The Antarctic Subglacial Hydrological Environment and International Drilling Projects: A Review
Abstract
:1. Introduction
2. Subglacial Lakes and Hydrology
2.1. Subglacial Water Detection Methods
2.2. Well-Known Subglacial Lakes
2.3. Inland Subglacial Hydrology
2.4. Grounding Zone Subglacial Hydrology
3. International Efforts on Subglacial Lake Drilling
3.1. Subglacial Lake Drilling History
3.2. Future Subglacial Drilling Plans
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Lake CECs | Lake Centro de Estudios Científicos |
LSE | Lake Snow Eagle |
mCDW | Modified circumpolar deep water |
mISW | Modified ice shelf water |
ASAR | Advanced synthetic aperture radar |
TEM | Transient electromagnetic |
CHWDs | Clean Hot Water Drills |
WISSARD | Whillans Ice Stream Subglacial Access Research Drilling |
SALSA project | The Subglacial Antarctic Lake System Analysis |
CHINARE | Chinese Antarctic Research Expedition |
IPR | Ice Penetrating Radar |
References
- Siegert, M.J.; Ross, N.; Le Brocq, A.M. Recent advances in understanding Antarctic subglacial lakes and hydrology. Philos. Trans. R. Soc. A 2016, 374, 20140306. [Google Scholar] [CrossRef] [PubMed]
- Siegert, M.J. A 60-year international history of Antarctic subglacial lake exploration. In Exploration of Subsurface Antarctica: Uncovering Past Changes and Modern Processes; Special Publications; Geological Society of London: London, UK, 2018; Volume 461, pp. 7–21. [Google Scholar]
- Livingstone, S.J.; Li, Y.; Rutishauser, A.; Sanderson, R.J.; Winter, K.; Mikucki, J.A.; Björnsson, H.; Bowling, J.S.; Chu, W.; Dow, C.F.; et al. Subglacial lakes and their changing role in a warming climate. Nat. Rev. Earth Environ. 2022, 3, 106–124. [Google Scholar] [CrossRef]
- Göller, S. Antarctic Subglacial Hydrology-Interactions of Subglacial Lakes, Basal Water Flow and Ice Dynamics. Ph.D. Thesis, State and University Library of Bremen, Bremen, Germany, 2014. [Google Scholar]
- Carter, S.; Fricker, H. The supply of subglacial meltwater to the grounding line of the Siple Coast, West Antarctica. Ann. Glaciol. 2012, 53, 267–280. [Google Scholar] [CrossRef]
- Goeller, S.; Steinhage, D.; Thoma, M.; Grosfeld, K. Assessing the subglacial lake coverage of Antarctica. Ann. Glaciol. 2016, 57, 109–117. [Google Scholar] [CrossRef]
- Pattyn, F.; Carter, S.P.; Thoma, M. Advances in modelling subglacial lakes and their interaction with the Antarctic ice sheet. Philos. Trans. R. Soc. A 2016, 374, 20140296. [Google Scholar] [CrossRef] [PubMed]
- Siegfried, M.R.; Fricker, H.A. Thirteen years of subglacial lake activity in Antarctica from multi-mission satellite altimetry. Ann. Glaciol. 2018, 59, 42–55. [Google Scholar] [CrossRef]
- Woodward, J.; Smith, A.M.; Ross, N.; Thoma, M.; Corr, H.F.J.; King, E.C.; King, M.A.; Grosfeld, K.; Tranter, M.; Siegert, M.J. Location for direct access to subglacial Lake Ellsworth: An assessment of geophysical data and modeling. Geophys. Res. Lett. 2010, 37, L11501. [Google Scholar] [CrossRef]
- Ellis-Evans, J.C.; Wynn-Williams, D. A great lake under the ice. Nature 1996, 381, 644–645. [Google Scholar] [CrossRef]
- Böhm, G.; Ocakoğlu, N.; Picotti, S.; De Santis, L. West Antarctic Ice Sheet evolution: New insights from a seismic tomographic 3D depth model in the Eastern Ross Sea (Antarctica). Mar. Geol. 2009, 266, 109–128. [Google Scholar] [CrossRef]
- Guo, J.; Li, L.; Liu, J.; Fu, L.; Tang, X.; Wang, Y.; Yang, W.; Dou, Y.; Liu, S.; Lu, Q.; et al. Ground-penetrating radar survey of subsurface features at the margin of ice sheet, East Antarctica. J. Appl. Geophys. 2022, 206, 104816. [Google Scholar] [CrossRef]
- Fricker, H.A.; Scambos, T.; Bindschadler, R.; Padman, L. An active subglacial water system in West Antarctica mapped from space. Science 2007, 315, 1544–1548. [Google Scholar] [CrossRef]
- Gray, L.; Joughin, I.; Tulaczyk, S.; Spikes, V.B.; Bindschadler, R.; Jezek, K. Evidence for subglacial water transport in the West Antarctic Ice Sheet through three-dimensional satellite radar interferometry. Geophys. Res. Lett. 2005, 32, L03501. [Google Scholar] [CrossRef]
- Wingham, D.J.; Siegert, M.J.; Shepherd, A.; Muir, A.S. Rapid discharge connects Antarctic subglacial lakes. Nature 2006, 440, 1033–1036. [Google Scholar] [CrossRef] [PubMed]
- Denton, G.H.; Sugden, D.E. Meltwater features that suggest Miocene ice-sheet overriding of the Transantarctic Mountains in Victoria Land, Antarctica. Geogr. Ann. Ser. A Phys. Geogr. 2005, 87, 67–85. [Google Scholar] [CrossRef]
- Flowers, G.E. Modelling water flow under glaciers and ice sheets. Proc. R. Soc. A 2015, 471, 20140907. [Google Scholar] [CrossRef]
- Talalay, P.; Markov, A.; Sysoev, M. New frontiers of Antarctic subglacial lakes exploration. Geogr. Environ. Sustain. 2013, 6, 14–28. [Google Scholar] [CrossRef]
- Thoma, M.; Grosfeld, K.; Mayer, C.; Pattyn, F. Interaction between ice sheet dynamics and subglacial lake circulation: A coupled modelling approach. Cryosphere 2010, 4, 1–12. [Google Scholar] [CrossRef]
- Livingstone, S.J.; Utting, D.J.; Ruffell, A.; Clark, C.D.; Pawley, S.; Atkinson, N.; Fowler, A.C. Discovery of relict subglacial lakes and their geometry and mechanism of drainage. Nat. Commun. 2016, 7, ncomms11767. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, S.; Clark, C.; Woodward, J.; Kingslake, J. Potential subglacial lakes and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets. Cryosphere 2013, 7, 1721–1740. [Google Scholar] [CrossRef]
- Siegert, M. Proposed Exploration of Subglacial Lake Ellsworth. Antarctica Final Comprehensive Environmental Evaluation; Technical Report; British Antarctic Survey: Cambridge, UK, 2012. [Google Scholar]
- Artemieva, I.M. Antarctica ice sheet basal melting enhanced by high mantle heat. Earth-Sci. Rev. 2022, 226, 103954. [Google Scholar] [CrossRef]
- Cui, X.; Jeofry, H.; Greenbaum, J.S.; Guo, J.; Li, L.; Lindzey, L.E.; Habbal, F.A.; Wei, W.; Young, D.A.; Ross, N.; et al. Bed topography of princess Elizabeth land in east Antarctica. Earth Syst. Sci. Data 2020, 12, 2765–2774. [Google Scholar] [CrossRef]
- Cui, X.; Greenbaum, J.S.; Lang, S.; Zhao, X.; Li, L.; Guo, J.; Sun, B. The scientific operations of Snow Eagle 601 in Antarctica in the past five austral seasons. Remote Sens. 2020, 12, 2994. [Google Scholar] [CrossRef]
- Dong, S.; Fu, L.; Tang, X.; Li, Z.; Chen, X. Deep clustering in subglacial radar reflectance reveals subglacial lakes. Cryosphere 2024, 18, 1241–1257. [Google Scholar] [CrossRef]
- Schroeder, D.M.; Bingham, R.G.; Blankenship, D.D.; Christianson, K.; Eisen, O.; Flowers, G.E.; Karlsson, N.B.; Koutnik, M.R.; Paden, J.D.; Siegert, M.J. Five decades of radioglaciology. Ann. Glaciol. 2020, 61, 1–13. [Google Scholar] [CrossRef]
- Wright, A.; Young, D.; Roberts, J.; Schroeder, D.; Bamber, J.; Dowdeswell, J.; Young, N.; Le Brocq, A.; Warner, R.; Payne, A.; et al. Evidence of a hydrological connection between the ice divide and ice sheet margin in the Aurora Subglacial Basin, East Antarctica. J. Geophys. Res. Earth Surf. 2012, 117, F01033. [Google Scholar] [CrossRef]
- Haynes, M.S.; Chapin, E.; Schroeder, D.M. Geometric power fall-off in radar sounding. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6571–6585. [Google Scholar] [CrossRef]
- Ilisei, A.M.; Khodadadzadeh, M.; Ferro, A.; Bruzzone, L. An automatic method for subglacial lake detection in ice sheet radar sounder data. IEEE Trans. Geosci. Remote Sens. 2018, 57, 3252–3270. [Google Scholar] [CrossRef]
- Gorman, M.R.; Siegert, M.J. Penetration of Antarctic subglacial lakes by VHF electromagnetic pulses: Information on the depth and electrical conductivity of basal water bodies. J. Geophys. Res. Solid Earth 1999, 104, 29311–29320. [Google Scholar] [CrossRef]
- Siegfried, M.R.; Fricker, H.A.; Roberts, M.; Scambos, T.A.; Tulaczyk, S. A decade of West Antarctic subglacial lake interactions from combined ICESat and CryoSat-2 altimetry. Geophys. Res. Lett. 2014, 41, 891–898. [Google Scholar] [CrossRef]
- Siegfried, M.; Fricker, H. Illuminating active subglacial lake processes with ICESat-2 laser altimetry. Geophys. Res. Lett. 2021, 48, e2020GL091089. [Google Scholar] [CrossRef]
- Datta, R.T.; Wouters, B. Supraglacial lake bathymetry automatically derived from ICESat-2 constraining lake depth estimates from multi-source satellite imagery. Cryosphere 2021, 15, 5115–5132. [Google Scholar] [CrossRef]
- Fan, Y.; Hao, W.; Zhang, B.; Ma, C.; Gao, S.; Shen, X.; Li, F. Monitoring the hydrological activities of Antarctic subglacial lakes using CryoSat-2 and ICESat-2 altimetry data. Remote Sens. 2022, 14, 898. [Google Scholar] [CrossRef]
- Mcmillan, M.; Corr, H.; Shepherd, A.; Ridout, A.; Laxon, S.; Cullen, R. Three-dimensional mapping by CryoSat-2 of subglacial lake volume changes. Geophys. Res. Lett. 2013, 40, 4321–4327. [Google Scholar] [CrossRef]
- Zhao, Q. Subglacial Lakes, Drainage Pathways and Basins Beneath the Antarctic Ice Sheet Based on the Remote Sensing Big Data. In Proceedings of the 2020 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), Vientiane, Laos, 11–12 January 2020. [Google Scholar]
- Carter, S.P.; Fricker, H.A.; Blankenship, D.D.; Johnson, J.V.; Lipscomb, W.H.; Price, S.F.; Young, D.A. Modeling 5 years of subglacial lake activity in the MacAyeal Ice Stream (Antarctica) catchment through assimilation of ICESat laser altimetry. J. Glaciol. 2011, 57, 1098–1112. [Google Scholar] [CrossRef]
- Stubblefield, A.; Creyts, T.; Kingslake, J.; Siegfried, M.; Spiegelman, M. Surface expression and apparent timing of subglacial lake oscillations controlled by viscous ice flow. Geophys. Res. Lett. 2021, 48, e2021GL094658. [Google Scholar] [CrossRef]
- Robin, G.d.Q. Seismic Shooting and Related Investigations; Norsk Polarinstitut: Tromsø, Norway, 1958.
- Killingbeck, S.F.; Dow, C.F.; Unsworth, M.J. A quantitative method for deriving salinity of subglacial water using ground-based transient electromagnetics. J. Glaciol. 2022, 68, 319–336. [Google Scholar] [CrossRef]
- Evans, S.; Smith, B.M.E. Radio echo exploration of the Antarctic ice sheet, 1969–70. Polar Rec. 1970, 15, 336–338. [Google Scholar] [CrossRef]
- Wright, A.; Siegert, M. A fourth inventory of Antarctic subglacial lakes. Antarct. Sci. 2012, 24, 659–664. [Google Scholar] [CrossRef]
- Filina, I.Y.; Blankenship, D.D.; Thoma, M.; Lukin, V.V.; Masolov, V.N.; Sen, M.K. New 3D bathymetry and sediment distribution in Lake Vostok: Implication for pre-glacial origin and numerical modeling of the internal processes within the lake. Earth Planet. Sci. Lett. 2008, 276, 106–114. [Google Scholar] [CrossRef]
- Leitchenkov, G.L.; Antonov, A.V.; Luneov, P.I.; Lipenkov, V.Y. Geology and environments of subglacial Lake Vostok. Philos. Trans. R. Soc. A 2016, 374, 20140302. [Google Scholar] [CrossRef]
- Filina, I. Geophysical Investigations of Subglacial Lakes Vostok and Concordia, East Antarctica; The University of Texas at Austin: Austin, TX, USA, 2007. [Google Scholar]
- Tikku, A.A.; Bell, R.E.; Studinger, M.; Clarke, G.K.; Tabacco, I.; Ferraccioli, F. Influx of meltwater to subglacial Lake Concordia, east Antarctica. J. Glaciol. 2005, 51, 96–104. [Google Scholar] [CrossRef]
- Peters, L.; Anandakrishnan, S.; Holland, C.; Horgan, H.; Blankenship, D.; Voigt, D. Seismic detection of a subglacial lake near the South Pole, Antarctica. Geophys. Res. Lett. 2008, 35, L23501. [Google Scholar] [CrossRef]
- Bell, R.E.; Studinger, M.; Fahnestock, M.A.; Shuman, C.A. Tectonically controlled subglacial lakes on the flanks of the Gamburtsev Subglacial Mountains, East Antarctica. Geophys. Res. Lett. 2006, 33, L02504. [Google Scholar] [CrossRef]
- Siegert, M.J.; Hindmarsh, R.; Corr, H.; Smith, A.; Woodward, J.; King, E.C.; Payne, A.J.; Joughin, I. Subglacial Lake Ellsworth: A candidate for in situ exploration in West Antarctica. Geophys. Res. Lett. 2004, 31, L23403. [Google Scholar] [CrossRef]
- Yan, S.; Blankenship, D.D.; Greenbaum, J.S.; Young, D.A.; Li, L.; Rutishauser, A.; Guo, J.; Roberts, J.L.; van Ommen, T.D.; Siegert, M.J.; et al. A newly discovered subglacial lake in East Antarctica likely hosts a valuable sedimentary record of ice and climate change. Geology 2022, 50, 949–953. [Google Scholar] [CrossRef]
- Smith, B.E.; Fricker, H.A.; Joughin, I.R.; Tulaczyk, S. An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008). J. Glaciol. 2009, 55, 573–595. [Google Scholar] [CrossRef]
- Mouginot, J.; Rignot, E.; Scheuchl, B.; Millan, R. Comprehensive annual ice sheet velocity mapping using Landsat-8, Sentinel-1, and RADARSAT-2 data. Remote Sens. 2017, 9, 364. [Google Scholar] [CrossRef]
- Fricker, H.A.; Scambos, T. Connected subglacial lake activity on lower Mercer and Whillans ice streams, West Antarctica, 2003–2008. J. Glaciol. 2009, 55, 303–315. [Google Scholar] [CrossRef]
- Leguy, G.; Asay-Davis, X.; Lipscomb, W. Parameterization of basal friction near grounding lines in a one-dimensional ice sheet model. Cryosphere 2014, 8, 1239–1259. [Google Scholar] [CrossRef]
- Neckel, N.; Franke, S.; Helm, V.; Drews, R.; Jansen, D. Evidence of Cascading Subglacial Water Flow at Jutulstraumen Glacier (Antarctica) Derived from Sentinel-1 and ICESat-2 Measurements. Geophys. Res. Lett. 2021, 48, e2021GL094472. [Google Scholar] [CrossRef]
- Hodgson, D.A.; Jordan, T.A.; Ross, N.; Riley, T.R.; Fretwell, P.T. Drainage and refill of an Antarctic Peninsula subglacial lake reveal an active subglacial hydrological network. Cryosphere 2022, 16, 4797–4809. [Google Scholar] [CrossRef]
- Stearns, L.A.; Smith, B.E.; Hamilton, G.S. Increased flow speed on a large East Antarctic outlet glacier caused by subglacial floods. Nat. Geosci. 2008, 1, 827–831. [Google Scholar] [CrossRef]
- Horgan, H.J.; Alley, R.B.; Christianson, K.; Jacobel, R.W.; Anandakrishnan, S.; Muto, A.; Beem, L.H.; Siegfried, M.R. Estuaries beneath ice sheets. Geology 2013, 41, 1159–1162. [Google Scholar] [CrossRef]
- Simkins, L.M.; Anderson, J.B.; Greenwood, S.L.; Gonnermann, H.M.; Prothro, L.O.; Halberstadt, A.R.W.; Stearns, L.A.; Pollard, D.; DeConto, R.M. Anatomy of a meltwater drainage system beneath the ancestral East Antarctic ice sheet. Nat. Geosci. 2017, 10, 691–697. [Google Scholar] [CrossRef]
- Dow, C.; Ross, N.; Jeofry, H.; Siu, K.; Siegert, M. Antarctic basal environment shaped by high-pressure flow through a subglacial river system. Nat. Geosci. 2022, 15, 892–898. [Google Scholar] [CrossRef]
- Null, K.A.; Corbett, D.R.; Crenshaw, J.; Peterson, R.N.; Peterson, L.E.; Lyons, W.B. Groundwater discharge to the western Antarctic coastal ocean. Polar Res. 2019, 38, 3497. [Google Scholar] [CrossRef]
- Warburton, K.; Hewitt, D.; Neufeld, J. Tidal grounding-line migration modulated by subglacial hydrology. Geophys. Res. Lett. 2020, 47, e2020GL089088. [Google Scholar] [CrossRef]
- Marsh, O.J.; Fricker, H.A.; Siegfried, M.R.; Christianson, K.; Nicholls, K.W.; Corr, H.F.; Catania, G. High basal melting forming a channel at the grounding line of Ross Ice Shelf, Antarctica. Geophys. Res. Lett. 2016, 43, 250–255. [Google Scholar] [CrossRef]
- Le Brocq, A.M.; Ross, N.; Griggs, J.A.; Bingham, R.G.; Corr, H.F.; Ferraccioli, F.; Jenkins, A.; Jordan, T.A.; Payne, A.J.; Rippin, D.M.; et al. Evidence from ice shelves for channelized meltwater flow beneath the Antarctic Ice Sheet. Nat. Geosci. 2013, 6, 945–948. [Google Scholar] [CrossRef]
- Hager, A.O.; Hoffman, M.J.; Price, S.F.; Schroeder, D.M. Persistent, extensive channelized drainage modeled beneath Thwaites Glacier, West Antarctica. Cryosphere 2022, 16, 3575–3599. [Google Scholar] [CrossRef]
- Rémy, F.; Legresy, B. Subglacial hydrological networks in Antarctica and their impact on ice flow. Ann. Glaciol. 2004, 39, 67–72. [Google Scholar] [CrossRef]
- Gwyther, D.E.; Dow, C.F.; Jendersie, S.; Gourmelen, N.; Galton-Fenzi, B.K. Subglacial freshwater drainage increases simulated basal melt of the Totten Ice Shelf. Geophys. Res. Lett. 2023, 50, e2023GL103765. [Google Scholar] [CrossRef]
- Alley, K.E.; Scambos, T.A.; Alley, R.B. The role of channelized basal melt in ice-shelf stability: Recent progress and future priorities. Ann. Glaciol. 2023, 63, 18–22. [Google Scholar] [CrossRef]
- Makinson, K.; Pearce, D.; Hodgson, D.A.; Bentley, M.J.; Smith, A.M.; Tranter, M.; Rose, M.; Ross, N.; Mowlem, M.; Parnell, J.; et al. Clean subglacial access: Prospects for future deep hot-water drilling. Philos. Trans. R. Soc. A 2016, 374, 20140304. [Google Scholar] [CrossRef] [PubMed]
- Talalay, P.; Liu, G.; Wang, R.; Fan, X.; Hong, J.; Gong, D.; Liu, B.; Liu, A.; Mihail, S. Shallow hot-water ice drill: Estimation of drilling parameters and testing. Cold Reg. Sci. Technol. 2018, 155, 11–19. [Google Scholar] [CrossRef]
- Lukin, V.; Bulat, S. Vostok subglacial lake: Details of Russian plans/activities for drilling and sampling. Antarct. Subglacial Aquat. Environ. 2011, 192, 187–197. [Google Scholar]
- Talalay, P. Russian researchers reach subglacial Lake Vostok in Antarctica. Adv. Polar Sci. 2012, 23, 176–180. [Google Scholar]
- Priscu, J.C.; Adams, E.E.; Lyons, W.B.; Voytek, M.A.; Mogk, D.W.; Brown, R.L.; McKay, C.P.; Takacs, C.D.; Welch, K.A.; Wolf, C.F.; et al. Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 1999, 286, 2141–2144. [Google Scholar] [CrossRef]
- Gura, C.; Rogers, S.O. Metatranscriptomic and metagenomic analysis of biological diversity in subglacial Lake Vostok (Antarctica). Biology 2020, 9, 55. [Google Scholar] [CrossRef]
- Masolov, V.; Lukin, V.; Sheremetiev, A.; Popov, S. Geophysical investigations of the subglacial lake Vostok in Eastern Antarctica. In Doklady Earth Sciences C/C of Doklady-Akademiia Nauk; Interperiodica Publishing: Moscow, Russia, 2001; Volume 379, pp. 734–738. [Google Scholar]
- Smith, A.M.; Woodward, J.; Ross, N.; Bentley, M.J.; Hodgson, D.A.; Siegert, M.J.; King, E.C. Evidence for the long-term sedimentary environment in an Antarctic subglacial lake. Earth Planet. Sci. Lett. 2018, 504, 139–151. [Google Scholar] [CrossRef]
- Tulaczyk, S.; Mikucki, J.A.; Siegfried, M.R.; Priscu, J.C.; Barcheck, C.G.; Beem, L.H.; Behar, A.; Burnett, J.; Christner, B.C.; Fisher, A.T.; et al. WISSARD at Subglacial Lake Whillans, West Antarctica: Scientific operations and initial observations. Ann. Glaciol. 2014, 55, 51–58. [Google Scholar] [CrossRef]
- Gustafson, C.D.; Key, K.; Siegfried, M.R.; Winberry, J.P.; Fricker, H.A.; Venturelli, R.A.; Michaud, A.B. A dynamic saline groundwater system mapped beneath an Antarctic ice stream. Science 2022, 376, 640–644. [Google Scholar] [CrossRef] [PubMed]
- Christner, B.C.; Priscu, J.C.; Achberger, A.M.; Barbante, C.; Carter, S.P.; Christianson, K.; Michaud, A.B.; Mikucki, J.A.; Mitchell, A.C.; Skidmore, M.L.; et al. A microbial ecosystem beneath the West Antarctic ice sheet. Nature 2014, 512, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Mikucki, J.A.; Lee, P.; Ghosh, D.; Purcell, A.; Mitchell, A.C.; Mankoff, K.; Fisher, A.; Tulaczyk, S.; Carter, S.; Siegfried, M.R.; et al. Subglacial Lake Whillans microbial biogeochemistry: A synthesis of current knowledge. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20140290. [Google Scholar] [CrossRef] [PubMed]
- Michaud, A.B.; Skidmore, M.L.; Mitchell, A.C.; Vick-Majors, T.J.; Barbante, C.; Turetta, C.; Vangelder, W.; Priscu, J.C. Solute sources and geochemical processes in subglacial lake Whillans, west Antarctica. Geology 2016, 44, 347–350. [Google Scholar] [CrossRef]
- Priscu, J.C.; Kalin, J.; Winans, J.; Campbell, T.; Siegfried, M.R.; Skidmore, M.; Dore, J.E.; Leventer, A.; Harwood, D.M.; Duling, D.; et al. Scientific access into Mercer Subglacial Lake: Scientific objectives, drilling operations and initial observations. Ann. Glaciol. 2021, 62, 340–352. [Google Scholar] [CrossRef]
- Siegfried, M.; Venturelli, R.; Patterson, M.; Arnuk, W.; Campbell, T.; Gustafson, C.; Michaud, A.B.; Galton-Fenzi, B.; Hausner, M.B.; Holzschuh, S.; et al. The life and death of a subglacial lake in West Antarctica. Geology 2023, 51, 434–438. [Google Scholar] [CrossRef]
- Davis, C.L.; Venturelli, R.A.; Michaud, A.B.; Hawkings, J.R.; Achberger, A.M.; Vick-Majors, T.J.; Rosenheim, B.E.; Dore, J.E.; Steigmeyer, A.; Skidmore, M.L.; et al. Biogeochemical and historical drivers of microbial community composition and structure in sediments from Mercer Subglacial Lake, West Antarctica. ISME Commun. 2023, 3, 8. [Google Scholar] [CrossRef] [PubMed]
- Siegert, M.J.; Makinson, K.; Blake, D.; Mowlem, M.; Ross, N. An assessment of deep hot-water drilling as a means to undertake direct measurement and sampling of Antarctic subglacial lakes: Experience and lessons learned from the Lake Ellsworth field season 2012/13. Ann. Glaciol. 2014, 55, 59–73. [Google Scholar] [CrossRef]
- Makinson, K.; Anker, P.G.; Garcés, J.; Goodger, D.J.; Polfrey, S.; Rix, J.; Silva, A.; Smith, A.M.; Uribe, J.A.; Zamora, R. Development of a clean hot water drill to access Subglacial Lake CECs, West Antarctica. Ann. Glaciol. 2021, 62, 250–262. [Google Scholar] [CrossRef]
- Anker, P.G.; Makinson, K.; Nicholls, K.W.; Smith, A.M. The BEAMISH hot water drill system and its use on the Rutford Ice Stream, Antarctica. Ann. Glaciol. 2021, 62, 233–249. [Google Scholar] [CrossRef]
- Talalay, P.; Zagorodnov, V.; Markov, A.; Sysoev, M.; Hong, J. Recoverable autonomous sonde (RECAS) for environmental exploration of Antarctic subglacial lakes: General concept. Ann. Glaciol. 2014, 55, 23–30. [Google Scholar] [CrossRef]
- Rivera, A.; Uribe, J.; Zamora, R.; Oberreuter, J. Subglacial Lake CECs: Discovery and in situ survey of a privileged research site in West Antarctica. Geophys. Res. Lett. 2015, 42, 3944–3953. [Google Scholar] [CrossRef]
- Brisbourne, A.; Smith, A.; Rivera, A.; Zamora, R.; Napoleoni, F.; Uribe, J.; Ortega, M. Bathymetry and bed conditions of Lago Subglacial CECs, West Antarctica. J. Glaciol. 2023, 1–10. [Google Scholar] [CrossRef]
- Jamieson, S.S.; Ross, N.; Greenbaum, J.S.; Young, D.A.; Aitken, A.R.; Roberts, J.L.; Blankenship, D.D.; Bo, S.; Siegert, M.J. An extensive subglacial lake and canyon system in Princess Elizabeth Land, East Antarctica. Geology 2016, 44, 87–90. [Google Scholar] [CrossRef]
- Sun, Y.; Li, B.; Fan, X.; Li, Y.; Li, G.; Yu, H.; Li, H.; Wang, D.; Zhang, N.; Gong, D.; et al. Brief communication: New sonde to unravel the mystery of polar subglacial lakes. Cryosphere 2023, 17, 1089–1095. [Google Scholar] [CrossRef]
Lake | Year | Description | Implementation |
---|---|---|---|
Lake Vostok [72] | 2012 | Successfully reached a new depth of approximately 3650 m. | Russian Antarctic Expedition |
Lake Ellsworth [22,86] | 2012 | Failed, attempt with a hot water drill was halted. | British Antarctic Survey |
Lake Whillans [78] | 2013 | Successfully accessed subglacial lake water. | WISSARD project 1 |
Lake Mercer [83,84] | 2018 | Successfully penetrated and collected samples. | SALSA project 2 |
Lake CECs [87] | - | On schedule, with a BEAMISH hot water drilling system [88]. | Centro de Estudios Científicos & British Antarctic Survey |
Lake Snow Eagle [51] | 2025–2027 | On schedule, with an RECAS drilling system [89]. | CHINARE 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Cui, X.; Dai, Z.; Zhou, X.; Li, L.; Jiang, S.; Sun, B. The Antarctic Subglacial Hydrological Environment and International Drilling Projects: A Review. Water 2024, 16, 1111. https://doi.org/10.3390/w16081111
Zhou Y, Cui X, Dai Z, Zhou X, Li L, Jiang S, Sun B. The Antarctic Subglacial Hydrological Environment and International Drilling Projects: A Review. Water. 2024; 16(8):1111. https://doi.org/10.3390/w16081111
Chicago/Turabian StyleZhou, Yan, Xiangbin Cui, Zhenxue Dai, Xiaobing Zhou, Lin Li, Su Jiang, and Bo Sun. 2024. "The Antarctic Subglacial Hydrological Environment and International Drilling Projects: A Review" Water 16, no. 8: 1111. https://doi.org/10.3390/w16081111
APA StyleZhou, Y., Cui, X., Dai, Z., Zhou, X., Li, L., Jiang, S., & Sun, B. (2024). The Antarctic Subglacial Hydrological Environment and International Drilling Projects: A Review. Water, 16(8), 1111. https://doi.org/10.3390/w16081111