Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (261)

Search Parameters:
Keywords = Arbuscular mycorrhizas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2419 KiB  
Review
Arbuscular Mycorrhizal Fungi in the Ecological Restoration of Tropical Forests: A Bibliometric Review
by Yajaira Arévalo, María Eugenia Avila-Salem, Paúl Loján, Narcisa Urgiles-Gómez, Darwin Pucha-Cofrep, Nikolay Aguirre and César Benavidez-Silva
Forests 2025, 16(8), 1266; https://doi.org/10.3390/f16081266 - 2 Aug 2025
Viewed by 244
Abstract
Arbuscular mycorrhizal fungi (AMF) play a vital role in the restoration of tropical forests by enhancing soil fertility, facilitating plant establishment, and improving ecosystem resilience. This study presents a comprehensive bibliometric analysis of global scientific output on AMF in the context of ecological [...] Read more.
Arbuscular mycorrhizal fungi (AMF) play a vital role in the restoration of tropical forests by enhancing soil fertility, facilitating plant establishment, and improving ecosystem resilience. This study presents a comprehensive bibliometric analysis of global scientific output on AMF in the context of ecological restoration, based on 3835 publications indexed in the Web of Science and Scopus databases from 2001 to 2024. An average annual growth rate of approximately 9.45% was observed, with contributions from 10,868 authors across 880 journals. The most prominent journals included Mycorrhiza (3.34%), New Phytologist (3.00%), and Applied Soil Ecology (2.79%). Thematically, dominant research areas encompassed soil–plant interactions, phytoremediation, biodiversity, and microbial ecology. Keyword co-occurrence analysis identified “arbuscular mycorrhizal fungi,” “diversity,” “soil,” and “plant growth” as core topics, while emerging topics such as rhizosphere interactions and responses to abiotic stress showed increasing prominence. Despite the expanding body of literature, key knowledge gaps remain, particularly concerning AMF–plant specificity, long-term restoration outcomes, and integration of microbial community dynamics. These findings offer critical insights into the development of AMF research and underscore its strategic importance in tropical forest restoration, providing a foundation for future studies and informing ecosystem management policies. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

16 pages, 3526 KiB  
Article
Effects of Glomus iranicum Inoculation on Growth and Nutrient Uptake in Potatoes Associated with Broad Beans Under Greenhouse Conditions
by Duglas Lenin Contreras-Pino, Samuel Pizarro, Patricia Verastegui-Martinez, Richard Solórzano-Acosta and Edilson J. Requena-Rojas
Microbiol. Res. 2025, 16(7), 164; https://doi.org/10.3390/microbiolres16070164 - 21 Jul 2025
Viewed by 367
Abstract
The rising global demand for food, including potatoes, necessitates increased crop production. To achieve higher yields, farmers frequently depend on regular applications of nitrogen and phosphate fertilizers. As people seek more environmentally friendly alternatives, biofertilizers are gaining popularity as a potential replacement for [...] Read more.
The rising global demand for food, including potatoes, necessitates increased crop production. To achieve higher yields, farmers frequently depend on regular applications of nitrogen and phosphate fertilizers. As people seek more environmentally friendly alternatives, biofertilizers are gaining popularity as a potential replacement for synthetic fertilizers. This study aimed to determine how Glomus iranicum affects the growth of potatoes (Solanum tuberosum L.) and the nutritional value of potato tubers when grown alongside broad beans (Vicia faba L.). An experiment was conducted using potatoes tested at five dosage levels of G. iranicum, ranging from 0 to 4 g, to see its impact on the plants and soil. Inoculation with G. iranicum produced variable results in associated potato and bean crops, with significant effects on some variables. In particular, inoculation with 3 g of G. iranicum produced an increase in plant height (24%), leaf dry weight (90%), and tuber dry weight (57%) of potatoes. Similarly, 4 g of G. iranicum produced an increase in the foliar fresh weight (115%), root length (124%), root fresh weight (159%), and root dry weight (243%) of broad beans compared to no inoculation. These findings suggest that G. iranicum could be a helpful biological tool in Andean crops to improve the productivity of potatoes associated with broad beans. This could potentially reduce the need for chemical fertilizers in these crops. Full article
Show Figures

Figure 1

16 pages, 4549 KiB  
Article
Co-Application of Seaweed Extract (Solieria filiformis) and Silicon: Effect on Sporulation, Mycorrhizal Colonization, and Initial Growth of Mimosa caesalpiniaefolia
by Isaac Alves da Silva, José Lucas Sousa de Andrade, Francisco Luan Almeida Barbosa, Murilo de Sousa Almeida, Marjory Lima Holanda Araújo, Adijailton Jose de Souza, Ademir Sergio Ferreira Araujo, Arthur Prudêncio de Araujo Pereira and Kaio Gráculo Vieira Garcia
Microorganisms 2025, 13(7), 1581; https://doi.org/10.3390/microorganisms13071581 - 4 Jul 2025
Viewed by 536
Abstract
Seaweed extracts (SEs) and silicon (Si) are known to enhance plant growth under adverse conditions. However, their combined effects on arbuscular mycorrhizal fungi (AMF) are not yet fully understood. This study evaluated the effect of the co-application of an SE and Si on [...] Read more.
Seaweed extracts (SEs) and silicon (Si) are known to enhance plant growth under adverse conditions. However, their combined effects on arbuscular mycorrhizal fungi (AMF) are not yet fully understood. This study evaluated the effect of the co-application of an SE and Si on the AMF spore abundance, mycorrhizal colonization, and early growth of Mimosa caesalpiniaefolia. Plants were grown in a greenhouse for 70 days in soil with or without an SE (Solieria filiformis) and three Si levels (0, 150, and 300 mg kg−1). Growth parameters, AMF spore abundance, mycorrhizal colonization, and plant/soil chemical composition were assessed. SE and Si increased the plant height, stem diameter, number of leaves, and shoot dry mass, while higher Si levels reduced the root dry mass and length. Mycorrhizal colonization was highest (64%) at 150 mg kg−1 Si with SE, whereas AMF spore abundance decreased as Si increased. SE and 300 mg kg−1 Si raised the Si levels in the shoot, while root Si increased only at 300 mg kg−1 Si. Shoot Na increased at 300 mg kg−1 Si without SE, whereas K was highest at 150 mg kg−1 Si with SE. The soil pH, electrical conductivity, and Na increased at 300 mg kg−1 Si, while K and P decreased at this level without SE. These findings indicate that SE and Si co-application benefits early growth and may modulate mycorrhizal symbiosis, highlighting the importance of proper management to maximize plant and soil benefits. Full article
Show Figures

Figure 1

16 pages, 2295 KiB  
Article
Research on the Response of Arbuscular Mycorrhizae Fungi to Grape Growth Under High Temperature Stress
by Panyu Jian, He Zhang, Xiaojun Xi, Xiangjing Yin, Pengpeng Sun, Qian Zha and Dejian Zhang
Int. J. Mol. Sci. 2025, 26(13), 6165; https://doi.org/10.3390/ijms26136165 - 26 Jun 2025
Viewed by 259
Abstract
Arbuscular mycorrhizae fungi (AMF) plays an important role in plants’ response to environmental stress, and the main environmental stress encountered in grape production is high temperature stress. This study aims to inoculate Funneliformis mosseae (A type of AMF) on grapes and investigate their [...] Read more.
Arbuscular mycorrhizae fungi (AMF) plays an important role in plants’ response to environmental stress, and the main environmental stress encountered in grape production is high temperature stress. This study aims to inoculate Funneliformis mosseae (A type of AMF) on grapes and investigate their tolerance to high temperature stress after inoculation. The results showed that AMF could infect grape roots, and the mycorrhizal infection rate was 20.78%. After inoculation with AMF, the growth of grape plants was significantly better than that in the non-inoculation group. Compared with the uninoculated group, the net photosynthetic rate, transpiration rate and stomatal conductance were higher in the AMF group, and the intercellular CO2 concentration was lower. After high temperature treatment, there was no significant difference in the content of hydrogen peroxide (H2O2) in grape leaves between the two experimental groups at each time, and the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and other enzymes showed great differences, especially after high temperature treatment for 6 h. The activities of SOD, POD and CAT in AMF group were significantly higher than those in uninoculated group. The content of malondialdehyde (MDA) in grape leaves of the two experimental groups had no significant difference between 0 h and 3 h after high temperature treatment, and the MDA content in the AMF group was significantly lower than that in the uninoculated group after 6 h of high temperature treatment. The contents of soluble sugar and soluble protein in the AMF group were higher than those in the uninoculated group at all time periods, especially after 6 h of high temperature treatment. In addition, we found that VvHSP70, VvHSP17.9, VvGLOS1, VvHSFA2 genes all responded to high temperature stress, but there was no significant difference between the AMF group and the uninoculated group. It can be seen from the above that AMF can significantly enhance the adaptability of grape plants to high temperature stress by improving photosynthetic efficiency, antioxidant enzyme activity, soluble sugar and soluble protein content, and reduce Malondialdehyde (MDA) content, which provides guidance and theoretical basis for grape production. Full article
(This article belongs to the Special Issue Crop Biotic and Abiotic Stress Tolerance: 4th Edition)
Show Figures

Figure 1

16 pages, 2764 KiB  
Article
Lotus tenuis in Association with Arbuscular Mycorrhizal Fungi Is More Tolerant to Partial Submergence than to High-Intensity Defoliation
by Ileana García
Int. J. Plant Biol. 2025, 16(2), 47; https://doi.org/10.3390/ijpb16020047 - 29 Apr 2025
Viewed by 284
Abstract
This study aimed to investigate the effect of the association of Lotus tenuis with arbuscular mycorrhizal fungi (AMF) on its development under high defoliation intensity or partial submergence in a P-deficient soil of the Salado River Basin in a pot experiment. L. tenuis [...] Read more.
This study aimed to investigate the effect of the association of Lotus tenuis with arbuscular mycorrhizal fungi (AMF) on its development under high defoliation intensity or partial submergence in a P-deficient soil of the Salado River Basin in a pot experiment. L. tenuis mycorrhizal plants showed higher tolerance to partial submergence (91%) than to high defoliation intensity (57%). Shoot biomass was the highest in mycorrhizal non-stressed and submerged plants (11.71 g and 12.06 g, respectively), and decreased by 38% in defoliated plants. Both stress conditions caused a negative effect on root growth of plants with or without AMF. High-intensity defoliation can be considered the most stressful scenario for mycorrhizal L. tenuis plants and AMF play a more marked role in P nutrition. Under submergence, AMF caused a net effect on L. tenuis growth, improving carbon and P resource distribution to sustain shoot growth and elongation. Root AMF colonization and nodulation decreased under submergence. High arbuscular colonization percentages were reached under both stress conditions, indicating that the symbiosis may be functional. L. tenuis roots can act as a reservoir of the fungal community under severe stress conditions, allowing the preservation of the AMF inoculum. Full article
(This article belongs to the Section Plant Response to Stresses)
Show Figures

Figure 1

20 pages, 506 KiB  
Article
Effect of Claroideoglomus etunicatum and Indole-3-acetic Acid on Growth and Biochemical Properties of Vetiver Grass (Vetiveria zizanioides) Under Salinity Stress
by Negar Mosallanejad, Mehdi Zarei, Reza Ghasemi-Fasaei, Amir Ghaffar Shahriari, Afsaneh Mohkami and Tibor Janda
Int. J. Mol. Sci. 2025, 26(7), 3132; https://doi.org/10.3390/ijms26073132 - 28 Mar 2025
Viewed by 383
Abstract
Salinity represents a major environmental factor limiting plant growth and productivity. In order to better understand the effects of arbuscular mycorrhizal fungus Claroideoglomus etunicatum and Indole-3-acetic acid (IAA) on the growth and chemical composition of vetiver grass (Vetiveria zizanioides) under salt [...] Read more.
Salinity represents a major environmental factor limiting plant growth and productivity. In order to better understand the effects of arbuscular mycorrhizal fungus Claroideoglomus etunicatum and Indole-3-acetic acid (IAA) on the growth and chemical composition of vetiver grass (Vetiveria zizanioides) under salt stress, a factorial experiment was conducted in a completely randomized design with three replications. The experiment included four NaCl levels (0, 8, 16, and 24 decisiemens per meter (dS/m)) and four levels of treatments (no amendment application, application of IAA, application of C. etunicatum, and interaction of IAA and C. etunicatum) with three replications. The results of the experiment showed that the addition of sodium chloride increased the concentration of proline and the activities of catalase, peroxidase, and superoxide dismutase enzymes. The application of the growth regulator (IAA) and C. etunicatum significantly increased the fresh and dry weight (101%) of shoots, dry weight of roots, and the concentration of macro- and micro-elements in shoots under salinity condition (99.82% phosphorus; 9.79% Iron). The application of mycorrhiza and auxin significantly reduced the concentration of proline and the activities of catalase, peroxidase, and superoxide dismutase enzymes. In general, the addition of IAA and C. etunicatum to roots under salt stress conditions can improve growth and increase the concentration of some nutrients in vetiver shoots. Full article
(This article belongs to the Special Issue Environmental Stress and Metabolic Responses in Plants)
Show Figures

Figure 1

14 pages, 11580 KiB  
Article
Discovery of Arbuscular Mycorrhizae in Mosses of the Pottiaceae Family from the Chaco Serrano (Tucumán, Argentina)
by Myriam del V. Catania, Patricia L. Albornoz, Atilio O. Rausch, Tamara M. Ledesma, Shanshan Dong, Yuqing Cai, Yuying Zeng, Yang Liu, Guillermo M. Suárez and Javier E. Moreno
Plants 2025, 14(7), 1048; https://doi.org/10.3390/plants14071048 - 28 Mar 2025
Viewed by 723
Abstract
Arbuscular mycorrhizal fungi (AMF) are symbiotic fungi that associate with the vast majority of terrestrial plants. Among non-vascular plants, while AMF associations are well-documented in liverworts and hornworts, there is a broad consensus that symbiotic associations do not occur in mosses. Here, we [...] Read more.
Arbuscular mycorrhizal fungi (AMF) are symbiotic fungi that associate with the vast majority of terrestrial plants. Among non-vascular plants, while AMF associations are well-documented in liverworts and hornworts, there is a broad consensus that symbiotic associations do not occur in mosses. Here, we report the presence of AMF in the living material of mosses found in Chaco Serrano (Tucumán, Argentina). We found all characteristic structures of AMF when establishing an intimate connection with two moss species of Pottiaceae (Bryophyta). While Gertrudiella uncinicoma exhibited AMF with both Arum- and Paris-type morphologies, Pleurochaete luteola only displayed an Arum-type morphology. Plant tissue samples were subjected to high-throughput sequencing for AMF identification. We determined that Rhizophagus irregularis was a clear dominant species in both moss species, with Glomus sp. also being present as a less abundant element. In addition, we also reported the presence of vesicles, arbuscules, and spores adhered to the hyphae and the presence of septate endophytes. This finding expands our understanding of the interactions between AMF and non-vascular plants and prompt us to further characterize this interaction by considering the diversity of mycorrhizal associations with concurrent implications for the ecology of mosses and the functionality of the ecosystems. Full article
Show Figures

Figure 1

17 pages, 1662 KiB  
Article
Enhancing Sorghum Growth: Influence of Arbuscular Mycorrhizal Fungi and Sorgoleone
by Isabela Figueiredo de Oliveira, Maria Lúcia Ferreira Simeone, Ubiraci Gomes de Paula Lana, Cristiane de Carvalho Guimarães and Sylvia Morais de Sousa Tinôco
Microorganisms 2025, 13(2), 423; https://doi.org/10.3390/microorganisms13020423 - 15 Feb 2025
Cited by 1 | Viewed by 1060
Abstract
The low availability of phosphorus (P) in soil is one of the main constraints on crop production. Plants have developed several strategies to increase P use efficiency, including modifications in root morphology, the exudation of different compounds, and associations with microorganisms such as [...] Read more.
The low availability of phosphorus (P) in soil is one of the main constraints on crop production. Plants have developed several strategies to increase P use efficiency, including modifications in root morphology, the exudation of different compounds, and associations with microorganisms such as arbuscular mycorrhizal fungi (AMF). This study aimed to investigate the effect of sorgoleone compound on AMF colonization and its subsequent impact on P uptake, rhizosphere microbiota, and sorghum growth. The experiment was conducted in a greenhouse using the sorghum genotype P9401, known for low sorgoleone production. Three doses of purified sorgoleone (20 μM, 40 μM, and 80 μM) were added to low-P soil and plants were harvested after 45 days. Treatments included inoculation with the arbuscular mycorrhizal fungi Rhizophagus clarus and a negative control without inoculum. The addition of 40 and 80 μM of sorgoleone did not significantly increase mycorrhization. However, treatment with 20 μM sorgoleone combined with R. clarus inoculation significantly increased total sorghum biomass by 1.6-fold (p ≤ 0.05) compared to the non-inoculated treatment. AMF inoculation influenced only AMF colonization and the fungal microbiota, without affecting the bacterial community, whereas sorgoleone showed no effect on either. The activities of acid and alkaline phosphatases in the rhizospheric soil did not differ significantly among the treatments. Furthermore, the sorghum genes CYP71AM1, associated with sorgoleone biosynthesis, and Sb02g009880, Sb06g002560, Sb06g002540, and Sb03g029970 (related to phosphate transport induced by mycorrhiza) were significantly upregulated (p ≤ 0.05) in fine roots under these conditions. The 20 μM concentration of sorgoleone can enhance AMF colonization in sorghum and promote plant growth under low-P conditions, without significantly altering the microbiota. Full article
Show Figures

Figure 1

21 pages, 4477 KiB  
Article
Diversity of Arbuscular Mycorrhiza Fungi in the Arid Desert Ecosystems of Kuwait: Detection and Identification from Perennial Native Grass Roots
by Tareq A. Madouh, Majda K. Suleiman, Ali. M. Quoreshi and Merlin K. Davidson
Diversity 2025, 17(2), 130; https://doi.org/10.3390/d17020130 - 14 Feb 2025
Cited by 1 | Viewed by 1079
Abstract
Arbuscular Mycorrhizal Fungi (AMF) play a key role in enduring stresses in desert ecosystems, as they enhance the moisture and nutrient supply to desert plants. An investigation was carried out to detect the existence of AMF in the root regions of five perennial [...] Read more.
Arbuscular Mycorrhizal Fungi (AMF) play a key role in enduring stresses in desert ecosystems, as they enhance the moisture and nutrient supply to desert plants. An investigation was carried out to detect the existence of AMF in the root regions of five perennial native desert grasses of Kuwait (Cenchrus ciliaris L., Cenchrus setigerus Vahl, Lasiurus scindicus Henrard, Pennisetum divisum (Forssk.) Henr., and Panicum turgidum Forssk.) in comparison with a non-native grass (Panicum virgatum L.). The native plants, C. setigerus and P. divisum had the highest colonization (100%) with vesicles, followed by P. turgidum (90%). The colonization of arbuscules was highest in the non-native grass, P. virgatum (60%), followed by C. setigerus (50%). Phylogenetic analysis for molecular identification to determine the genetic diversity of the AMF community in association with the native plant roots of the two dominant desert species, i.e., L. scindicus and P. turgidum, against P. virgatum, revealed a rich diversity. The AMF, Claroideoglomus lamellosum, and Rhizophagus sp. were identified from L. scindicus roots, Rhizophagus iranicus from P. turgidum roots, and Claroideoglomus lamellosum, from the non-native grass, P. virgatum, with almost 98–100% sequence similarity, indicating a significant difference between the mycorrhizal species in the nativity of grasses. This research confirms the diversity of AMF associated with native desert plants and emphasizes their symbiosis and host specificity. Thus, this study provides insight into AMF community structures, functions, and profiling, allowing us to understand their ecological and economic impacts, and ultimately implement strategies for sustainable biodiversity, productivity, and ecosystem management. Full article
(This article belongs to the Special Issue Biodiversity and Ecology of Soil Fungal Communities)
Show Figures

Figure 1

19 pages, 2318 KiB  
Article
The Role of Vitekang Soil Conditioner and Arbuscular Mycorrhizae Fungi in Mitigating Cadmium Stress in Solanum lycopersicum Plants
by Qianqian Wang, Yue Liu, Guangxin Chen, Xing Liu, Mohsin Tanveer, Yongjun Guo, Peng Zeng and Liping Huang
Horticulturae 2025, 11(2), 179; https://doi.org/10.3390/horticulturae11020179 - 7 Feb 2025
Viewed by 759
Abstract
Solanum lycopersicum, a widely cultivated vegetable crop globally, faces soil cadmium (Cd) contamination issues due to Cd’s high mobility, posing potential threats to Solanum lycopersicum growth and human health. In light of this, this study selected three representative Solanum lycopersicum varieties: Micro [...] Read more.
Solanum lycopersicum, a widely cultivated vegetable crop globally, faces soil cadmium (Cd) contamination issues due to Cd’s high mobility, posing potential threats to Solanum lycopersicum growth and human health. In light of this, this study selected three representative Solanum lycopersicum varieties: Micro Tom, Red Guanyin, and Taiwan Pink King, and designed a series of experiments to investigate their growth performance under Cd stress. Experimental treatments included the sole application of different concentrations of Vitekang soil conditioner (VT), as well as the individual and combined application of VT and arbuscular mycorrhizal fungi (AMF). By thoroughly analyzing agronomic traits, cellular membrane lipid peroxidation levels, the activities of antioxidant enzymes (Catalase (CAT), Superoxide Dismutase (SOD), and Peroxidase (POD)), and the expression levels of genes related to Cd transport and detoxification (SLNRAMP6 and SlHMA3), this study comprehensively evaluated the effectiveness of different treatments in mitigating Cd stress in the three Solanum lycopersicum varieties. The results indicated that when VT was applied at a concentration of 2.4 g/kg in combination with AMF, it significantly reduced the detrimental effects of Cd on Micro Tom, Red Guanyin, and Taiwan Pink King. The specific experimental outcomes were as follows: (i) significantly decreased Cd accumulation in Solanum lycopersicum roots and leaves; (ii) effectively mitigated cellular membrane lipid peroxidation; (iii) significantly increased antioxidant enzyme activities; and (iv) influenced expression patterns of genes related to Cd transport and detoxification. This study further confirms that, compared to the sole application of VT or AMF, the combined application of these two treatments serves as a more effective practical method, exhibiting significant advantages in alleviating soil Cd contamination, promoting Solanum lycopersicum growth, and improving agronomic traits. This study not only advances research progress on VT and AMF in Solanum lycopersicumes, providing a solid theoretical and experimental foundation for cultivating high-quality Solanum lycopersicumes, but also holds significant importance for improving and optimizing the “VIP+N” technology, achieving farmland soil protection, and enhancing agricultural product quality. Full article
(This article belongs to the Section Vegetable Production Systems)
Show Figures

Figure 1

20 pages, 4652 KiB  
Article
Optimizing Tomato Seedling Production in the Tropics: Effects of Trichoderma, Arbuscular Mycorrhizal Fungi, and Key Agronomical Factors
by Teresa Leuratti, Lorenzo Fellin, Nicola Michelon, Juan Bosco Palacios Tario, Jaime Ernesto Santamaria Gutiérrez, Giorgio Gianquinto, Francesco Orsini and Giampaolo Zanin
Agronomy 2025, 15(2), 392; https://doi.org/10.3390/agronomy15020392 - 31 Jan 2025
Cited by 1 | Viewed by 883
Abstract
Agriculture remains a key contributor to Central America’s economy, despite climate change posing a significant threat to the sector. In the Trifinio region, already afflicted by arid summers, temperatures are expected to rise in the near future, potentially exacerbating the vulnerability of smallholder [...] Read more.
Agriculture remains a key contributor to Central America’s economy, despite climate change posing a significant threat to the sector. In the Trifinio region, already afflicted by arid summers, temperatures are expected to rise in the near future, potentially exacerbating the vulnerability of smallholder farmers. This study investigates the effects of two fungal symbionts, Trichoderma asperellum (TR) and the Arbuscular mycorrhiza fungi (AMF) Glomus cubense, and agronomic choices and practices such as cultivar selection, substrate type, and fertigation management on tomato (Solanum lycopersicum L.) seedling growth and quality. Results showed that nutrient solution and the adoption of forest topsoil as substrate significantly enhanced morphological, physiological, and quality parameters. Modifying the nutrient solution to allow for an increase in plant height of 170% and a dry weight of 163% and enhancing Dickson’s quality index (DQI) by 64.5%, while the use of forest topsoil resulted in plants 58.6% higher, with an increase of 101% in dry weight and of 90.1% in the DQI. Both T. asperellum and G. cubense had positive effects on specific growth parameters; for instance, TR increased leaf number (+6.95%), while AMF increased stem diameter (+3.56%) and root length (+19.1%), although they did not, overall, significantly increase the seedling’s biomass and quality. These findings underscore the importance of agronomic practices in mitigating the impacts of climate change on tomato production, offering valuable insights for farmers in semi-arid regions. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

25 pages, 2380 KiB  
Article
Impact of Mycorrhiza Inoculations and Iron Amino Chelate on Growth and Physiological Changes of Cucumber Seedlings Across Different pH Levels
by Saber Mohammadnia, Maryam Haghighi, Maryam Mozafarian and András Geösel
Plants 2025, 14(3), 341; https://doi.org/10.3390/plants14030341 - 23 Jan 2025
Cited by 1 | Viewed by 1040
Abstract
Cucumber, a vital greenhouse crop, thrives in soils with a pH range of 5.5–6.5, yet the combined effects of arbuscular mycorrhizal fungi (AMF) and iron amino chelates on its growth and physiological responses across varying pH levels remain underexplored. This study used a [...] Read more.
Cucumber, a vital greenhouse crop, thrives in soils with a pH range of 5.5–6.5, yet the combined effects of arbuscular mycorrhizal fungi (AMF) and iron amino chelates on its growth and physiological responses across varying pH levels remain underexplored. This study used a factorial design in a completely randomized setup with three replications and was conducted at the Horticulture Department of Isfahan University of Technology. The aim of this study was to investigate the effects of AMF inoculation (Glomus mosseae) and iron amino chelates on the growth and physiological responses of cucumber plants at various pH levels. Treatments included two levels of AMF inoculation (non-inoculated as m1 and inoculated as m2), three levels of iron concentration (f1: no iron, f2: Johnson’s nutrient solution, f3: Johnson’s solution with iron amino chelate), and three pH levels (pH 5 (p1), pH 7 (p2), and pH 8 (p3)). The moisture was maintained at field capacity throughout the study. The results demonstrated that mycorrhizal inoculation at pH 7 significantly improved key traits, including chlorophyll content, photosynthesis rate, stomatal conductance, phenol content, and antioxidant activity. Mycorrhizal inoculation combined with 2 ppm of Fe amino chelate at pH 7 led to the highest improvement in shoot fresh weight of cucumber and physiological traits. However, at pH 7 without mycorrhiza, stress indicators such as ABA levels and antioxidant enzyme activities (SOD, POD, CAT, and APX) increased, highlighting the protective role of AMF under neutral pH conditions. In contrast, pH 5 was most effective for enhancing root and stem fresh weight. The lower pH may have facilitated better nutrient solubility and uptake, promoting root development and overall plant health by optimizing the availability of essential nutrients and reducing competition for resources under more acidic conditions. These findings highlight the potential of combining mycorrhizal inoculation with iron amino chelates at pH 7 not only to enhance cucumber growth and resilience in nutrient-limited environments but also to contribute to sustainable agricultural practices that address global challenges in food security and soil health. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

18 pages, 3440 KiB  
Article
Impact of Arbuscular Mycorrhizal Symbiosis on Photosynthetic, Antioxidant Enzyme, and Water Flux Parameters in Salt-Stressed Chickpea (Cicer arietinum) Plants
by Pooja Pooja, Sarita Devi, Sridevi Tallapragada, Yogesh K. Ahlawat, Nisha Sharma, Pankaj Kasnia, Nita Lakra, Rosa Porcel, Jose M. Mulet and Khalid M. Elhindi
Agronomy 2025, 15(1), 247; https://doi.org/10.3390/agronomy15010247 - 20 Jan 2025
Cited by 2 | Viewed by 1417
Abstract
Globally, escalating soil salinization poses significant abiotic stress, disproportionately impacting crops like chickpea (Cicer arientinum L.). This legume exhibits high sensitivity to salinity, which disrupts various physiological and metabolic processes, ultimately hindering growth and productivity. AMF (arbuscular mycorrhizal fungus) reduces salt’s detrimental [...] Read more.
Globally, escalating soil salinization poses significant abiotic stress, disproportionately impacting crops like chickpea (Cicer arientinum L.). This legume exhibits high sensitivity to salinity, which disrupts various physiological and metabolic processes, ultimately hindering growth and productivity. AMF (arbuscular mycorrhizal fungus) reduces salt’s detrimental effects on plants’ growth by bolstering the plant’s antioxidant defense system, effectively reducing the damage caused by oxidative stress. In this study, the impact of AMF on salinity stress alleviation in chickpea was investigated in pot-grown experiments. Rhizophagus fasciculatus was used to inoculate the seeds of three different chickpea varieties (HC-3, CSG-8962, and C-235), and the physiological and biochemical changes of the AMF-inoculated and non-inoculated chickpea plants were studied. When exposed to salinity stress, the plants exhibited decreased leaf relative water content (RWC %) (21.13–31.30%), increased leaf relative stress injury, decreased chlorophyll content (45.22–58.24%), photochemical quantum yield, photosynthetic rate, transpiration rate, and stomatal conductance as compared to the control plants, but opposite results were observed in AMF colonized plants. A 9.16% to 14.79% increase in chlorophyll content was reported after AMF colonization. The activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX) were increased by salt stress. They were further enhanced by AMF inoculation SOD activity by 20.3% to 23.3%, CAT activity by 65.7% to 78.7%, and POX activity by 32.7% to 39.3%. The findings clearly show that AMF Rhizophagus fasciculatus, via enhancing RWC, photosynthetic parameters, and antioxidant enzymes, can mitigate salinity stress in chickpeas. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

24 pages, 1857 KiB  
Article
Responsivity of Two Pea Genotypes to the Symbiosis with Rhizobia and Arbuscular Mycorrhiza Fungi—A Proteomics Aspect of the “Efficiency of Interactions with Beneficial Soil Microorganisms” Trait
by Andrej Frolov, Julia Shumilina, Sarah Etemadi Afshar, Valeria Mashkina, Ekaterina Rhomanovskaya, Elena Lukasheva, Alexander Tsarev, Anton S. Sulima, Oksana Y. Shtark, Christian Ihling, Alena Soboleva, Igor A. Tikhonovich and Vladimir A. Zhukov
Int. J. Mol. Sci. 2025, 26(2), 463; https://doi.org/10.3390/ijms26020463 - 8 Jan 2025
Cited by 1 | Viewed by 995
Abstract
It is well known that individual pea (Pisum sativum L.) cultivars differ in their symbiotic responsivity. This trait is typically manifested with an increase in seed weights, due to inoculation with rhizobial bacteria and arbuscular mycorrhizal fungi. The aim of this study [...] Read more.
It is well known that individual pea (Pisum sativum L.) cultivars differ in their symbiotic responsivity. This trait is typically manifested with an increase in seed weights, due to inoculation with rhizobial bacteria and arbuscular mycorrhizal fungi. The aim of this study was to characterize alterations in the root proteome of highly responsive pea genotype k-8274 plants and low responsive genotype k-3358 ones grown in non-sterile soil, which were associated with root colonization with rhizobial bacteria and arbuscular mycorrhizal fungi (in comparison to proteome shifts caused by soil supplementation with mineral nitrogen salts). Our results clearly indicate that supplementation of the soil with mineral nitrogen-containing salts switched the root proteome of both genotypes to assimilation of the available nitrogen, whereas the processes associated with nitrogen fixation were suppressed. Surprisingly, inoculation with rhizobial bacteria had only a minor effect on the root proteomes of both genotypes. The most pronounced response was observed for the highly responsive k-8274 genotype inoculated simultaneously with rhizobial bacteria and arbuscular mycorrhizal fungi. This response involved activation of the proteins related to redox metabolism and suppression of excessive nodule formation. In turn, the low responsive genotype k-3358 demonstrated a pronounced inoculation-induced suppression of protein metabolism and enhanced diverse defense reactions in pea roots under the same soil conditions. The results of the study shed light on the molecular basis of differential symbiotic responsivity in different pea cultivars. The raw data are available in the PRIDE repository under the project accession number PXD058701 and project DOI 10.6019/PXD058701. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Graphical abstract

17 pages, 18840 KiB  
Article
Rooting for Resilience: Arbuscular Mycorrhizal Fungi (AMF) Boost Citrus Tolerance to Water Scarcity in Rangpur Lime and Carrizo Citrange Rootstocks
by Sajjad Hussain, Mehwish Jan, Muhammad Fasih Khalid, Sakeena Tul-Ain Haider, Muhammad Arif Ali, Shakeel Ahmad, Samreen Sabir, Mamoudou Sétamou and Raphael Morillon
Horticulturae 2025, 11(1), 24; https://doi.org/10.3390/horticulturae11010024 - 1 Jan 2025
Viewed by 1494
Abstract
Fruits and vegetables play a crucial role in addressing food security challenges posed by the growing global population. Citrus fruits are among the most widely cultivated crops worldwide; however, their production is steadily declining due to climate change. Among the various biotic and [...] Read more.
Fruits and vegetables play a crucial role in addressing food security challenges posed by the growing global population. Citrus fruits are among the most widely cultivated crops worldwide; however, their production is steadily declining due to climate change. Among the various biotic and abiotic stresses affecting citrus production, water scarcity caused by climate change stands out as a significant issue. Interestingly, the rhizosphere of citrus plants is home to beneficial fungi known as arbuscular mycorrhizal fungi (AMF). AMF have been shown to enhance the growth and development of host plants. They also improve the plants’ tolerance to various stresses and enhance soil structure. This study aimed to evaluate the response of two different citrus rootstocks—Rangpur lime and Carrizo citrange—when subjected to three mycorrhizal treatments, namely, AMF+ (inoculated with AMF), AMF- (treated with fungicide to eliminate AMF), and a control (naturally occurring AMF), under conditions of water deficit. The results indicated that the AMF+ treatment had a significant positive effect on both rootstock genotypes compared to the AMF- treatment. Physiological attributes such as photosynthesis, stomatal conductance, transpiration, non-photochemical quenching, and both dark and light quantum yield exhibited significantly smaller declines under water deficit conditions in AMF+ plants compared to those in the AMF- and control groups. Conversely, stress indicators—such as malondialdehyde (MDA) and hydrogen peroxide (H2O2)—increased significantly in the AMF- treatment compared to AMF+. Additionally, the increase in antioxidative enzymes (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APx) and osmotic adjustment (proline (PRO)) was more pronounced in the AMF+ treatment in the leaves and roots of both citrus rootstocks. In conclusion, the findings suggest that the presence and application of AMF in citrus roots may enhance the plants’ ability to cope with water scarcity more effectively. Full article
Show Figures

Figure 1

Back to TopTop