severity, essential for understanding its ecological impacts. Full article
Show Figures

Figure 1

6 pages, 502 KiB  
Proceeding Paper
Neutral Genetic Diversity of Brazilian Native Flora: Current Approaches and Gaps
by Catarina da Fonseca Lira
Environ. Earth Sci. Proc. 2024, 31(1), 7; https://doi.org/10.3390/eesp2024031007 - 18 Dec 2024
Cited by 1 | Viewed by 750
Abstract
Understanding genetic diversity is crucial for plant adaptation in a changing world. The neutral genetic variation (NGD) is correlated to adaptation capacity, which is crucial for long-term conservation of threatened species. Brazil, a megadiverse nation with habitats encompassing a great variety of ecosystems, [...] Read more.
Understanding genetic diversity is crucial for plant adaptation in a changing world. The neutral genetic variation (NGD) is correlated to adaptation capacity, which is crucial for long-term conservation of threatened species. Brazil, a megadiverse nation with habitats encompassing a great variety of ecosystems, harbors a wealth of plant biodiversity, yet studies on NGD remain scarce. This work analyzed published data on NGD in native Brazilian plant populations, identifying 731 papers through a systematic search on the Scopus database. Results indicated microsatellite markers as the most used for population studies, followed by ISSR. The SNP marker is still underutilized, possibly due to its higher costs and labor-intensiveness. Fabaceae, Bromeliaceae, and Arecaceae were the most studied families. Moreover, the two most studied species were Euterpe edulis and Hancornia speciosa, both economically important species. Notably, trees and herbs dominated the studies with a focus on the Atlantic Forest biome. However, Cerrado and Amazon biomes were also well represented, underscoring the importance of broader investigation across all Brazilian ecosystems. These findings reveal a critical gap in knowledge, where traditional molecular markers are most used and few economically important species are intensively studied. The number of threatened species studied is negligible, and most are not endemic. With looming climate and landscape changes, more comprehensive studies of NGD of threatened flora in Brazil are vital. The lack of genetic diversity information of native species may threaten any conservation efforts in the long term. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Forests)
Show Figures

Figure 1

29 pages, 138770 KiB  
Article
Regional-Scale Detection of Palms Using VHR Satellite Imagery and Deep Learning in the Guyanese Rainforest
by Matthew J. Drouillard and Anthony R. Cummings
Remote Sens. 2024, 16(24), 4642; https://doi.org/10.3390/rs16244642 - 11 Dec 2024
Cited by 1 | Viewed by 1070
Abstract
Arecaceae (palms) play a crucial role for native communities and wildlife in the Amazon region. This study presents a first-of-its-kind regional-scale spatial cataloging of palms using remotely sensed data for the country of Guyana. Using very high-resolution satellite images from the GeoEye-1 and [...] Read more.
Arecaceae (palms) play a crucial role for native communities and wildlife in the Amazon region. This study presents a first-of-its-kind regional-scale spatial cataloging of palms using remotely sensed data for the country of Guyana. Using very high-resolution satellite images from the GeoEye-1 and WorldView-2 sensor platforms, which collectively cover an area of 985 km2, a total of 472,753 individual palm crowns are detected with F1 scores of 0.76 and 0.79, respectively, using a convolutional neural network (CNN) instance segmentation model. An example of CNN model transference between images is presented, emphasizing the limitation and practical application of this approach. A method is presented to optimize precision and recall using the confidence of the detection features; this results in a decrease of 45% and 31% in false positive detections, with a moderate increase in false negative detections. The sensitivity of the CNN model to the size of the training set is evaluated, showing that comparable metrics could be achieved with approximately 50% of the samples used in this study. Finally, the diameter of the palm crown is calculated based on the polygon identified by mask detection, resulting in an average of 7.83 m, a standard deviation of 1.05 m, and a range of {4.62, 13.90} m for the GeoEye-1 image. Similarly, for the WorldView-2 image, the average diameter is 8.08 m, with a standard deviation of 0.70 m and a range of {4.82, 15.80} m. Full article
(This article belongs to the Special Issue Deep Learning Techniques Applied in Remote Sensing)
Show Figures

Figure 1

21 pages, 6447 KiB  
Review
Research Trends of Thermogravimetric Pyrolysis of Carnauba (Copernicia prunifera) and Thermokinetic Models Based on a Brief Bibliometric Investigation
by Manoel Ribeiro Filho, Samuel Medeiros, Ada Lopes, Glauber Cruz and Maria Rios
Energies 2024, 17(23), 5851; https://doi.org/10.3390/en17235851 - 22 Nov 2024
Viewed by 767
Abstract
This study presents a brief bibliometric investigation of thermogravimetric pyrolysis of carnauba biomass (Copernicia prunifera), a palm tree native to northeastern Brazil belonging to the Arecaceae family. The objective was to analyze the scientific production and methods used to evaluate the [...] Read more.
This study presents a brief bibliometric investigation of thermogravimetric pyrolysis of carnauba biomass (Copernicia prunifera), a palm tree native to northeastern Brazil belonging to the Arecaceae family. The objective was to analyze the scientific production and methods used to evaluate the kinetic parameters of biomass pyrolysis. An analysis was conducted using the Scopus, ScienceDirect, and Web of Science databases, and VOSviewer and Bibliometrix software. The methodology allows the generation of clusters and tables of scientific production, including authors, co-authors, affiliations, institutions, journals, and keywords. The search yielded 1983 articles, and after the application of exclusion criteria, 919 articles were retained, forming the basis for the bibliometric analysis. It provided an overview of thermogravimetric pyrolysis of carnauba research and identified areas that require further study. It also identified which universities and researchers have devoted the most effort to this area of research, the key findings, and areas that require further investment to complement existing research. Additionally, the study indicated the suitability of the Friedman method for determining kinetic parameters in biomass pyrolysis. Full article
(This article belongs to the Special Issue Biomass, Biofuels and Waste: 2nd Edition)
Show Figures

Figure 1

Back to TopTop