Ice Sheet Mass Changes over Antarctica Based on GRACE Data
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. GRACE Satellite Data
2.2.2. ERA-5 Reanalysis of Meteorological Data Sets
2.3. Research Methods
2.3.1. Sen Slope Trend Estimation and MK Test
2.3.2. Spearman Correlation Analysis
2.3.3. Random Forest Model
3. Results
3.1. Interannual Variations in the Mass Balance of the Antarctic Ice Sheet
3.2. Spatial Changes in the Mass Balance of the Antarctic Ice Sheet
3.3. Temporal and Spatial Characteristics of Seasonal Variations in the Mass Balance of the Antarctic Ice Sheet
3.4. Spatiotemporal Variations of P, SSR, and T2M over the Antarctic Ice Sheet
4. Discussion
4.1. The Response of the Antarctic Ice Sheet Mass Balance to Changes in P, SSR, and T2M
4.2. Contribution of P, SSR, and T2M Changes to the Mass Change of the Antarctic Ice Sheet
4.3. Data Uncertainty and Comparative Analysis
5. Conclusions
- (1)
- From 2003 to 2016, the overall Antarctic ice sheet mass loss rate was −123.3 ± 6.2 Gt/year. Although the mass loss rate slowed down from 2019 to 2022, the ice sheet ablation area extended inland with significant interannual fluctuations, resulting in a relatively severe overall loss. The loss of the Antarctic ice sheet exhibits distinct seasonal characteristics, with mass loss being significantly greater in the warm season compared to the cold season. The rate of ice sheet mass change is highest during the transition between the cold and warm seasons.
- (2)
- Mass changes in the Antarctic ice sheet exhibit pronounced regional differences, with losses predominantly occurring in West Antarctica and the Antarctic Peninsula. From 2003 to 2016, the mass change rate for the West Antarctic ice sheet was −105.29 ± 1.74 Gt/year, while the Antarctic Peninsula ice sheet experienced a mass change rate of −14.52 ± 0.31 Gt/year, with the most significant loss concentrated in the Amundsen Sea region of West Antarctica. In contrast, East Antarctica is generally in a positive equilibrium state, with a mass change rate of 36.77 ± 1.71 Gt/year from 2003 to 2016 and 45.57 ± 19.68 Gt/year from 2018 to 2022. However, significant ice sheet loss is observed in Wilkes Land and Victoria Land. Notably, increases in Antarctic ice sheet mass are concentrated in Queen Maud Land, East Antarctica, with a change rate of 44.90 ± 0.96 Gt/year from 2003 to 2016, primarily due to a sudden increase in snowfall in 2009 and a continuing rise in snowfall thereafter.
- (3)
- From 2003 to 2016, precipitation, surface net solar radiation, and temperature all showed insignificant increasing trends. Precipitation and temperature exhibit a spatial pattern of “high along the coast and low in the interior”, while surface net solar radiation follows a “high in the east–low in the west” pattern, which is similar to the elevation distribution of the Antarctic ice sheet. Thermal factors are the primary drivers of mass changes in the Antarctic ice sheet, with most of the increased loss being attributed to rising temperatures and increased surface net solar radiation. Both temperature and surface net solar radiation have lag effects on ice sheet ablation, with lag periods of 1 month and 2 months, respectively. Although the contribution of precipitation to changes in ice sheet mass gradually increases with lag time, thermal conditions remain the dominant influence on the mass balance of the Antarctic ice sheet.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, M.H. An up to date review on the mass balance over Antarctica. Prog. Geophys. 2013, 28, 24–35. [Google Scholar]
- Thomas, E.R.; Van Wessem, J.M.; Roberts, J.; Isaksson, E.; Schlosser, E.; Fudge, T.J.; Vallelonga, P.; Medley, B.; Lenaerts, J.; Bertler, N.; et al. Regional Antarctic Snow Accumulation Over the Past 1000 Years. Clim. Past. 2017, 13, 1491–1513. [Google Scholar] [CrossRef]
- Bamber, J.L.; Westaway, R.M.; Marzeion, B.; Wouters, B. The Land Ice Contribution to Sea Level during the Satellite Era. Environ. Res. Lett. 2018, 13, 063008. [Google Scholar] [CrossRef]
- Wang, Z.M.; He, J.; Yang, Y.D. Evaluation of Mass Balance in the Antarctic Ice Sheet from New GRACE Data. Geoinf. Surv. Mapp. 2017, 42, 1–5. [Google Scholar] [CrossRef]
- Yang, H.G.; You, W. Variations of antarctic ice-sheet mass measured by satellite gravity. Sci. Surv. Mapp. 2017, 42, 121–126+131. [Google Scholar] [CrossRef]
- Liang, L.; Guo, H.; Liang, S.; Li, X.; Moore, J.C.; Li, X.; Cheng, X.; Wu, W.; Liu, Y.; Rinke, A.; et al. Delayed Antarctic loss season reduces albedo feedback. Natl. Sci. Rev. 2023, 10, nwad157. [Google Scholar] [CrossRef]
- Brandt, R.E.; Warren, S.G.; Worby, A.P.; Grenfell, T.C. Surface Albedo of the Antarctic Sea Ice Zone. J. Clim. 2005, 18, 3606–3622. [Google Scholar] [CrossRef]
- Lin, Y.J.; Yu, Z.T.; Liu, Y.; Cheng, X.; Shen, Q.; Zhao, L.Y. Fine Assessment of Mass Balance of Antarctic Ice Sheet from 2005 to 2016. J. Remote Sens. 2023, 27, 318–334. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, X.; Qiao, G.; Ye, W.; Huang, Y.; Li, Y.; Wang, K.; Tian, Y.; Tong, X.; Li, R. Ice Flow Velocity Mapping of East Antarctica from 1963 to 1989. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W13, 1735–1739. [Google Scholar] [CrossRef]
- Cheng, Y.; Hai, G.; Cui, X.B.; Lv, D.; Qiao, G.; Li, R. Mass Balance Assessment of the Antarctic Ice Sheet from 2013 to 2018 based on Input-output Method. Science in China. Earth Sci. 2023, 53, 1490–1505. [Google Scholar]
- Zwally, H.J.; Li, J.; Robbins, J.W.; Saba, J.L.; Yi, D.; Brenner, A.C. Mass Gains of the Antarctic Ice Sheet Exceed Losses. J Glaciol. J. Glaciol. 2015, 61, 1019–1036. [Google Scholar] [CrossRef]
- Li, F.; Yuan, L.X.; Zhang, S.K.; Yang, Y.D.; E, D.C.; Hao, W.F. Mass change of the Antarctic ice sheet derived from ICESat laser altimetry. Chin. J. Geophys. 2016, 59, 93–100. [Google Scholar]
- E, D.C.; Yang, Y.D.; Chao, D.B. The sea level change from the Antarctic ice sheet based on GRACE. Chin. J. Geophys. 2009, 52, 2222–2228. [Google Scholar]
- Tapley, B.D.; Watkins, M.M.; Flechtner, F. Contributions of GRACE to Understanding Climate Change. Nat. Clim. Chang. 2019, 9, 358–369. [Google Scholar] [CrossRef]
- Berthier, E.; Floriciou, D.; Gardne, A.S.; Gourmelen, N.; Jakob, L.; Paul, F.; Treichler, D.; Wouters, B.; Belart, J.M.C.; Dehec, A.; et al. Measuring Glacier Mass Changes from Space a Review. Rep. Prog. Phys. 2023, 86, 036801. [Google Scholar] [CrossRef]
- Velicogna, I.; Mohajerani, Y.; A, G.; Landerer, F.; Mouginot, J.; Noel, B.; Rignot, E.; Sutterley, T.; van den Broeke, M.; van Wessem, M.; et al. Continuity of Ice Sheet Mass Loss in Greenland and Antarctica from the GRACE and GRACE Follow-On missions. Geophys. Res. Lett. 2020, 47, e2020GL087291. [Google Scholar] [CrossRef]
- Chen, W.; Zhong, M.; Feng, W.; Wang, C.; Li, W.; Liang, L. Using GRACE/GRACE-FO and Swarm to estimate ice-sheets mass loss in Antarctica and Greenland during 2002–2020. Chin. J. Geophys. 2022, 65, 952–964. [Google Scholar]
- Otosaka, I.N.; Shepherd, A.; Ivins, E.R.; Schlegel, N.-J.; Amory, C.; van den Broeke, M.R.; Horwath, M.; Joughin, I.; King, M.D.; Krinner, G.; et al. Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020. Earth Syst. Sci. Data 2023, 15, 1597–1616. [Google Scholar] [CrossRef]
- Ye, Y.; Cheng, X.; Liu, Y.; Yang, Y.D.; Zhao, L.Y.; Lin, Y.J.; Qu, Y.T. Antarctic and Greenland Ice Sheet mass Balance Research Progress. J. Polar Res. 2020, 32, 571–585. [Google Scholar]
- Hao, W.F.; Yang, Y.D.; Liu, P.C.; Gao, S.J.; Cheng, Q. Research progress in the reconstruction of GRACE and GRACE-FO missing data. Prog. Geophys. 2024, 1–16. Available online: http://kns.cnki.net/kcms/detail/11.2982.P.20240315.1521.042.html (accessed on 9 September 2024).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chu, J.D.; Su, X.L.; Zhang, T.; Lei, Y.S.; Jiang, T.L.; Wu, J.H.; Wang, Q.Y. Comparison of three spatial downscaling concepts of GRACE data using random forest model. J. Lake Sci. 2024, 36, 951–962. [Google Scholar]
- Scambos, T.A. Application of Image Cross-correlation to the Measurement of Glacier Velocity Using Satellite Image Data. Remote Sens. Environ. 1992, 42, 177–186. [Google Scholar] [CrossRef]
- Velicogna, I.; Wahr, J. Measurements of Time-variable Gravity Show Mass Loss in Antarctica. Science 2006, 311, 1754–1756. [Google Scholar] [CrossRef]
- Medley, B.; McConnell, J.; Neumann, T.A.; Reijmer, C.H.; Chellman, N.; Sigl, M.; Kipfstuhl, S. Temperature and Snowfall in Western Queen Maud Land Increasing Faster than Climate Model Projections. Geophys. Res. Lett. 2018, 45, 1472–1480. [Google Scholar] [CrossRef]
- Li, R.X.; Xia, M.L.; Xie, H.; Hao, T.; Qiao, G.; Liu, S.J.; Feng, T.T.; Tian, Y.X.; An, L.; Tong, X.H.; et al. Advances in satellite remote sensing monitoring of Antarctic Ice Sheet mass changes. Chin. J. Geophys. 2023, 66, 3115–3143. [Google Scholar] [CrossRef]
- Yang, Q.M. Research on Antarctic ice sheet changes and influencing factors based on satellite altimetry technology. Acta Geod. Cartogr. Sin. 2023, 52, 2008. [Google Scholar]
- Wild, M.; Calanca, P.; Scherrer, S.C.; Ohmura, A. Effects of Polar Ice Sheets on Global Sea Level in High-resdution Greenhouse Scenarios. J. Geophys. Res. Atmos. 2003, 108, 4165. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Wang, Y.T.; Ning, W.T.; Zhang, W.; Dong, X. Spatiotemporal Variations of Near-surface Air Temperature over the Antarctic Ice Sheet in the past 60 years. Quat. Sci. 2021, 41, 739–751. [Google Scholar]
- Chen, J.; Ke, C.Q. Review of Surface Ice Velocity Studies in Antarctic Ice Sheet. Polar Res. 2015, 27. [Google Scholar] [CrossRef]
- Jones, J.M.; Gille, S.T.; Goosse, H.; Abram, N.J.; Canziani, P.O.; Charman, D.J.; Clem, K.R.; Crosta, X.; de Lavergne, C.; Eisenman, I.; et al. Assessing Recent Trends in High-atitude Southern Hemisphere Surface Climate. Nat. Clim. Chang. 2016, 6, 917–926. [Google Scholar] [CrossRef]
- Gao, C.C.; Lu, Y.; Shi, H.L.; Zhang, Z.; Xu, C.; Tan, B. Detection and analysis of ice sheet mass changes over 27 Antarctic drainage systems from GRACE RL06 data. Chin. J. Geophys. 2019, 62, 864–882. [Google Scholar]
- Cui, L.L.; Zhang, C.; Zou, Z.B.; Li, P.; Li, Q.; Wang, X.L. The Mass Change in the Antarctic Ice Sheet Recovered from Gravity Satellite in 2003-2016. Sci. Technol. Eng. 2021, 21, 27–31. [Google Scholar]
- Schrama, E.J.; Wouters BRietbroek, R. A Mascon Approach to Assess Ice Sheet and Glacier Mass Balances and Their Uncertainties from GRACE Data. J. Geophys. Res. Solid Earth 2014, 119, 6048–6066. [Google Scholar] [CrossRef]
- Watkins, M.M.; Wiese, D.N.; Yuan, D.; Boening, C.; Landerer, F.W. Improved Methods for Observing Earth’s Time Variable Mass Distribution with GRACE Using Spherical Cap Mascons. J. Geophys. Res. Solid Earth 2015, 120, 2648–2671. [Google Scholar] [CrossRef]
- Harig, C.; Simons, F.J. Ice Mass Loss in Greenland, the Gulf of Alaska, and the Canadian Archipelago: Seasonal Cycles and Decadal Trends. Geophys. Res. Lett. 2016, 43, 3150–3159. [Google Scholar] [CrossRef]
- Mu, D.P.; Yan, H.M.; Feng, W.; Peng, P. GRACE Leakage Error Correction with Regularization Technique: Case Studies in Greenland and Antarctica. Geophys. J. Int. 2017, 208, 1775–1786. [Google Scholar] [CrossRef]
- The IMBIE Team. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 2018, 558, 219–222. [Google Scholar] [CrossRef]
- Groh, A.; Horwath, M.; Horvath, A.; Meister, R.; Sørensen, L.S.; Barletta, V.R.; Forsberg, R.; Wouters, B.; Ditmar, P.; Ran, J.; et al. Evaluating GRACE Mass Change Time Series for the Antarctic and Greenland Ice Sheet Methods and Results. Geosciences 2019, 9, 415. [Google Scholar] [CrossRef]
- Groh, A.; Horwath, M. Antarctic ice mass change products from GRACE/GRACE-FO using tailored sensitivity kernels. Remote Sens. 2021, 13, 1736. [Google Scholar] [CrossRef]
- Yang, T.; Liang, Q.; Zheng, L.; Li, T.; Chen, Z.; Hui, F.; Cheng, X. Mass Balance of the Antarctic Ice Sheet in the Early 21st Century. Remote Sens. 2023, 15, 1677. [Google Scholar] [CrossRef]
- Willen, M.O.; Horwath, M.; Buchta, E.; Scheinert, M.; Helm, V.; Uebbing, B.; Kusche, J. Globally consistent estimates of high-resolution Antarctic ice mass balance and spatially resolved glacial isostatic adjustment. Cryosphere 2024, 18, 775–790. [Google Scholar] [CrossRef]
Basin | Slope (Gt/a) | |
---|---|---|
2003–2016 | 201806–2022 | |
Basin 1 | 0.15 ± 0.43 | 11.16 ± 2.59 * |
Basin 2 | 18.37 ± 0.89 * | 20.59 ± 9.08 * |
Basin 3 | 44.90 ± 0.96 * | 29.99 ± 3.20 * |
Basin 4 | −7.45 ± 0.85 * | 9.77± 7.50 |
Basin 5 | −6.08 ± 0.37 * | −12.82 ± 1.71 * |
Basin 6 | 6.25 ± 0.09 * | 9.21 ± 0.87 * |
Basin 7 | −1.86 ± 0.16 * | −6.44 ± 0.76 * |
Basin 8 | −488.79 ± 5.26 * | −447.86 ± 14.67 * |
Basin 9 (Antarctic Peninsula) | −14.52 ± 0.31 * | 4.66 ± 1.96 * |
East Antarctica | 36.77 ± 1.71 * | 45.57 ± 19.68 * |
West Antarctica | −105.29 ± 1.74 * | −85.69 ± 6.88 * |
Relative Contribution (%) | Average | Cold Season | Warm Season | ||||||
---|---|---|---|---|---|---|---|---|---|
P | SSR | T2M | P | SSR | T2M | P | SSR | T2M | |
the same period (no lag) | 15.09 | 43.45 | 41.46 | 10.38 | 53.15 | 36.56 | 9.39 | 43.15 | 47.46 |
lag 1 month | 34.36 | 32.69 | 32.95 | 31.4 | 32.86 | 35.74 | 38.53 | 32.43 | 29.04 |
lag 2 month | 37.78 | 29.89 | 32.33 | 32.54 | 35.96 | 31.50 | 45.10 | 21.40 | 33.50 |
References | Data Source | Time Quantum | Rate |
---|---|---|---|
Schrama et al. (2014) [35] | CSR RL05 | 2003–2013 | −91 ± 26 |
Watkins et al. (2015) [36] | JPLM RL05 | 2003–2013 | −121 ± 29 |
Harig et al. (2016) [37] | CSR RL05 | 2003–2014 | −92 ± 10 |
Mu et al. (2017) [38] | CSR RL05 | 2003–2012 | −107 ± 34 |
Shepherd et al. (2018) [39] | Combine Satellite | 1992–2017 | −104.62 ± 53.08 |
Gao Chunchun et al. (2019) [33] | CSR RL06 | 2002–2016 | −118.6 ± 16.3 |
Groh et al. (2019) [40] | Synthetic Data Sets | 2003–2013 | −99 to −108 |
Cui Lilu et al. (2021) [34] | CSR RL06 | 2003–2016 | −101.3 ± 7.1 |
Chen Wei et al. (2022) [17] | CSRM RL06 v2 | 2003–2012 | −90 ± 27 |
JPLM RL06 v2 | 2003–2013 | −98 ± 27 | |
CSR/GFZ/JPL RL06 | 2003–2014 | −108 ± 26 | |
Groh A and Horwath M. (2021) [41] | CSR RL06 | 2002–2020 | −90.9 ± 43.5 |
Yang, T.; Liang, Q et al. (2023) [42] | MEaSUREs | 2000–2020 | −89 ± 99 |
Yang Quanming et al. (2023) [28] | Envisat GDR3.0 | 2002–2019 | −142 ± 4.3 |
I.N. Otosaka, et al. (2023) [18] | Combining multiple data | 2002–2006 | −62 ± 41 |
2007–2011 | −130 ± 45 | ||
2012–2016 | −150 ± 43 | ||
Willen, M. O. et al. (2024) [43] | ITSG-Grace2018 | 2011–2020 | −144 ± 27 |
This Study | CSRM RL06 | 2003–2013 | −82.9 ± 7.4 |
2003–2016 | −123.3 ± 6.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Xu, M.; Che, T.; Guo, W.; Li, X. Ice Sheet Mass Changes over Antarctica Based on GRACE Data. Remote Sens. 2024, 16, 3776. https://doi.org/10.3390/rs16203776
Zhang R, Xu M, Che T, Guo W, Li X. Ice Sheet Mass Changes over Antarctica Based on GRACE Data. Remote Sensing. 2024; 16(20):3776. https://doi.org/10.3390/rs16203776
Chicago/Turabian StyleZhang, Ruiqi, Min Xu, Tao Che, Wanqin Guo, and Xingdong Li. 2024. "Ice Sheet Mass Changes over Antarctica Based on GRACE Data" Remote Sensing 16, no. 20: 3776. https://doi.org/10.3390/rs16203776
APA StyleZhang, R., Xu, M., Che, T., Guo, W., & Li, X. (2024). Ice Sheet Mass Changes over Antarctica Based on GRACE Data. Remote Sensing, 16(20), 3776. https://doi.org/10.3390/rs16203776