Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (87)

Search Parameters:
Keywords = Antarctic Ice Sheet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 6138 KiB  
Article
Machine Learning Model Optimization for Antarctic Blowing Snow Height and Optical Depth Diagnosis
by Surendra Bhatta and Yuekui Yang
Atmosphere 2025, 16(7), 760; https://doi.org/10.3390/atmos16070760 - 21 Jun 2025
Viewed by 334
Abstract
Blowing snow is a common phenomenon over the Antarctic ice sheet and sea ice regions, playing a crucial role in the Antarctic climate system. Previous research developed an optimized machine learning (ML) model to diagnose blowing snow occurrence using meteorological fields from the [...] Read more.
Blowing snow is a common phenomenon over the Antarctic ice sheet and sea ice regions, playing a crucial role in the Antarctic climate system. Previous research developed an optimized machine learning (ML) model to diagnose blowing snow occurrence using meteorological fields from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). This paper extends that work by optimizing an ML model to estimate blowing snow height and optical depth for operational data production. Observations from the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) serve as ground truth for training. The optimization process involves selecting relevant input features and identifying the most effective ML regressor. As a result, 21 MERRA-2 fields were identified as key input features, and Extreme Gradient Boosting emerged as the most effective regressor. Feature importance analysis highlights wind components and surface pressure as the most significant predictors for blowing snow height and optical depth. Individual models were developed for each month. Using 10 years of CALIPSO data (2007–2016) for training, these optimized models can be applied across the full MERRA-2 dataset, spanning from 1980 to the present. This enables the generation of hourly blowing snow height and optical depth data on the MERRA-2 grid for the entire MERRA-2 time span. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in Atmospheric Sciences)
Show Figures

Figure 1

20 pages, 4769 KiB  
Article
Assessment of MODIS and VIIRS Ice Surface Temperature Products over the Antarctic Ice Sheet
by Chenlie Shi, Ninglian Wang, Yuwei Wu, Quan Zhang, Carleen H. Reijmer and Paul C. J. P. Smeets
Remote Sens. 2025, 17(6), 955; https://doi.org/10.3390/rs17060955 - 7 Mar 2025
Cited by 1 | Viewed by 835
Abstract
The ice surface temperature (IST) derived from thermal infrared remote sensing is crucial for accurately monitoring ice or snow surface temperatures in the polar region. Generally, the remote sensing IST needs to be validated by the in situ IST to ensure its accuracy. [...] Read more.
The ice surface temperature (IST) derived from thermal infrared remote sensing is crucial for accurately monitoring ice or snow surface temperatures in the polar region. Generally, the remote sensing IST needs to be validated by the in situ IST to ensure its accuracy. However, due to the limited availability of in situ IST measurements, previous studies in the validation of remote sensing ISTs are scarce in the Antarctic ice sheet. This study utilizes ISTs from eight broadband radiation stations to assess the accuracy of the latest-released Moderate Resolution Imaging Spectroradiometer (MODIS) IST and Visible Infrared Imager Radiometer Suite (VIIRS) IST products, which were derived from two different algorithms, the Split-Window (SW-based) algorithm and the Temperature–Emissivity Separation (TES-based) algorithm, respectively. This study also explores the sources of uncertainty in the validation process. The results reveal prominent errors when directly validating remote sensing ISTs with the in situ ISTs, which can be attributed to incorrect cloud detection due to the similar spectral characteristics of cloud and snow. Hence, cloud pixels are misclassified as clear pixels in the satellite cloud mask during IST validation, which emphasizes the severe cloud contamination of remote sensing IST products. By using a cloud index (n) to remove the cloud contamination pixels in the remote sensing IST products, the overall uncertainties for the four products are about 2 to 3 K, with the maximum uncertainty (RMSE) reduced by 3.51 K and the bias decreased by 1.26 K. Furthermore, a progressive cold bias in the validation process was observed with decreasing temperature, likely due to atmospheric radiation between the radiometer and the snow surface being neglected in previous studies. Lastly, this study found that the cloud mask errors of satellites are more pronounced during the winter compared to that in summer, highlighting the need for caution when directly using remote sensing IST products, particularly during the polar night. Full article
Show Figures

Figure 1

19 pages, 15754 KiB  
Article
Time Lag Analysis of Atmospheric CO2 and Proxy-Based Climate Stacks on Global–Hemispheric Scales in the Last Deglaciation
by Zhi Liu and Xingxing Liu
Quaternary 2025, 8(1), 11; https://doi.org/10.3390/quat8010011 - 18 Feb 2025
Viewed by 1091
Abstract
Based on 88 well-dated and high-resolution paleoclimate records, global and hemispheric stacks of the last deglacial climate were synthesized by utilizing the normalized average method. A sequential relationship between the West Antarctic Ice Sheet Divide ice core CO2 concentration and the composited [...] Read more.
Based on 88 well-dated and high-resolution paleoclimate records, global and hemispheric stacks of the last deglacial climate were synthesized by utilizing the normalized average method. A sequential relationship between the West Antarctic Ice Sheet Divide ice core CO2 concentration and the composited proxy-based global–hemispheric climate stacks was detected using the Wilcoxon rank-sum test and wavelet analysis. The results indicate that the climate stack of the Northern Hemisphere started to increase slowly before 22 kabp, possibly due to the enhancement of summer insolation at high northern latitudes, the onset of warming in the Southern Hemisphere occurred around 19 kabp, and the atmospheric CO2 concentration began to raise around 18.1 kabp. This suggests that the change in northern high-latitude summer insolation was the initial trigger of the last deglaciation, and atmospheric CO2 concentration was an internal feedback associated with global ocean circulation in the Earth’s system. Both the Wilcoxon rank-sum test and wavelet analysis showed that during the BØlling–AllerØd and the Younger Dryas periods there was no obvious asynchrony between the global climate and atmospheric CO2 concentration, which perhaps implies a fast feedback–response mechanism. The seesawing changes in interhemispheric climate and the abrupt variations in the atmospheric CO2 concentration could be explained by the influences of Atlantic meridional overturning circulation strength during the BØlling–AllerØd and the Younger Dryas periods. This reveals that Atlantic meridional overturning circulation played an important role in the course of the last deglaciation. Full article
Show Figures

Figure 1

18 pages, 6360 KiB  
Article
Interannual Variability and Trends in Extreme Precipitation in Dronning Maud Land, East Antarctica
by Lejiang Yu, Shiyuan Zhong, Svetlana Jagovkina, Cuijuan Sui and Bo Sun
Remote Sens. 2025, 17(2), 324; https://doi.org/10.3390/rs17020324 - 17 Jan 2025
Viewed by 949
Abstract
This study examines the trends and interannual variability of extreme precipitation in Antarctica, using six decades (1963–2023) of daily precipitation data from Russia’s Novolazarevskaya Station in East Antarctica. The results reveal declining trends in both the annual number of extreme precipitation days and [...] Read more.
This study examines the trends and interannual variability of extreme precipitation in Antarctica, using six decades (1963–2023) of daily precipitation data from Russia’s Novolazarevskaya Station in East Antarctica. The results reveal declining trends in both the annual number of extreme precipitation days and the total amount of extreme precipitation, as well as a decreasing ratio of extreme to total annual precipitation. These trends are linked to changes in northward water vapor flux and enhanced downward atmospheric motion. The synoptic pattern driving extreme precipitation events is characterized by a dipole of negative and positive height anomalies to the west and east of the station, respectively, which directs southward water vapor flux into the region. Interannual variability in extreme precipitation days shows a significant correlation with the Niño 3.4 index during the austral winter semester (May–October). This relationship, weak before 1992, strengthened significantly afterward due to shifting wave patterns induced by tropical Pacific sea surface temperature anomalies. These findings shed light on how large-scale atmospheric circulation and tropical-extratropical teleconnections shape Antarctic precipitation patterns, with potential implications for ice sheet stability and regional climate variability. Full article
(This article belongs to the Special Issue Remote Sensing of Extreme Weather Events: Monitoring and Modeling)
Show Figures

Graphical abstract

44 pages, 7018 KiB  
Review
Rethinking the Lake History of Taylor Valley, Antarctica During the Ross Sea I Glaciation
by Michael S. Stone, Peter T. Doran and Krista F. Myers
Geosciences 2025, 15(1), 9; https://doi.org/10.3390/geosciences15010009 - 4 Jan 2025
Cited by 2 | Viewed by 1389
Abstract
The Ross Sea I glaciation, marked by the northward advance of the Ross Ice Sheet (RIS) in the Ross Sea, east Antarctica, corresponds with the last major expansion of the West Antarctic Ice Sheet during the last glacial period. During its advance, the [...] Read more.
The Ross Sea I glaciation, marked by the northward advance of the Ross Ice Sheet (RIS) in the Ross Sea, east Antarctica, corresponds with the last major expansion of the West Antarctic Ice Sheet during the last glacial period. During its advance, the RIS was grounded along the southern Victoria Land coast, completely blocking the mouths of several of the McMurdo Dry Valleys (MDVs). Several authors have proposed that very large paleolakes, proglacial to the RIS, existed in many of the MDVs. Studies of these large paleolakes have been key in the interpretation of the regional landscape, climate, hydrology, and glacier and ice sheet movements. By far the most studied of these large paleolakes is Glacial Lake Washburn (GLW) in Taylor Valley. Here, we present a comprehensive review of literature related to GLW, focusing on the waters supplying the paleolake, signatures of the paleolake itself, and signatures of past glacial movements that controlled the spatial extent of GLW. We find that while a valley-wide proglacial lake likely did exist in Taylor Valley during the early stages of the Ross Sea I glaciation, during later stages two isolated lakes occupied the eastern and western sections of the valley, confined by an expansion of local alpine glaciers. Lake levels above ~140 m asl were confined to western Taylor Valley, and major lake level changes were likely driven by RIS movements, with climate variables playing a more minor role. These results may have major implications for our understanding of the MDVs and the RIS during the Ross Sea I glaciation. Full article
(This article belongs to the Section Cryosphere)
Show Figures

Figure 1

17 pages, 20240 KiB  
Article
Foundational Aspects for Incorporating Dependencies in Copula-Based Bayesian Networks Using Structured Expert Judgments, Exemplified by the Ice Sheet–Sea Level Rise Elicitation
by Dorota Kurowicka, Willy Aspinall and Roger Cooke
Entropy 2024, 26(11), 949; https://doi.org/10.3390/e26110949 - 5 Nov 2024
Viewed by 994
Abstract
The work presented here marks a further advance in expert uncertainty quantification. In a recent probabilistic evaluation of ice sheet process contributions to sea level rise, tail dependence was elicited and propagated through an uncertainty analysis for the first time. The elicited correlations [...] Read more.
The work presented here marks a further advance in expert uncertainty quantification. In a recent probabilistic evaluation of ice sheet process contributions to sea level rise, tail dependence was elicited and propagated through an uncertainty analysis for the first time. The elicited correlations and tail dependencies concerned pairings of three processes: Accumulation, Discharge and Run-off, which operate on major ice sheets in the West and East Antarctic and in Greenland. The elicitation enumerated dependencies between these processes under selected global temperature change scenarios over different future time horizons. These expert judgments allowed us to populate a Paired Copula Bayesian network model to obtain the estimated contributions of these ice sheets for future sea level rise. Including positive central tendency dependence and tail dependence increases the fatness of the upper tails of projected sea level rise distributions, an amplification important for designing and evaluating possible mitigation strategies. Detailing and jointly computing distributional dependencies and tail dependencies can be crucial components of good practice for assessing the influence of uncertainties on extreme values when modelling stochastic multifactorial processes. Full article
(This article belongs to the Special Issue Bayesian Network Modelling in Data Sparse Environments)
Show Figures

Figure 1

12 pages, 1658 KiB  
Article
Two-Step Glaciation of Antarctica: Its Tectonic Origin in Seaway Opening and West Antarctica Uplift
by Hsien-Wang Ou
Glacies 2024, 1(2), 80-91; https://doi.org/10.3390/glacies1020006 - 12 Oct 2024
Cited by 1 | Viewed by 1367
Abstract
The Cenozoic glaciation of Antarctica proceeded through two distinct steps around 35 and 15 million years ago. The first icing was attributed to thermal isolation due to the opening of the Drake/Tasman passages and the development of the Antarctic circumpolar current. I also [...] Read more.
The Cenozoic glaciation of Antarctica proceeded through two distinct steps around 35 and 15 million years ago. The first icing was attributed to thermal isolation due to the opening of the Drake/Tasman passages and the development of the Antarctic circumpolar current. I also subscribe to this “thermal isolation” but posit that, although the snowline was lowered below the Antarctic plateau for it to be iced over, the glacial line remains above sea level to confine the ice sheet to the plateau, a “partial” glaciation that would be sustained over time. The origin of the second icing remains unknown, but based on the sedimentary evidence, I posit that it was triggered when the isostatic rebound of West Antarctica caused by heightened erosion rose above the glacial line to be iced over by the expanding plateau ice, and the ensuing cooling lowered the glacial line to sea level to cause the “full” glaciation of Antarctica. To test these hypotheses, I formulate a minimal box model, which is nonetheless subjected to thermodynamic closure that allows a prognosis of the Miocene climate. Applying representative parameter values, the model reproduces the observed two-step icing followed by the stabilized temperature level, in support of the model physics. Full article
Show Figures

Figure 1

22 pages, 48917 KiB  
Article
Ice Sheet Mass Changes over Antarctica Based on GRACE Data
by Ruiqi Zhang, Min Xu, Tao Che, Wanqin Guo and Xingdong Li
Remote Sens. 2024, 16(20), 3776; https://doi.org/10.3390/rs16203776 - 11 Oct 2024
Viewed by 3740
Abstract
Assessing changes of the mass balance in the Antarctic ice sheet in the context of global warming is a key focus in polar study. This study analyzed the spatiotemporal variation in the Antarctic ice sheet’s mass balance, both as a whole and by [...] Read more.
Assessing changes of the mass balance in the Antarctic ice sheet in the context of global warming is a key focus in polar study. This study analyzed the spatiotemporal variation in the Antarctic ice sheet’s mass balance, both as a whole and by individual basins, from 2003 to 2016 and from 2018 to 2022 using GRACE RL06 data published by the Center for Space Research (CSR) and ERA-5 meteorological data. It explored the lagged relationships between mass balance and precipitation, net surface solar radiation, and temperature, and applied the random forest method to examine the relative contributions of these factors to the ice sheet’s mass balance within a nonlinear framework. The results showed that the mass loss rates of the Antarctic ice sheet during the study periods were −123.3 ± 6.2 Gt/a and −24.8 ± 52.1 Gt/a. The region with the greatest mass loss was the Amundsen Sea in West Antarctica (−488.8 ± 5.3 Gt/a and −447.9 ± 14.7 Gt/a), while Queen Maud Land experienced the most significant mass accumulation (44.9 ± 1.0 Gt/a and 30.0 ± 3.2 Gt/a). The main factors contributing to surface ablation of the Antarctic ice sheet are rising temperatures and increased surface net solar radiation, each showing a lag effect of 1 month and 2 months, respectively. Precipitation also affects the loss of the ice sheet to some extent. Over time, the contribution of precipitation to the changes in the ice sheet’s mass balance increases. Full article
Show Figures

Figure 1

15 pages, 9622 KiB  
Technical Note
Estimation of Antarctic Ice Sheet Thickness Based on 3D Density Interface Inversion Considering Terrain and Undulating Observation Surface Simultaneously
by Yandong Liu, Jun Wang, Fang Li and Xiaohong Meng
Remote Sens. 2024, 16(11), 1905; https://doi.org/10.3390/rs16111905 - 25 May 2024
Viewed by 1594
Abstract
The thickness of the Antarctic ice sheet is a crucial parameter for inferring glacier mass and its evolution process. In the literature, the gravity method has been proven to be one of the effective means for estimating ice sheet thickness. And it is [...] Read more.
The thickness of the Antarctic ice sheet is a crucial parameter for inferring glacier mass and its evolution process. In the literature, the gravity method has been proven to be one of the effective means for estimating ice sheet thickness. And it is a preferred approach when direct measurements are not available. However, few gravity inversion methods are valid in rugged terrain areas with undulating observation surfaces (UOSs). To solve this problem, this paper proposes an improved high-precision 3D density interface inversion method considering terrain and UOSs simultaneously. The proposed method utilizes airborne gravity data at their flight altitudes, instead of the continued data yield from the unstable downward continuation procedure. In addition, based on the undulating right rectangular prism model, the large reliefs of the terrain are included in the iterative inversion. The proposed method is verified on two synthetic examples and is successfully applied to real data in East Antarctica. Full article
Show Figures

Figure 1

16 pages, 5332 KiB  
Review
The Antarctic Subglacial Hydrological Environment and International Drilling Projects: A Review
by Yan Zhou, Xiangbin Cui, Zhenxue Dai, Xiaobing Zhou, Lin Li, Su Jiang and Bo Sun
Water 2024, 16(8), 1111; https://doi.org/10.3390/w16081111 - 13 Apr 2024
Cited by 2 | Viewed by 2996
Abstract
Subglacial lakes and hydrological systems play crucial roles in Antarctic subglacial hydrology, water balance, subglacial geomorphology, and ice dynamics. Satellite altimetry has revealed that some recurrent water exchange occurs in subglacial lakes. They are referred to as ’active lakes’, which prominently influence a [...] Read more.
Subglacial lakes and hydrological systems play crucial roles in Antarctic subglacial hydrology, water balance, subglacial geomorphology, and ice dynamics. Satellite altimetry has revealed that some recurrent water exchange occurs in subglacial lakes. They are referred to as ’active lakes’, which prominently influence a majority of subglacial hydrological processes. Our analysis indicates that active subglacial lakes are more likely to be situated in regions with higher surface ice flow velocities. Nevertheless, the origin of subglacial lakes still remains enigmatic and uncertain. They could have potential associations with geothermal heat, ice sheets melting, and ice flow dynamics. Subglacial lake drilling and water sampling have the potential to provide valuable insights into the origin of subglacial lakes and subglacial hydrological processes. Moreover, they could also offer unique opportunities for the exploration of subglacial microbiology, evolution of the Antarctic ice sheets, and various fundamental scientific inquiries. To date, successful drilling and sampling has been accomplished in Lake Vostok, Lake Mercer, and Lake Whillans. However, the use of drilling fluids caused the water sample contamination in Lake Vostok, and the drilling attempt at Lake Ellsworth failed due to technical issues. To explore more of the conditions of the Antarctic subglacial lakes, the Lake Centro de Estudios Científicos (Lake CECs) and Lake Snow Eagle (LSE) drilling projects are upcoming and in preparation. In this study, we aim to address the following: (1) introduce various aspects of Antarctic subglacial lakes, subglacial hydrological elements, subglacial hydrology, and the interactions between ice sheets and the ocean; and (2) provide an overview and outlook of subglacial lakes drilling projects. Full article
Show Figures

Figure 1

17 pages, 11670 KiB  
Article
Chronology and Sedimentary Processes in the Western Ross Sea, Antarctica since the Last Glacial Period
by Geng Liu, Zhongshan Shen, Xibin Han, Haifeng Wang, Weiwei Chen, Yi Zhang, Pengyun Ma, Yibing Li, Yun Cai, Pengfei Xue, Huafeng Qin and Chunxia Zhang
J. Mar. Sci. Eng. 2024, 12(2), 254; https://doi.org/10.3390/jmse12020254 - 31 Jan 2024
Cited by 1 | Viewed by 1530
Abstract
The stability of contemporary ice shelves is under threat due to global warming, and the geological records in the Ross Sea offer such an opportunity to test the linkage between them. However, the absence of calcareous microfossils in the sediments of the Ross [...] Read more.
The stability of contemporary ice shelves is under threat due to global warming, and the geological records in the Ross Sea offer such an opportunity to test the linkage between them. However, the absence of calcareous microfossils in the sediments of the Ross Sea results in uncertainties in establishing a precise chronology for studies. Hence, three sediment cores were collected and studied in terms of radiocarbon dating, magnetic susceptibility, and sediment grain size to reconstruct the environmental processes in the Ross Sea since the last glacial period. The main results are as follows: (1) two grain-size components were identified for the studied cores, which can be correlated to ice-shelf and sea-ice transport, respectively; (2) due to old-carbon contamination and an inconsistent carbon reservoir, the radiocarbon dates were generally underestimated, and as an alternative, changes in magnetic susceptibility of the studied cores can be tuned to the ice-core records to establish a reliable age–depth model and; (3) integrating sediment grain-size changes and comparisons with other paleoenvironmental proxies in the Antarctic, a process from a sub-ice sheet in the last glacial period to a sub-ice shelf in the glacial maximum, and, finally, to a glaciomarine state since the last deglacial period was identified in the western Ross Sea. Integrating these findings, the warming processes in the Antarctic were highlighted in the retreat processes of the Ross Ice Shelf in the past. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

21 pages, 7150 KiB  
Article
Decoding the Dynamics of Climate Change Impact: Temporal Patterns of Surface Warming and Melting on the Nivlisen Ice Shelf, Dronning Maud Land, East Antarctica
by Geetha Priya Murugesan, Raghavendra Koppuram Ramesh Babu, Mahesh Baineni, Rakshita Chidananda, Dhanush Satish, Sivaranjani Sivalingam, Deva Jefflin Aruldhas, Krishna Venkatesh, Narendra Kumar Muniswamy and Alvarinho Joaozinho Luis
Remote Sens. 2023, 15(24), 5676; https://doi.org/10.3390/rs15245676 - 8 Dec 2023
Cited by 2 | Viewed by 2055
Abstract
This study analyzes the dynamics of surface melting in Antarctica, which are crucial for understanding glacier and ice sheet behavior and monitoring polar climate change. Specifically, we focus on the Nivlisen ice shelf in East Antarctica, examining melt ponds, supra glacial lakes (SGLs), [...] Read more.
This study analyzes the dynamics of surface melting in Antarctica, which are crucial for understanding glacier and ice sheet behavior and monitoring polar climate change. Specifically, we focus on the Nivlisen ice shelf in East Antarctica, examining melt ponds, supra glacial lakes (SGLs), seasonal surface melt extent, and surface ice flow velocity. Spatial and temporal analysis is based on Landsat and Sentinel-1 data from the austral summers of 2000 to 2023. Between 2000 and 2014, melt ponds and SGLs on the ice shelf covered roughly 1 km2. However, from 2015 to 2023, surface melting increased consistently, leading to more extensive melt ponds and SGLs. Significant SGL depths were observed in 2016, 2017, 2019, and 2020, with 2008, 2016, and 2020 showing the highest volumes and progressive SGL area growth. We also examined the relationship between seasonal surface melt extent and ice flow velocity. Validation efforts involved ground truth data from a melt pond in central Dronning Maud Land (cDML) during the 2022–2023 austral summer, along with model-based results. The observed increase in melt pond depth and volume may significantly impact ice shelf stability, potentially accelerating ice flow and ice shelf destabilization. Continuous monitoring is essential for accurately assessing climate change’s ongoing impact on Antarctic ice shelves. Full article
Show Figures

Graphical abstract

5 pages, 2297 KiB  
Proceeding Paper
Estimation of Air Temperature at Sites in Maritime Antarctica Using MODIS LST Collection 6 Data
by Alejandro Corbea-Pérez, Carmen Recondo and Javier F. Calleja
Environ. Sci. Proc. 2024, 29(1), 34; https://doi.org/10.3390/ECRS2023-15866 - 6 Dec 2023
Viewed by 632
Abstract
It is known that changes in temperature could cause changes in the Antarctic Ice Sheet, which would have an immediate and long-term impact on the global mean sea level. For this reason, the monitoring of air temperature (Ta) is of [...] Read more.
It is known that changes in temperature could cause changes in the Antarctic Ice Sheet, which would have an immediate and long-term impact on the global mean sea level. For this reason, the monitoring of air temperature (Ta) is of great interest to the scientific community. On the other hand, Antarctica constitutes an area of difficult access, which makes it difficult to obtain in situ data. Because of this, Land Surface Temperature (LST) remote sensing data have become an important alternative for estimating Ta. In this work, we estimated Ta from daytime and nighttime LST data at maritime Antarctic sites in the South Shetland Archipelago using empirical models, based on the addition of spatiotemporal variables. We used Ta data from the Spanish Antarctic stations and from the PERMASNOW project stations. MOD11A1 and MYD11A1 (Collection 6) Moderate Resolution Imaging Spectroradiometer (MODIS) LST products were downloaded from the Google Earth Engine platform and only the highest quality data were selected. Outliers associated with clouds were removed with filters. Two different multilinear regression models were tested: models for each individual station and global models based on the data from all the stations. The simple regression analysis LST against Ta showed that a better fit is always achieved with daytime LST data (R2 average = 0.73) than with nighttime LST data (R2 average = 0.56). The performance of the models was improved with the addition of spatiotemporal variables as predictive variables, with which we obtained an average R2 = 0.75 for daytime data and an average R2 = 0.60 for nighttime data. The global models allowed for improving the correlation and reducing the errors with respect to the models obtained using individual stations. Global models provide a precise description of the behavior of the temperature in maritime Antarctica, where it is not possible to install and maintain a dense network of weather stations. Full article
(This article belongs to the Proceedings of ECRS 2023)
Show Figures

Figure 1

20 pages, 9365 KiB  
Article
Airborne Radio-Echo Sounding Data Denoising Using Particle Swarm Optimization and Multivariate Variational Mode Decomposition
by Yuhan Chen, Sixin Liu, Kun Luo, Lijuan Wang and Xueyuan Tang
Remote Sens. 2023, 15(20), 5041; https://doi.org/10.3390/rs15205041 - 20 Oct 2023
Cited by 7 | Viewed by 1684
Abstract
Radio-echo sounding (RES) is widely used for polar ice sheet detection due to its wide coverage and high efficiency. The multivariate variational mode decomposition (MVMD) algorithm for the processing of RES data is an improvement to the variational mode decomposition (VMD) algorithm. It [...] Read more.
Radio-echo sounding (RES) is widely used for polar ice sheet detection due to its wide coverage and high efficiency. The multivariate variational mode decomposition (MVMD) algorithm for the processing of RES data is an improvement to the variational mode decomposition (VMD) algorithm. It processes data encompassing multiple channels. Determining the most effective component combination of the penalty parameter (α) and the number of intrinsic mode functions (IMFs) (K) is fundamental and affects the decomposition results. α and K in traditional MVMD are provided by subjective experience. We integrated the particle swarm optimization (PSO) algorithm to iteratively optimize these parameters—specifically, α and K—with high precision. This was then combined with the four quantitative parameters: energy entropy, signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR), and root-mean-square error (RMSE). The RES signal decomposition results were judged, and the most effective component combination for noise suppression was selected. We processed the airborne RES data from the East Antarctic ice sheet using the combined PSO–MVMD method. The results confirmed the quality of the proposed method in attenuating the RES signal noise, enhancing the weak signal of the ice base, and improving the SNR. This combined PSO–MVMD method may help to enhance weak signals in deeper parts of ice sheets and may be an effective tool for RES data interpretation. Full article
Show Figures

Figure 1

18 pages, 7307 KiB  
Article
Changes in the Antarctic’s Summer Surface Albedo, Observed by Satellite since 1982 and Associated with Sea Ice Anomalies
by Yuqi Sun, Yetang Wang, Zhaosheng Zhai and Min Zhou
Remote Sens. 2023, 15(20), 4940; https://doi.org/10.3390/rs15204940 - 12 Oct 2023
Cited by 1 | Viewed by 1977
Abstract
In polar regions, positive feedback of snow and ice albedo can intensify global warming. While recent significant decreases in Arctic surface ice albedo have drawn considerable attention, Antarctic surface albedo variability remains underexplored. Here, satellite albedo product CLARA-A2.1-SAL is first validated and then [...] Read more.
In polar regions, positive feedback of snow and ice albedo can intensify global warming. While recent significant decreases in Arctic surface ice albedo have drawn considerable attention, Antarctic surface albedo variability remains underexplored. Here, satellite albedo product CLARA-A2.1-SAL is first validated and then used to investigate spatial and temporal trends in the summer albedo over the Antarctic from 1982 to 2018, along with their association with Antarctic sea ice changes. The SAL product matches well surface albedo observations from eight stations, suggesting its robust performance in Antarctica. Summer surface albedo averaged over the entire ice sheet shows a downward trend since 1982, albeit not statistically significant. In contrast, a significant upward trend is observed in the sea ice region. Spatially, for ice sheet surface albedo, positive trends occur in the eastern Antarctica Peninsula and the margins of East Antarctica, whereas other regions exhibit negative trends, most prominently in the Ross and Ronne ice shelves. For sea ice albedo, positive trends are observed in the Ross Sea and the Weddell Sea, but negative trends are observed in the Bellingshausen and the Amundsen Seas. Between 2016 and 2018, an unusual decrease in the sea ice extent significantly affected both sea ice and Antarctic ice sheet (AIS) surface albedo changes. However, for the 1982–2015 period, while the effect of sea ice on its own albedo is significant, its impact on ice sheet albedo is less apparent. Air temperature and snow depth also contribute much to sea ice albedo changes. However, on ice sheet surface albedo, the influence of temperature and snow accumulation appears limited. Full article
(This article belongs to the Special Issue New Insights in Remote Sensing of Snow and Glaciers)
Show Figures

Graphical abstract

Back to TopTop