Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,436)

Search Parameters:
Keywords = Annexin A10

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 7970 KiB  
Article
Heteroaryl-Capped Hydroxamic Acid Derivatives with Varied Linkers: Synthesis and Anticancer Evaluation with Various Apoptosis Analyses in Breast Cancer Cells, Including Docking, Simulation, DFT, and ADMET Studies
by Ekta Shirbhate, Biplob Koch, Vaibhav Singh, Akanksha Dubey, Haya Khader Ahmad Yasin and Harish Rajak
Pharmaceuticals 2025, 18(8), 1148; https://doi.org/10.3390/ph18081148 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Cancer suffers from unresolved therapeutic challenges owing to the lack of targeted therapies and heightened recurrence risk. This study aimed to investigate the new series of hydroxamate by structurally modifying the pharmacophore of vorinostat. Methods: The present work involves the synthesis [...] Read more.
Background/Objectives: Cancer suffers from unresolved therapeutic challenges owing to the lack of targeted therapies and heightened recurrence risk. This study aimed to investigate the new series of hydroxamate by structurally modifying the pharmacophore of vorinostat. Methods: The present work involves the synthesis of 15 differently substituted 2H-1,2,3-triazole-based hydroxamide analogs by employing triazole ring as a cap with varied linker fragments. The compounds were evaluated for their anticancer effect, especially their anti-breast cancer response. Molecular docking and molecular dynamics simulations were conducted to examine binding interactions. Results: Results indicated that among all synthesized hybrids, the molecule VI(i) inhibits the growth of MCF-7 and A-549 cells (GI50 < 10 μg/mL) in an antiproliferative assay. Compound VI(i) was also tested for cytotoxic activity by employing an MTT assay against A549, MCF-7, and MDA-MB-231 cell lines, and the findings indicate its potent anticancer response, especially against MCF-7 cells with IC50 of 60 µg/mL. However, it experiences minimal toxicity towards the normal cell line (HEK-293). Mechanistic studies revealed a dual-pathway activation: first, apoptosis (17.18% of early and 10.22% of late apoptotic cells by annexin V/PI analysis); second, cell cycle arrest at the S and G2/M phases. It also promotes ROS generation in a concentration-dependent manner. The HDAC–inhibitory assay, extended in silico molecular docking, and MD simulation experiments further validated its significant binding affinity towards HDAC 1 and 6 isoforms. DFT and ADMET screening further support the biological proclivity of the title compounds. The notable biological contribution of VI(i) highlights it as a potential candidate, especially against breast cancer cells. Full article
(This article belongs to the Section Medicinal Chemistry)
17 pages, 3105 KiB  
Article
Cell Viability of Wharton’s Jelly-Derived Mesenchymal Stem Cells (WJ-MSCs) on 3D-Printed Resins for Temporary Dental Restorations
by Mónica Antonio-Flores, Andrés Eliú Castell-Rodríguez, Gabriela Piñón-Zárate, Beatriz Hernández-Téllez, Abigailt Flores-Ledesma, Enrique Pérez-Martínez, Carolina Sámano-Valencia, Gerardo Quiroz-Petersen and Katia Jarquín-Yáñez
J. Compos. Sci. 2025, 9(8), 404; https://doi.org/10.3390/jcs9080404 (registering DOI) - 1 Aug 2025
Abstract
There is insufficient evidence regarding the cytotoxicity of restorative 3D-printing resins, used as part of the digital workflow in dentistry. This study presents a novel comparative evaluation of cell viability and adhesion using human Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs), a less commonly [...] Read more.
There is insufficient evidence regarding the cytotoxicity of restorative 3D-printing resins, used as part of the digital workflow in dentistry. This study presents a novel comparative evaluation of cell viability and adhesion using human Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs), a less commonly used but clinically relevant cell line in dental biomaterials research. The aim of this study was to evaluate the cell viability of WJ-MSCs seeded on 3D-printed resins intended for temporary restorations. Resin discs of three commercial 3D-printing resins (NextDent C&B, Leaf Dental C&B, and UNIZ Temp) and a conventional self-curing acrylic resin (NicTone) were used. WJ-MSCs were cultured on the specimens for 1, 4, and 10 days. Cell viability was assessed using the PrestoBlue assay, Live/Dead immunofluorescence staining, and 7AAD/Annexin V staining. Cell adhesion was evaluated using scanning electron microscopy. Direct exposure to the 3D-printed resins and the self-curing acrylic caused slight reductions in cell viability compared to the control group in both microscopic analyses. 7AAD/Annexin V showed the highest percentage of viable WBCs for the conventional acrylic (34%), followed by UNIZ (35%), NextDent (42%), and Leaf Dental (36%) (ANOVA p < 0.05 Tukey’s post-hoc test p < 0.05). These findings suggest that 3D-printed resins could be considered safe for use in temporary restorations. Full article
(This article belongs to the Section Biocomposites)
Show Figures

Figure 1

19 pages, 6032 KiB  
Article
Recombinant Human Annexin A5 Ameliorates Localized Scleroderma by Inhibiting the Activation of Fibroblasts and Macrophages
by Bijun Kang, Zhuoxuan Jia, Wei Li and Wenjie Zhang
Pharmaceutics 2025, 17(8), 986; https://doi.org/10.3390/pharmaceutics17080986 (registering DOI) - 30 Jul 2025
Viewed by 116
Abstract
Background: Localized scleroderma (LoS) is a chronic autoimmune condition marked by cutaneous fibrosis and persistent inflammation. Modulating the activation of inflammatory cells and fibroblasts remains a central strategy in LoS treatment. We investigate the anti-fibrotic effects of Annexin A5 (AnxA5), identified as [...] Read more.
Background: Localized scleroderma (LoS) is a chronic autoimmune condition marked by cutaneous fibrosis and persistent inflammation. Modulating the activation of inflammatory cells and fibroblasts remains a central strategy in LoS treatment. We investigate the anti-fibrotic effects of Annexin A5 (AnxA5), identified as a key inflammatory component in fat extract, and assess its therapeutic efficacy. Methods: In vitro experiments were performed using TGF-β-stimulated primary human dermal fibroblasts treated with recombinant AnxA5. The anti-fibrotic effects and underlying mechanisms were assessed using CCK-8 assays, quantitative real-time PCR, Western blotting, and immunocytochemistry. In vivo, AnxA5 was administered via both preventative and therapeutic protocols in bleomycin-induced LoS mouse models. Treatment outcomes were evaluated by histological staining, collagen quantification, immunostaining, and measurement of pro-inflammatory cytokines. Results: TGF-β stimulation induced myofibroblast differentiation and extracellular matrix (ECM) production in dermal fibroblasts, both of which were significantly attenuated by AnxA5 treatment through the inhibition of phosphorylation of Smad2. In vivo, both preventative and therapeutic administration of AnxA5 effectively reduced dermal thickness, collagen deposition, ECM accumulation, M1 macrophage infiltration, and levels of pro-inflammatory cytokines. Conclusions: Through both preventative and therapeutic administration, AnxA5 ameliorates LoS by exerting dual anti-fibrotic and anti-inflammatory effects, underscoring its potential for treating fibrotic diseases. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

19 pages, 4058 KiB  
Article
Antitumor Activity of Ruditapes philippinarum Polysaccharides Through Mitochondrial Apoptosis in Cellular and Zebrafish Models
by Mengyue Liu, Weixia Wang, Haoran Wang, Shuang Zhao, Dongli Yin, Haijun Zhang, Chunze Zou, Shengcan Zou, Jia Yu and Yuxi Wei
Mar. Drugs 2025, 23(8), 304; https://doi.org/10.3390/md23080304 - 29 Jul 2025
Viewed by 123
Abstract
Colorectal cancer (CRC) remains a predominant cause of global cancer-related mortality, highlighting the pressing demand for innovative therapeutic strategies. Natural polysaccharides have emerged as promising candidates in cancer research due to their multifaceted anticancer mechanisms and tumor-suppressive potential across diverse malignancies. In this [...] Read more.
Colorectal cancer (CRC) remains a predominant cause of global cancer-related mortality, highlighting the pressing demand for innovative therapeutic strategies. Natural polysaccharides have emerged as promising candidates in cancer research due to their multifaceted anticancer mechanisms and tumor-suppressive potential across diverse malignancies. In this study, we enzymatically extracted a polysaccharide, named ERPP, from Ruditapes philippinarum and comprehensively evaluated its anti-colorectal cancer activity. We conducted in vitro assays, including CCK-8 proliferation, clonogenic survival, scratch wound healing, and Annexin V-FITC/PI apoptosis staining, and the results demonstrated that ERPP significantly inhibited HT-29 cell proliferation, suppressed colony formation, impaired migratory capacity, and induced apoptosis. JC-1 fluorescence assays provided further evidence of mitochondrial membrane potential (MMP) depolarization, as manifested by a substantial reduction in the red/green fluorescence ratio (from 10.87 to 0.35). These antitumor effects were further validated in vivo using a zebrafish HT-29 xenograft model. Furthermore, ERPP treatment significantly attenuated tumor angiogenesis and downregulated the expression of the vascular endothelial growth factor A (Vegfaa) gene in the zebrafish xenograft model. Mechanistic investigations revealed that ERPP primarily activated the mitochondrial apoptosis pathway. RT-qPCR analysis showed an upregulation of the pro-apoptotic gene Bax and a downregulation of the anti-apoptotic gene Bcl-2, leading to cytochrome c (CYCS) release and caspase-3 (CASP-3) activation. Additionally, ERPP exhibited potent antioxidant capacity, achieving an 80.2% hydroxyl radical scavenging rate at 4 mg/mL. ERPP also decreased reactive oxygen species (ROS) levels within the tumor cells, thereby augmenting anticancer efficacy through its antioxidant activity. Collectively, these findings provide mechanistic insights into the properties of ERPP, underscoring its potential as a functional food component or adjuvant therapy for colorectal cancer management. Full article
Show Figures

Figure 1

16 pages, 3978 KiB  
Article
Cepharanthine Promotes Ca2+-Independent Premature Red Blood Cell Death Through Metabolic Insufficiency and p38 MAPK/CK1α/COX/MLKL/PKC/iNOS Signaling
by Shaymah H. Alruwaili, Jawaher Alsughayyir and Mohammad A. Alfhili
Int. J. Mol. Sci. 2025, 26(15), 7250; https://doi.org/10.3390/ijms26157250 - 27 Jul 2025
Viewed by 255
Abstract
Nonspecific toxicity to normal and malignant cells restricts the clinical utility of many anticancer drugs. In particular, anemia in cancer patients develops due to drug-induced toxicity to red blood cells (RBCs). The anticancer alkaloid, cepharanthine (CEP), elicits distinct forms of cell death including [...] Read more.
Nonspecific toxicity to normal and malignant cells restricts the clinical utility of many anticancer drugs. In particular, anemia in cancer patients develops due to drug-induced toxicity to red blood cells (RBCs). The anticancer alkaloid, cepharanthine (CEP), elicits distinct forms of cell death including apoptosis and autophagy, but its cytotoxicity to RBCs has not been investigated. Colorimetric and fluorometric techniques were used to assess eryptosis and hemolysis in control and CEP-treated RBCs. Cells were labeled with Fluo4/AM and annexin-V-FITC to measure Ca2+ and phosphatidylserine (PS) exposure, respectively. Forward scatter (FSC) was detected to estimate cell size, and extracellular hemoglobin along with lactate dehydrogenase and aspartate transaminase activities were assayed to quantify hemolysis. Physiological manipulation of the extracellular milieu and various signaling inhibitors were tested to dissect the underlying mechanisms of CEP-induced RBC death. CEP increased PS exposure and hemolysis indices and decreased FSC in a concentration-dependent manner with prominent membrane blebbing. Although no Ca2+ elevation was detected, chelation of intracellular Ca2+ by BAPTA-AM reduced hemolysis. Whereas SB203580, D4476, acetylsalicylic acid, necrosulfonamide, and melatonin inhibited both PS exposure and hemolysis, staurosporin, L-NAME, ascorbate, caffeine, adenine, and guanosine only prevented hemolysis. Interestingly, sucrose had a unique dual effect by exacerbating PS exposure and reversing hemolysis. Of note, blocking KCl efflux augmented PS exposure while aggravating hemolysis only under Ca2+-depleted conditions. CEP activates Ca2+-independent pathways to promote eryptosis and hemolysis. The complex cytotoxic profile of CEP can be mitigated by targeting the identified modulatory pathways to potentiate its anticancer efficacy. Full article
(This article belongs to the Special Issue Blood Cells in Human Health and Disease)
Show Figures

Figure 1

13 pages, 1394 KiB  
Article
Cucurbitacin E Suppresses Adipogenesis and Lipid Accumulation in 3T3-L1 Adipocytes Without Cytotoxicity
by Tien-Chou Soong, Kuan-Ting Lee, Yi-Chiang Hsu and Tai-Hsin Tsai
Biomedicines 2025, 13(8), 1826; https://doi.org/10.3390/biomedicines13081826 - 25 Jul 2025
Viewed by 258
Abstract
Background: Cucurbitacin E (CuE), a natural tetracyclic triterpenoid compound extracted from the melon stems of Cucurbitaceae plants, has been reported to exhibit anti-inflammatory and anti-cancer properties, along with the ability to enhance cellular immunity. However, its role and molecular mechanism in regulating [...] Read more.
Background: Cucurbitacin E (CuE), a natural tetracyclic triterpenoid compound extracted from the melon stems of Cucurbitaceae plants, has been reported to exhibit anti-inflammatory and anti-cancer properties, along with the ability to enhance cellular immunity. However, its role and molecular mechanism in regulating lipid metabolism and adipogenesis remain unclear. This study aims to investigate the potential anti-adipogenic and anti-obesity effects of CuE in 3T3-L1 adipocytes. Materials and Methods: 3T3-L1 preadipocytes were cultured and induced to differentiate using a standard adipogenic cocktail containing dexamethasone, 3-isobutyl-1-methylxanthine (IBMX), and insulin (DMI). CuE was administered during the differentiation process at various concentrations. Lipid accumulation was assessed using Oil Red O staining, and cell viability was evaluated via the MTT assay. To determine whether CuE induced apoptosis or necrosis, flow cytometry was performed using annexin V/PI staining. Additional molecular analyses, such as Western blotting and RT-PCR, were used to examine the expression of key adipogenic markers. Results: Treatment with CuE significantly reduced lipid droplet formation in DMI-induced 3T3-L1 adipocytes in a dose-dependent manner, as shown by decreased Oil Red O staining. Importantly, CuE did not induce apoptosis or necrosis in 3T3-L1 cells at effective concentrations, indicating its safety toward normal adipocytes. Moreover, CuE treatment downregulated the expression of adipogenic markers such as PPARγ and C/EBPα at both mRNA and protein levels. Discussion: Our findings suggest that CuE exerts a non-cytotoxic inhibitory effect on adipocyte differentiation and lipid accumulation. This anti-adipogenic effect is likely mediated through the suppression of key transcription factors involved in adipogenesis. The absence of cytotoxicity supports the potential application of CuE as a safe bioactive compound for obesity management. Further investigation is warranted to elucidate the upstream signaling pathways and in vivo efficacy of CuE. Conclusions: Cucurbitacin E effectively inhibits adipogenesis in 3T3-L1 adipocytes without inducing cytotoxic effects, making it a promising candidate for the development of functional foods or therapeutic agents aimed at preventing or treating obesity. This study provides new insights into the molecular basis of CuE’s anti-obesity action and highlights its potential as a natural lipogenesis inhibitor. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

19 pages, 2974 KiB  
Article
PI3K/Akt1 Pathway Suppression by Quercetin–Doxorubicin Combination in Osteosarcoma Cell Line (MG-63 Cells)
by Mehmet Uğur Karabat and Mehmet Cudi Tuncer
Medicina 2025, 61(8), 1347; https://doi.org/10.3390/medicina61081347 - 25 Jul 2025
Viewed by 172
Abstract
Background and Objectives: This study aimed to investigate the anticancer effects and potential synergistic interactions of quercetin (Q) and doxorubicin (Dox) on the MG-63 osteosarcoma (OS) cell line. Specifically, the effects of these agents on cell viability, apoptosis, reactive oxygen species (ROS) [...] Read more.
Background and Objectives: This study aimed to investigate the anticancer effects and potential synergistic interactions of quercetin (Q) and doxorubicin (Dox) on the MG-63 osteosarcoma (OS) cell line. Specifically, the effects of these agents on cell viability, apoptosis, reactive oxygen species (ROS) generation, antioxidant defense, and the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt1) signaling pathway were evaluated. Material and Methods: MG-63 cells were cultured and treated with varying concentrations of Q and Dox, both individually and in combination (fixed 5:1 molar ratio), for 48 h. Cell viability was assessed using an MTT assay, and IC50 values were calculated. Synergistic effects were analyzed using the Chou–Talalay combination index (CI). Apoptosis was evaluated via Annexin V-FITC/PI staining and caspase-3/7 activity. ROS levels were quantified using DCFH-DA probe, and antioxidant enzymes (SOD, GPx) were measured spectrophotometrically. Gene expression (Runx2, PI3K, Akt1, caspase-3) was analyzed by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Results: Q and Dox reduced cell viability in a dose-dependent manner, with IC50 values of 70.3 µM and 1.14 µM, respectively. The combination treatment exhibited synergistic cytotoxicity (CI < 1), especially in the Q50 + Dox5 group (CI = 0.23). Apoptosis was significantly enhanced in the combination group, evidenced by increased Annexin V positivity and caspase-3 activation. ROS levels were markedly elevated, while antioxidant enzyme activities declined. RT-qPCR revealed upregulation of caspase-3 and downregulation of Runx2, PI3K, and Akt1 mRNA levels. Conclusions: The combination of Q and Dox exerts synergistic anticancer effects in MG-63 OS cells by inducing apoptosis, elevating oxidative stress, suppressing antioxidant defense, and inhibiting the PI3K/Akt1 signaling pathway and Runx2 expression. These findings support the potential utility of Q as an adjuvant to enhance Dox efficacy in OS treatment. Full article
Show Figures

Figure 1

20 pages, 1092 KiB  
Article
Design and Synthesis of Boronic Chalcones with Dual Anticancer and Anti-Inflammatory Activity
by Juliana Romano Lopes, Freddy Humberto Marin-Dett, Rita Alexandra Machado Silva, Rafael Consolin Chelucci, Lucília Saraiva, Maria Emília Sousa, Leonardo Luiz Gomes Ferreira, Adriano Defini Andricopulo, Paula Aboud Barbugli and Jean Leandro Dos Santos
Molecules 2025, 30(14), 3032; https://doi.org/10.3390/molecules30143032 - 19 Jul 2025
Viewed by 380
Abstract
Head and neck cancer (HNC) is a highly aggressive malignancy with limited treatment options and poor prognosis. Inflammation plays a critical role in HNC progression, with elevated levels of pro-inflammatory cytokines such as TNF, IL-6, IL-8, and IL-1β contributing to tumor development. In [...] Read more.
Head and neck cancer (HNC) is a highly aggressive malignancy with limited treatment options and poor prognosis. Inflammation plays a critical role in HNC progression, with elevated levels of pro-inflammatory cytokines such as TNF, IL-6, IL-8, and IL-1β contributing to tumor development. In this study, a novel series of boronic chalcones was designed and synthesized as potential dual-action anticancer and anti-inflammatory agents. The most potent compounds were evaluated for their cytotoxicity against Squamous Cell Carcinoma (SCC-25), and their selectivity index (SI) was determined. Compound 5 emerged as the most promising, displaying cytotoxicity against cancer cells, with IC50 values of 17.9 µM and a favorable SI (>3). Mechanistic studies revealed that its anticancer activity was independent of p53 status, and annexin V/PI staining indicated cell death via necrosis. Interestingly, compound 5 also significantly reduced pro-inflammatory cytokine levels, as TNF and IL-6. Furthermore, drug metabolism and pharmacokinetics (DMPK) studies demonstrated that compound 5 exhibited moderate solubility and high permeability. These findings underscore the crucial role of the boronic acid moiety in enhancing both anticancer and anti-inflammatory properties. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Organic Chemistry)
Show Figures

Graphical abstract

27 pages, 7413 KiB  
Article
The Effect of the Ethanolic Extracts from Syzygium aromaticum and Syzygium nervosum on Antiproliferative Activity and Apoptosis in HCT116 and HT-29 Cells
by Thunyatorn Yimsoo, Weerakit Taychaworaditsakul, Sunee Chansakaow, Sumet Kongkiatpaiboon, Ngampuk Tayana, Teera Chewonarin, Parirat Khonsung and Seewaboon Sireeratawong
Int. J. Mol. Sci. 2025, 26(14), 6826; https://doi.org/10.3390/ijms26146826 - 16 Jul 2025
Viewed by 220
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer worldwide, and p53 dysfunction plays a significant role in its pathogenesis by impairing cell cycle control and apoptosis. This study aimed to elucidate the phytochemical composition and anticancer potential of extract of residue from [...] Read more.
Colorectal cancer (CRC) is the third most diagnosed cancer worldwide, and p53 dysfunction plays a significant role in its pathogenesis by impairing cell cycle control and apoptosis. This study aimed to elucidate the phytochemical composition and anticancer potential of extract of residue from clove hydrodistillation (Syzygium aromaticum, SA) and seed extract from Syzygium nervosum (SN). LC-DAD-MS/MS analysis identified gallic acid (2.68%) and ellagic acid (6.70%) as major constituents in SA, while SN contained gallic acid (0.26%), ellagic acid (3.06%), and 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone (DMC) as major constituents. Both extracts exhibited potent antioxidant effects as evidenced by DPPH and ABTS assays. In vitro assays showed that SA and SN significantly inhibited the proliferation of HCT116 (p53 wild-type) colorectal cancer cells, with minimal effects on HT-29 (p53 mutant) cells. Apoptosis was confirmed in HCT116 via Annexin V-FITC/PI staining and increased caspase-3/7 activity. Cell cycle analysis revealed sub-G1 accumulation, accompanied by upregulated p21 and concurrently downregulated cyclin D1 expression, both hallmarks of p53-mediated checkpoint activation. These molecular effects were not observed in HT-29 cells. In conclusion, SA and SN extracts selectively induce apoptosis and cell cycle arrest in p53-functional CRC cells, likely mediated by their phenolic constituents. These findings support their potential as promising plant-derived therapeutic agents for targeted colorectal cancer treatment. Full article
(This article belongs to the Special Issue Molecular Research and Potential Effects of Medicinal Plants)
Show Figures

Figure 1

18 pages, 3297 KiB  
Article
Evaluation of Apoptosis and Cytotoxicity Induction Using a Recombinant Newcastle Disease Virus Expressing Human IFN-γ in Human Prostate Cancer Cells In Vitro
by Aldo Rojas-Neyra, Katherine Calderón, Brigith Carbajal-Lévano, Gloria Guerrero-Fonseca, Gisela Isasi-Rivas, Ana Chumbe, Ray W. Izquierdo-Lara, Astrid Poma-Acevedo, Freddy Ygnacio, Dora Rios-Matos, Manolo Fernández-Sánchez and Manolo Fernández-Díaz
Biomedicines 2025, 13(7), 1710; https://doi.org/10.3390/biomedicines13071710 - 14 Jul 2025
Viewed by 1627
Abstract
Background/Objectives: Prostate cancer is the second most common type of cancer diagnosed in men. Various treatments for this cancer, such as radiation therapy, surgery, and systemic therapy, can cause side effects in patients; therefore, there is a need to develop new treatment [...] Read more.
Background/Objectives: Prostate cancer is the second most common type of cancer diagnosed in men. Various treatments for this cancer, such as radiation therapy, surgery, and systemic therapy, can cause side effects in patients; therefore, there is a need to develop new treatment alternatives. One promising approach is virotherapy, which involves using oncolytic viruses (OVs), such as the recombinant Newcastle disease virus (rNDV). Methods: We used the lentogenic rNDV rLS1 strain (the control virus) as our backbone to develop two highly fusogenic rNDVs: rFLCF5nt (the parental virus) and rFLCF5nt-IFN-γ (rFLCF5nt expressing human interferon-gamma (IFN-γ)). We evaluated their oncolytic properties in a prostate cancer cell line (DU145). Results: The results showed the expression and stability of the IFN-γ protein, as confirmed using Western blotting after ten passages in specific pathogen-free chicken embryo eggs using the IFN-γ-expressing virus. Additionally, we detected a significantly high oncolytic activity in DU145 cells infected with the parental virus or the IFN-γ-expressing virus using MTS (a cell viability assay) and Annexin V-PE assays compared with the control virus (p < 0.0001 for both). Conclusions: In conclusion, our data show that IFN-γ-expressing virus can decrease cell viability and induce apoptosis in human prostate cancer in vitro. Full article
(This article belongs to the Special Issue Oncolytic Viruses and Combinatorial Immunotherapy for Cancer)
Show Figures

Figure 1

15 pages, 1423 KiB  
Review
Sperm Membrane Stability: In-Depth Analysis from Structural Basis to Functional Regulation
by Shan-Hui Xue, Bing-Bing Xu, Xiao-Chun Yan, Jia-Xin Zhang and Rui Su
Vet. Sci. 2025, 12(7), 658; https://doi.org/10.3390/vetsci12070658 - 11 Jul 2025
Viewed by 310
Abstract
Sperm membrane stability is a key factor in determining sperm viability and fertilization capability, with broad implications ranging from basic reproductive biology to livestock breeding practices. This comprehensive review examines the structural and functional mechanisms underlying sperm membrane integrity, including defensive barrier functions, [...] Read more.
Sperm membrane stability is a key factor in determining sperm viability and fertilization capability, with broad implications ranging from basic reproductive biology to livestock breeding practices. This comprehensive review examines the structural and functional mechanisms underlying sperm membrane integrity, including defensive barrier functions, potentiometric ion channel regulation, and motility modulation that collectively optimize sperm survival, motility, and fertilization potential. Environmental factors such as temperature fluctuations, abnormal pH levels (outside the optimal 7.2–8.2 range), pathological conditions, and hormonal imbalances can compromise membrane stability by inducing oxidative stress and protein denaturation. Key regulatory proteins, notably NPC2 for cholesterol homeostasis, Flotillin proteins for lipid raft organization, and Annexin V for membrane repair mechanisms, demonstrate essential roles in maintaining structural integrity. In livestock reproduction, membrane stability research facilitates the optimization of cryoprotectant formulations and freezing protocols, resulting in 15–25% improvements in post-thaw sperm survival rates and enhanced artificial insemination success. These findings provide valuable insights for advancing assisted reproductive technologies and improving reproductive efficiency in animal husbandry. Full article
Show Figures

Figure 1

14 pages, 1245 KiB  
Review
Annexin–Membrane Interactions Across Eukaryotic Domains of Life—A Comparative Approach
by Dawid Warmus, Erina Alexandra Balmer and Carmen Faso
Int. J. Mol. Sci. 2025, 26(13), 6517; https://doi.org/10.3390/ijms26136517 - 7 Jul 2025
Viewed by 390
Abstract
This review explores the interaction of annexins with membranes across a variety of eukaryotic domains of life, highlighting this protein family’s role in cellular processes due to its lipid and calcium-binding properties. By comparing annexins’ functions in diverse organisms, we aim to uncover [...] Read more.
This review explores the interaction of annexins with membranes across a variety of eukaryotic domains of life, highlighting this protein family’s role in cellular processes due to its lipid and calcium-binding properties. By comparing annexins’ functions in diverse organisms, we aim to uncover novel insights into their mechanisms of action, particularly in membrane repair, protein trafficking, and potential channel formation. Despite extensive research on mammalian and plant annexins, there is limited information on annexins in invertebrates, fungi, and protists. This review seeks to bridge this knowledge gap, providing a comprehensive understanding of annexin–membrane interactions and their potential implications for cellular function and disease mechanisms across eukaryotic lineages. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 6224 KiB  
Article
Proteoform Patterns in Hepatocellular Carcinoma Tissues: Aspects of Oncomarkers
by Elena Zorina, Natalia Ronzhina, Olga Legina, Nikolai Klopov, Victor Zgoda and Stanislav Naryzhny
Proteomes 2025, 13(3), 27; https://doi.org/10.3390/proteomes13030027 - 1 Jul 2025
Viewed by 421
Abstract
Background: Human proteins exist in numerous modifications—proteoforms—which are promising targets for biomarker studies. In this study, we aimed to generate comparative proteomics data, including proteoform patterns, from hepatocellular carcinoma (HCC) and nonmalignant liver tissues. Methods: To investigate protein profiles and proteoform patterns, we [...] Read more.
Background: Human proteins exist in numerous modifications—proteoforms—which are promising targets for biomarker studies. In this study, we aimed to generate comparative proteomics data, including proteoform patterns, from hepatocellular carcinoma (HCC) and nonmalignant liver tissues. Methods: To investigate protein profiles and proteoform patterns, we employed a panoramic, integrative top-down proteomics approach: two-dimensional gel electrophoresis (2DE) coupled with liquid chromatography–electrospray ionization–tandem mass spectrometry (LC-ESI-MS/MS). Results: We visualized over 2500 proteoform patterns per sample type, enabling the identification of distinct protein signatures and common patterns differentiating nonmalignant and malignant liver cells. Among these, 1270 protein patterns were uniformly observed across all samples. Additionally, 38 proteins—including pyruvate kinase PKM (KPYM), annexin A2 (ANXA2), and others—exhibited pronounced differences in proteoform patterns between nonmalignant and malignant tissues. Conclusions: Most proteoform patterns of the same protein were highly similar, with the dominant peak corresponding to theoretical (unmodified) protein parameters. However, certain proteins displayed altered proteoform patterns and additional proteoforms in cancer compared to controls. These proteins were prioritized for further characterization. Full article
Show Figures

Figure 1

15 pages, 3122 KiB  
Article
Ac2–26 Hydrogel Modulates IL-1β-Driven Inflammation via Mast Cell-Associated and Immune Regulatory Pathways in Diabetic Wounds
by Monielle Sant’Ana, Rafael André da Silva, Luiz Philipe S. Ferreira, Cristiane D. Gil, Fernando L. Primo, Ana Paula Girol, Karin V. Greco and Sonia M. Oliani
Cells 2025, 14(13), 999; https://doi.org/10.3390/cells14130999 - 30 Jun 2025
Viewed by 505
Abstract
Chronic, non-resolving inflammation is a major contributor to impaired wound healing in diabetes. Annexin A1 (AnxA1), a pro-resolving mediator, and its mimetic peptide Ac2–26 have demonstrated therapeutic potential in modulating inflammatory responses. In this study, we evaluated the effects of topical Ac [...] Read more.
Chronic, non-resolving inflammation is a major contributor to impaired wound healing in diabetes. Annexin A1 (AnxA1), a pro-resolving mediator, and its mimetic peptide Ac2–26 have demonstrated therapeutic potential in modulating inflammatory responses. In this study, we evaluated the effects of topical Ac2–26 hydrogel in a streptozotocin-induced diabetic wound model. Treatment significantly accelerated wound closure, improved tissue architecture, and reduced leukocyte infiltration. Immunohistochemical analysis revealed diminished mast cell accumulation and IL-1β expression in treated wounds. Complementary transcriptomic profiling supported the downregulation of pro-inflammatory genes, including Il1b and mast cell-related mediators, confirming the peptide’s regulatory effect on the wound immune landscape. Mounting evidence suggests that dysregulated mast cell activity plays a role in the heightened inflammatory tone and delayed tissue repair observed in diabetic wounds. In our model, Ac2–26 hydrogel treatment attenuated IL-1β expression, suggesting an indirect downregulation of NLRP3 inflammasome activation, potentially mediated through mast cell modulation, though effects on other cell types within the wound microenvironment cannot be excluded. While definitive causality cannot be assigned, the integration of histological and transcriptomic data highlights mast cells as contributors to the IL-1β-driven inflammatory burden in diabetic wounds. These findings underscore the immunomodulatory capacity of Ac2–26 and its potential to restore resolution pathways in chronic wound settings, positioning it as a promising candidate for future therapeutic development. Full article
Show Figures

Figure 1

26 pages, 8585 KiB  
Article
The Invertebrate-Derived Antimicrobial Peptide Cm-p5 Induces Cell Death and ROS Production in Melanoma Cells
by Ernesto M. Martell-Huguet, Daniel Alpízar-Pedraza, Armando Rodriguez, Marc Zumwinkel, Mark Grieshober, Fidel Morales-Vicente, Ann-Kathrin Kissmann, Markus Krämer, Steffen Stenger, Octavio L. Franco, Ludger Ständker, Anselmo J. Otero-Gonzalez and Frank Rosenau
Mar. Drugs 2025, 23(7), 273; https://doi.org/10.3390/md23070273 - 29 Jun 2025
Viewed by 797
Abstract
Nowadays, healthcare systems face two global challenges: the rise of multidrug-resistant pathogens and the growing incidence of cancer. Due to their broad spectrum of activities, antimicrobial peptides emerged as potential alternatives against both threats. Our group previously described the antifungal activity of the [...] Read more.
Nowadays, healthcare systems face two global challenges: the rise of multidrug-resistant pathogens and the growing incidence of cancer. Due to their broad spectrum of activities, antimicrobial peptides emerged as potential alternatives against both threats. Our group previously described the antifungal activity of the α-helical peptide Cm-p5, a derivative of the natural peptide Cm-p1, isolated from the coastal mollusk Cenchritis muricatus; however, its anti-cancer properties remained unexplored. Analyses through calorimetry and molecular dynamics simulations suggest the relevance of phosphatidylserine for the attachment of Cm-p5 to cancer cell membranes. Cm-p5 exhibited cytotoxic activity in a dose-dependent manner against A375 melanoma cells, without toxicity against non-malignant cells or hemolytic activity. DAPI/PI and DiSC3(5) staining confirmed permeabilization, disruption, and depolarization of A375 cytoplasmic membranes by Cm-p5. Furthermore, Annexin V-FITC/PI assay revealed the induction of cellular death in melanoma cells, which can result from the cumulative membrane damage and oxidative stress due to the overproduction of reactive oxygen species (ROS). Moreover, after the treatment, the proliferation of A375 cells was dampened for several days, suggesting that Cm-p5 might inhibit the recurrence of melanomas. These findings highlight the multifunctional nature of Cm-p5 and its potential for treating malignant melanoma. Full article
(This article belongs to the Special Issue Marine Natural Products as Anticancer Agents, 4th Edition)
Show Figures

Figure 1

Back to TopTop