Addressing Increased Temperatures in Cities: Determination of Pedestrian Routes with Thermal Comfort in Barranquilla, Colombia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Determination of Pedestrian Routes
2.3. Elaboration of High Resolution Orthophotos
2.4. Measurement of Humidity and Temperature on Routes
2.5. Determination of Plant Species
2.6. Design and Implementation of Mobile Phone Application
3. Results
3.1. Pedestrian Route Determination
3.2. Humidity and Temperature Along Routes
3.3. Tree Inventory
3.4. Mobile Phone Application
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klein, T.; Anderegg, W.R.L. A vast increase in heat exposure in the 21st century is driven by global warming and urban population growth. Sustain. Cities Soc. 2021, 73, 103098. [Google Scholar] [CrossRef]
- Sage, R.F. Global change biology: A primer. Glob. Change Biol. 2020, 26, 3–30. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Nagar, S.; Anand, S. Climate Change and existential threats. In Global Climate Change; Singh, S., Singh, P., Rangabhashiyam, S., Srivastava, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–31. [Google Scholar]
- Grafakos, S.; Viero, G.; Reckien, D.; Trigg, K.; Viguie, V.; Sudmant, A.; Graves, C.; Foley, A.; Heidrich, O.; Mirailles, J.M.; et al. Integration of mitigation and adaptation in urban Climate Change action plans in Europe: A systematic assessment. Renew. Sustain. Energy Rev. 2020, 121, 109623. [Google Scholar] [CrossRef]
- Liu, Z.; Zhan, W.; Bechtel, B.; Voogt, J.; Lai, J.; Chakraborty, T.; Wang, Z.H.; Li, M.; Huang, F.; Lee, X. Surface warming in global cities is substantially more rapid than in rural background areas. Commun. Earth Environ. 2022, 3, 219. [Google Scholar] [CrossRef]
- Santamouris, M. Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global Climate Change. Energy Build. 2020, 207, 109482. [Google Scholar] [CrossRef]
- Santamouris, M.; Osmond, P. Increasing green infrastructure in cities: Impact on ambient temperature, air quality and heat-related mortality and morbidity. Buildings 2020, 10, 233. [Google Scholar] [CrossRef]
- Kumar, P. Climate Change and cities: Challenges ahead. Front. Sustain. Cities 2021, 3, 645613. [Google Scholar] [CrossRef]
- Tuholske, C.; Caylor, K.; Funk, C.; Verdin, A.; Sweeney, S.; Grace, K.; Peterson, P.; Evans, T. Global urban population exposure to extreme heat. Proc. Natl. Acad. Sci. USA 2021, 118, e2024792118. [Google Scholar] [CrossRef]
- Wang, Y.; He, B.J.; Kang, C.; Yan, L.; Chen, X.; Yin, M.; Liu, X.; Zhou, T. Assessment of walkability and walkable routes of a 15-min city for heat adaptation: Development of a dynamic attenuation model of heat stress. Front. Public Health 2022, 10, 1011391. [Google Scholar] [CrossRef]
- Perkins-Kirkpatrick, S.E.; Lewis, S.C. Increasing trends in regional heatwaves. Nat. Commun. 2020, 11, 3357. [Google Scholar] [CrossRef]
- Kiarsi, M.; Amiresmaili, M.; Mahmoodi, M.R.; Farahmandnia, H.; Nakhaee, N.; Zareiyan, A.; Aghababaeian, H. Heat waves and adaptation: A global systematic review. J. Therm. Biol. 2023, 116, 103588. [Google Scholar] [CrossRef]
- He, C.; Zhang, Y.; Schneider, A.; Chen, R.; Zhang, Y.; Ma, W.; Kinney, P.L.; Kan, H. The inequality labor loss risk from future urban warming and adaptation strategies. Nat. Commun. 2022, 13, 3847. [Google Scholar] [CrossRef] [PubMed]
- Ebi, K.L.; Capon, A.; Berry, P.; Broderick, C.; de Dear, R.; Havenith, G.; Honda, Y.; Kovats, R.S.; Ma, W.; Malik, A.; et al. Hot weather and heat extremes: Health risks. Lancet 2021, 398, 698–708. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Varghese, B.M.; Hansen, A.; Xiang, J.; Zhang, Y.; Dear, K.; Gourley, M.; Driscoll, T.; Morgan, G.; Capon, A.; et al. Is there an association between hot weather and poor mental health outcomes? A systematic review and meta-analysis. Environ. Int. 2021, 153, 106533. [Google Scholar] [CrossRef]
- Xia, D.M.; Wang, X.R.; Zhou, P.Y.; Ou, T.L.; Su, L.; Xu, S.G. Research progress of heat stroke during 1989–2019: A bibliometric analysis. Mil. Med. Res. 2021, 8, 5. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, D.P. Heat stroke-related deaths in India: An analysis of natural causes of deaths, associated with the regional heatwave. J. Therm. Biol. 2021, 95, 102792. [Google Scholar] [CrossRef]
- Sun, Q.; Macleod, T.; Both, A.; Hurley, J.; Butt, A.; Amati, M. A human-centred assessment framework to prioritise heat mitigation efforts for active travel at city scale. Sci. Total Environ. 2021, 763, 143033. [Google Scholar] [CrossRef]
- Wolniak, R. European Union smart mobility–aspects connected with bike road system’s extension and dissemination. Smart Cities 2023, 6, 1009–1042. [Google Scholar] [CrossRef]
- Ayfantopoulou, G.; Touloumidis, D.; Mallidis, I.; Xenou, E. A quantitative model of innovation readiness in urban mobility: A comparative study of smart cities in the EU, Eastern Asia, and USA regions. Smart Cities 2023, 6, 3337–3358. [Google Scholar] [CrossRef]
- Kang, Y.; Kim, J.; Park, J.; Lee, J. Assessment of perceived and physical walkability using street view images and deep learning technology. ISPRS Int. J. Geo-Inf. 2023, 12, 186. [Google Scholar] [CrossRef]
- Campisi, T.; Basbas, S.; Tesoriere, G.; Trouva, M.; Papas, T.; Mrak, I. How to create walking friendly cities. A multi-criteria analysis of the central open market area of Rijeka. Sustainability 2020, 12, 9470. [Google Scholar] [CrossRef]
- Paraskevopoulos, Y.; Tsigdinos, S.; Andrakakou, M. Associating walkability features with pedestrian activity in a central Athens neighborhood. Eur. J. Geogr. 2020, 11, 157–172. [Google Scholar] [CrossRef]
- Buehler, R.; Pucher, J. Overview of walking rates, walking safety, and government policies to encourage more and safer walking in Europe and North America. Sustainability 2023, 15, 5719. [Google Scholar] [CrossRef]
- Todd, L. Cool walkability planning: Providing pedestrian thermal comfort in hot climate cities. J. Civ. Eng. Environ. Sci. 2023, 9, e079–e086. [Google Scholar] [CrossRef]
- Rodríguez, D.A.; Aytur, S.; Forsyth, A.; Oakes, J.M.; Clifton, K.J. Relation of modifiable neighborhood attributes to walking. Prev. Med. 2008, 47, 260–264. [Google Scholar] [CrossRef]
- Labdaoui, K.; Mazouz, S.; Moeinaddini, M.; Cools, M.; Teller, J. The Street walkability and thermal comfort index (SWTCI): A new assessment tool combining street design measurements and thermal comfort. Sci. Total Environ. 2021, 795, 148663. [Google Scholar] [CrossRef]
- Detommaso, M.; Gagliano, A.; Marletta, L.; Nocera, F. Sustainable urban greening and cooling strategies for thermal comfort at pedestrian level. Sustainability 2021, 13, 3138. [Google Scholar] [CrossRef]
- Aghaabbasi, M.; Moeinaddini, M.; Asadi-Shekari, Z.; Shah, M.Z. The equitable use concept in sidewalk design. Cities 2019, 88, 181–190. [Google Scholar] [CrossRef]
- Boumaraf, H.; Amireche, L. Thermal comfort and pedestrian behaviors in urban public spaces in cities with warm and dry climates. Open House Int. 2021, 46, 143–159. [Google Scholar] [CrossRef]
- Lee, J.M. Exploring walking behavior in the streets of New York City using hourly pedestrian count data. Sustainability 2020, 12, 7863. [Google Scholar] [CrossRef]
- Santamouris, M. Regulating the damaged thermostat of the cities—Status, impacts and mitigation challenges. Energy Build. 2015, 91, 43–56. [Google Scholar] [CrossRef]
- Liu, X.; Tian, G.; Feng, J.; Hou, H.; Ma, B. Adaptation strategies for urban warming: Assessing the impacts of heat waves on cooling capabilities in Chongqing, China. Urban Clim. 2022, 45, 101269. [Google Scholar] [CrossRef]
- Jia, S.; Wang, Y. Effect of heat mitigation strategies on thermal environment, thermal comfort, and walkability: A case study in Hong Kong. Build. Environ. 2021, 201, 107988. [Google Scholar] [CrossRef]
- Iungman, T.; Cirach, M.; Marando, F.; Pereira Barboza, E.; Khomenko, S.; Masselot, P.; Quijal-Zamorano, M.; Mueller, N.; Gasparrini, A.; Urquiza, J.; et al. Cooling cities through urban green infrastructure: A health impact assessment of European cities. Lancet 2023, 401, 577–589. [Google Scholar] [CrossRef]
- Sinha, P.; Coville, R.C.; Hirabayashi, S.; Lim, B.; Endreny, T.A.; Nowak, D.J. Modeling lives saved from extreme heat by urban tree cover. Ecol. Modell. 2021, 449, 109553. [Google Scholar] [CrossRef]
- Deilami, K.; Rudner, J.; Butt, A.; MacLeod, T.; Williams, G.; Romeijn, H.; Amati, M. Allowing users to benefit from tree shading: Using a smartphone app to allow adaptive route planning during extreme heat. Forests 2020, 11, 998. [Google Scholar] [CrossRef]
- Eisenman, T.S.; Coleman, A.F.; LaBombard, G. Street trees for bicyclists, pedestrians, and vehicle drivers: A systematic multimodal review. Urban Sci. 2021, 5, 56. [Google Scholar] [CrossRef]
- Peeters, A.; Shashua-Bar, L.; Meir, S.; Shmulevich, R.R.; Caspi, Y.; Weyl, M.; Motzafi-Haller, W.; Angel, N. A decision support tool for calculating effective shading in urban streets. Urban Clim. 2020, 34, 100672. [Google Scholar] [CrossRef]
- Gohari, A.; Ahmad, A.B.; Rahim, R.B.A.; Supa’at, A.S.M.; Razak, S.A.; Gismalla, M.S.M. Involvement of surveillance drones in smart cities: A systematic review. IEEE Access 2022, 10, 56611–56628. [Google Scholar] [CrossRef]
- Khan, M.A.; Safi, E.A.; Khan, I.U.; Alvi, B.A. Drones for good in smart cities: A review. In Proceedings of the International Conference on Electrical, Electronics, Computers, Communication, Mechanical and Computing (EECCMC), Coimbatore, India, 28–29 January 2018; pp. 1–8. [Google Scholar]
- Egerer, M.; Haase, D.; McPhearson, T.; Frantzeskaki, N.; Andersson, E.; Nagendra, H.; Ossola, A. Urban change as an untapped opportunity for climate adaptation. NPJ Urban Sustain. 2021, 1, 22. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Ding, N. Spatial effects of landscape patterns of urban patches with different vegetation fractions on urban thermal environment. Remote Sens. 2022, 14, 5684. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, H.; Mao, S.; Zhang, G.; Jin, Y.; Luo, Y.; Huo, W.; Pan, Z.; An, P.; Lun, F. Exploring surface urban heat island (SUHI) intensity and its implications based on urban 3D neighborhood metrics: An investigation of 57 Chinese cities. Sci. Total Environ. 2022, 847, 157662. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.H.; Lee, D.K.; Park, C.Y.; Jeong, S.G. The influence of small green space type and structure at the street level on urban heat island mitigation. Urban For. Urban Green. 2017, 21, 203–212. [Google Scholar] [CrossRef]
- Villadiego, K.; Velay-Dabat, M.A. Outdoor thermal comfort in a hot and humid climate of Colombia: Afield study in Barranquilla. Build. Environ. 2014, 75, 142–152. [Google Scholar] [CrossRef]
- Chen, D.; Chen, H.W. Using the Köppen classification to quantify climate variation and change: An example for 1901–2010. Environ. Dev. 2013, 6, 69–79. [Google Scholar] [CrossRef]
- Höppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Cañate Bello, K.J.; Patiño, L. Problemática del Espacio Público en la Localidad Norte Centro Histórico en la Ciudad de Barranquilla; Universidad de la Costa: Barranquilla, Colombia, 2013. [Google Scholar]
- Mapa de Barrios de Barranquilla Según el POT. Available online: https://www.datos.gov.co/Vivienda-Ciudad-y-Territorio/Mapa-de-Barrios-de-Barranquilla-Seg-n-el-POT/p57x-7s28 (accessed on 16 July 2024).
- Localidades de Barranquilla. Available online: https://barranquilla.gov.co/descubre/conoce-a-barranquilla/territorio (accessed on 16 July 2024).
- Experiencia Virtual 360. Available online: https://www.unisimon.edu.co/experienciavirtual/index.html (accessed on 16 July 2024).
- DJI Mavic 3M. Available online: https://ag.dji.com/mavic-3-m (accessed on 16 July 2024).
- Over, J.-S.R.; Ritchie, A.C.; Kranenburg, C.; Brown, J.A.; Buscombe, D.D.; Noble, T.; Sherwood, C.; Warrick, J.A.; Wernette, P.A. Processing Coastal Imagery with Agisoft Metashape Professional Edition, Version 1.6—Structure from Motion Workflow Documentation; US Geological Survey: Reston, VA, USA, 2021. [Google Scholar]
- OSGeo QGis Desktop. Available online: https://www.osgeo.org/projects/qgis/ (accessed on 23 July 2024).
- Glority LLC PictureThis—Plant Identifier. Available online: https://www.picturethisai.com/ (accessed on 30 July 2024).
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; P´ean, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M. Climate Change 2021 The Physical Science Basis; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2021.
- IDEAM-PNUD. Nuevos Escenarios de Cambio Climático para Colombia 2011–2100; IDEAM-PNUD: Bogotá, Colombia, 2015. [Google Scholar]
- Dobbs, C.; Eleuterio, A.A.; Vásquez, A.; Cifuentes-Ibarra, M.; da Silva, D.; Devisscher, T.; Baptista, M.D.; Hernández-Moreno, Á.; Meléndez-Ackerman, E.; Navarro, N.M. Are we promoting green cities in Latin America and the Caribbean? Exploring the patterns and drivers of change for urban vegetation. Land Use Policy 2023, 134, 106912. [Google Scholar] [CrossRef]
- Dobbs, C.; Escobedo, F.J.; Clerici, N.; de la Barrera, F.; Eleuterio, A.A.; MacGregor-Fors, I.; Reyes-Paecke, S.; Vásquez, A.; Zea Camaño, J.D.; Hernández, H.J. Urban ecosystem services in Latin America: Mismatch between global concepts and regional realities? Urban Ecosyst. 2019, 22, 173–187. [Google Scholar] [CrossRef]
- Nuñez, Y.; Hoyos, N.; Arellana, J. High land surface temperatures (LSTs) disproportionately affect vulnerable socioeconomic groups in Barranquilla, Colombia. Urban Clim. 2023, 52, 101757. [Google Scholar] [CrossRef]
- Todos al Parque: Una Experiencia Efectiva. Available online: https://barranquilla.gov.co/planeacion/la-recuperacion-de-parques-en-barranquilla-reduce-en-promedio-154-los-hurtos-en-su-area-de-influencia (accessed on 28 October 2024).
- FAO and Arbor Day Foundation Tree Cities of the World. Available online: https://treecitiesoftheworld.org/directory.cfm (accessed on 28 October 2024).
- Programa de Biodiverciudad y Equidad Urbana en Barranquilla. Available online: https://barranquilla.gov.co/programa-de-biodiverciudad-y-equidad-urbana-en-barranquilla (accessed on 28 October 2024).
- Arellana, J.; Alvarez, V.; Oviedo, D.; Guzman, L.A. Walk this way: Pedestrian accessibility and equity in Barranquilla and Soledad, Colombia. Res. Transp. Econ. 2021, 86, 101024. [Google Scholar] [CrossRef]
- Tong, Y.; Bode, N.W.F. The principles of pedestrian route choice. J. R. Soc. Interface 2022, 19, 20220061. [Google Scholar] [CrossRef] [PubMed]
- Arellana, J.; Saltarín, M.; Larrañaga, A.M.; Alvarez, V.; Henao, C.A. Urban walkability considering pedestrians’ perceptions of the built environment: A 10-year review and a case study in a medium-sized city in Latin America. Transp. Rev. 2020, 40, 183–203. [Google Scholar] [CrossRef]
- Grubesic, T.; Nelson, J.; Wei, R. Maximizing the thermal comfort of pedestrians with UAV imagery and multiobjective spatial optimization. In UAVs for Spatial Modelling and Urban Informatics; Grubesic, T., Nelson, J., Wei, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2024; pp. 73–86. [Google Scholar]
- Mohamed, N.; Al-Jaroodi, J.; Jawhar, I.; Idries, A.; Mohammed, F. Unmanned aerial vehicles applications in future smart cities. Technol. Forecast. Soc. Change 2020, 153, 119293. [Google Scholar] [CrossRef]
- Zhao, X.; Luo, Y.; He, J. Analysis of the thermal environment in pedestrian space using 3D thermal imaging. Energies 2020, 13, 3674. [Google Scholar] [CrossRef]
- Videras, M.; Gomez, S.; Ardújar, J. Assessment of aerial thermography as a method of in situ measurement of radiant heat transfer in urban public spaces. Sustain. Cities Soc. 2022, 87, 104228. [Google Scholar] [CrossRef]
- Alkaabi, K.; Senghore, S.; Rhman El Fawair, A. Toward sustainable cities: Monitoring thermal environment for buildings and pedestrian space using drone-captured 3D thermal imaging. Front. Built Environ. 2023, 8, 1035546. [Google Scholar] [CrossRef]
- Sanusi, R.; Johnstone, D.; May, P.; Livesley, S.J. Microclimate benefits that different street tree species provide to sidewalk pedestrians relate to differences in plant area index. Landsc. Urban Plan. 2017, 157, 502–511. [Google Scholar] [CrossRef]
- MacMichael, J.; Veledar, E.; Chen, S. UV radiation protection by handheld umbrellas. JAMA Dermatol. 2013, 149, 757–758. [Google Scholar] [CrossRef]
- Slot, M.; Rifai, S.W.; Winter, K. Photosynthetic plasticity of a tropical tree species, Tabebuia rosea, in response to elevated temperature and [CO2]. Plant Cell Environ. 2021, 44, 2347–2364. [Google Scholar] [CrossRef]
- Kabano, P.; Harris, A.; Lindley, S. Sensitivity of canopy phenology to local urban environmental characteristics in a tropical city. Ecosystems 2021, 24, 1110–1124. [Google Scholar] [CrossRef]
- Hosek, L.K.; Roloff, A. Species site matching: Selecting palms (Arecaceae) for urban growing spaces. Urban For. Urban Green. 2016, 20, 113–119. [Google Scholar] [CrossRef]
- Spennemann, D.H.R. The role of Canary Island date palms in physical amenity provisioning for urban landscape settings. Horticulturae 2021, 7, 201. [Google Scholar] [CrossRef]
- Pataki, D.E.; Alberti, M.; Cadenasso, M.L.; Felson, A.J.; McDonnell, M.J.; Pincetl, S.; Pouyat, R.V.; Setälä, H.; Whitlow, T.H. The benefits and limits of urban tree planting for environmental and human health. Front. Ecol. Evol. 2021, 9, 603757. [Google Scholar] [CrossRef]
- Olaverri Monreal, C.; Pichler, M.; Krizek, G.; Naumann, S. Shadow as route quality parameter in a pedestrian-tailored mobile application. IEEE Intell. Transp. Syst. Mag. 2016, 8, 15–27. [Google Scholar] [CrossRef]
- Dang, C.; Iwai, M.; Umeda, K.; Tobe, Y.; Sezaki, K. NaviComf: Navigate pedestrians for comfort using multi-modal environmental sensors. In Proceedings of the 2012 IEEE International Conference on Pervasive Computing and Communications, Lugano, Switzerland, 19–23 March 2012; pp. 76–84. [Google Scholar] [CrossRef]
- Parasol Navigation: Optimizing Walking Routes to Keep You in the Sun or Shade. Available online: https://www.allnans.com/jekyll/update/2018/08/07/introducing-parasol.html (accessed on 18 November 2024).
- Novack, T.; Wang, Z.; Zipf, A. A system for generating customized pleasant pedestrian routes based on openstreetmap data. Sensors 2018, 18, 3794. [Google Scholar] [CrossRef]
- de Olivera, A.; Lucas de Souza, S.; Dal Pai, E.; Rodrigues, B.; de Souza, V. Aurora: Mobile application for analysis of spatial variability of thermal comfort indexes of animals and people, using IDW interpolation. Comput. Electron. Agric. 2019, 157, 98–101. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolívar-Anillo, H.J.; Vega Benites, S.; Reyes Almeida, G.; Ortega Llanos, S.d.J.; Taba-Charris, V.; Acuña-Ruiz, K.A.; Reales Vargas, B.S.; Chapuel Aguillón, P.F.; Sánchez Moreno, H.; Iglesias-Navas, M.A.; et al. Addressing Increased Temperatures in Cities: Determination of Pedestrian Routes with Thermal Comfort in Barranquilla, Colombia. Sustainability 2025, 17, 5211. https://doi.org/10.3390/su17115211
Bolívar-Anillo HJ, Vega Benites S, Reyes Almeida G, Ortega Llanos SdJ, Taba-Charris V, Acuña-Ruiz KA, Reales Vargas BS, Chapuel Aguillón PF, Sánchez Moreno H, Iglesias-Navas MA, et al. Addressing Increased Temperatures in Cities: Determination of Pedestrian Routes with Thermal Comfort in Barranquilla, Colombia. Sustainability. 2025; 17(11):5211. https://doi.org/10.3390/su17115211
Chicago/Turabian StyleBolívar-Anillo, Hernando José, Shersy Vega Benites, Giovanna Reyes Almeida, Samuel de Jesús Ortega Llanos, Valentina Taba-Charris, Keyla Andrea Acuña-Ruiz, Byron Standly Reales Vargas, Paula Fernanda Chapuel Aguillón, Hernando Sánchez Moreno, María Auxiliadora Iglesias-Navas, and et al. 2025. "Addressing Increased Temperatures in Cities: Determination of Pedestrian Routes with Thermal Comfort in Barranquilla, Colombia" Sustainability 17, no. 11: 5211. https://doi.org/10.3390/su17115211
APA StyleBolívar-Anillo, H. J., Vega Benites, S., Reyes Almeida, G., Ortega Llanos, S. d. J., Taba-Charris, V., Acuña-Ruiz, K. A., Reales Vargas, B. S., Chapuel Aguillón, P. F., Sánchez Moreno, H., Iglesias-Navas, M. A., & Anfuso, G. (2025). Addressing Increased Temperatures in Cities: Determination of Pedestrian Routes with Thermal Comfort in Barranquilla, Colombia. Sustainability, 17(11), 5211. https://doi.org/10.3390/su17115211