Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (409)

Search Parameters:
Keywords = Alternaria alternata

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 22173 KiB  
Article
Nature Nano-Barrier: HPMC/MD-Based Lactobacillus plantarum Pickering Emulsion to Extend Cherry Tomato Shelf Life
by Youwei Yu, Tian Li, Shengwang Li, Silong Jia, Xinyu Yang, Yaxuan Cui, Hui Ma, Shuaishuai Yan and Shaoying Zhang
Foods 2025, 14(15), 2729; https://doi.org/10.3390/foods14152729 - 5 Aug 2025
Abstract
To improve the postharvest preservation of cherry tomatoes and combat pathogenic, both bacterial and fungal contamination (particularly Alternaria alternata), a novel biodegradable coating was developed based on a water-in-water (W/W) Pickering emulsion system. The emulsion was stabilized by L. plantarum (Lactobacillus [...] Read more.
To improve the postharvest preservation of cherry tomatoes and combat pathogenic, both bacterial and fungal contamination (particularly Alternaria alternata), a novel biodegradable coating was developed based on a water-in-water (W/W) Pickering emulsion system. The emulsion was stabilized by L. plantarum (Lactobacillus plantarum), with maltodextrin (MD) as the dispersed phase and hydroxypropyl methylcellulose (HPMC) as the continuous phase. Characterization of emulsions at varying concentrations revealed that the optimized W/W-PL^8 film exhibited superior stability, smooth morphology, and low water vapor permeability (WVP = 220.437 g/(m2·24 h)), making it a promising candidate for fruit and vegetable preservation. Furthermore, the coating demonstrated strong antioxidant activity, with scavenging rates of 58.99% (ABTS) and 94.23% (DPPH), along with potent antimicrobial effects, showing inhibition rates of 12.8% against Escherichia coli and 23.7% against Staphylococcus aureus. Applied to cherry tomatoes, the W/W-PL^8 coating significantly reduced respiration rates, minimized decay incidence, and maintained nutritional quality during storage. Remarkably, the coating successfully controlled Alternaria alternata contamination, enhancing the storage duration of cherry tomatoes. These findings highlight the potential of W/W-PL^8 as an eco-friendly and functional packaging material for fresh produce preservation. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

16 pages, 4172 KiB  
Article
Vapor Phase Application of Thymus vulgaris Essential Oil to Control the Biodeteriogenic Fungus Alternaria alternata
by Francesca Bosco, Chiara Mollea and Davide Fissore
Appl. Sci. 2025, 15(15), 8420; https://doi.org/10.3390/app15158420 - 29 Jul 2025
Viewed by 254
Abstract
In the present work, the antimicrobial efficacy of Thymus vulgaris essential oil (EO) was investigated on Alternaria alternata strain BNR; a paper biodeteriogen was used as a model for a contaminated library. The influence of EO volume and diffusion modality, treatment duration, and [...] Read more.
In the present work, the antimicrobial efficacy of Thymus vulgaris essential oil (EO) was investigated on Alternaria alternata strain BNR; a paper biodeteriogen was used as a model for a contaminated library. The influence of EO volume and diffusion modality, treatment duration, and inoculum age was evaluated in the vapor phase. In Petri dish screening, the influence of different EO volumes (5, 7.5, and 10 μL) on the microbial growth lag phase was investigated, and the growth inhibition period was established. The most effective treatment (10 μL EO) was then scaled up in a glass airtight container of 2650 cm3; a cold diffusion method was applied in order to quickly reach the maximum concentration of active compounds in the vapor phase. These tests demonstrated that EO efficacy is affected by the inoculum age and the contact time, and that the treatment should be performed as early as is feasible. A mycostatic effect was confirmed to be proportional to the utilized EO volume and independent from the treatment method. The information obtained in the present work will be applied to the set-up of an EO treatment in a library characterized by different levels of air contamination. Full article
(This article belongs to the Special Issue Biosynthesis and Applications of Natural Products)
Show Figures

Figure 1

20 pages, 4774 KiB  
Article
Study on Pathogen Identification and Biocontrol Fungi Screening of Oat Sheath Rot
by Yichao Shi, Guiqin Zhao, Liang Zeng and Jikuan Chai
Agronomy 2025, 15(8), 1776; https://doi.org/10.3390/agronomy15081776 - 24 Jul 2025
Viewed by 302
Abstract
Oat sheath rot disease significantly reduces commercial oat yields, yet research on its incidence, causative pathogens, and control strategies remains limited, particularly in China. This study investigated the occurrence of oat sheath rot in major oat-producing regions of Northern China. Here, we isolated [...] Read more.
Oat sheath rot disease significantly reduces commercial oat yields, yet research on its incidence, causative pathogens, and control strategies remains limited, particularly in China. This study investigated the occurrence of oat sheath rot in major oat-producing regions of Northern China. Here, we isolated and identified two species of primary pathogenic fungi, Scopulariopsis brevicaulis and Alternaria alternata. Next, we conducted pathogenicity tests to confirm their role in the progression of oat sheath rot disease. Subsequently, we screened putative biocontrol fungi and identified Trichoderma harzianum and Trichoderma koningii as effective antagonistic biocontrol fungi. Both species demonstrated strong inhibitory effects against two primary pathogens through competitive interactions, with T. koningii achieving 100% inhibition in one test. Overall, T. harzianum and T. koningii both exerted strong inhibitory effects against pathogenic fungi via different forms of competition. Most importantly, infection experiments showed that T. harzianum and T. koningii both exerted strong antifungal effects against the pathogenic fungi that cause oat sheath rot. Taken together, our findings provide a foundation for developing biological control strategies to mitigate oat sheath rot in oat cultivation in China. Full article
Show Figures

Figure 1

14 pages, 696 KiB  
Article
Modeling Temperature Requirements for Growth and Toxin Production of Alternaria spp. Associated with Tomato
by Irene Salotti, Paola Giorni, Chiara Dall’Asta and Paola Battilani
Toxins 2025, 17(8), 361; https://doi.org/10.3390/toxins17080361 - 23 Jul 2025
Viewed by 238
Abstract
Concerns about mycotoxin contamination by Alternaria spp. in tomato-based products emphasize the need for understanding the effect of the environment on their production. In the current study, we focused on three species frequently associated with tomato (A. alternata, A. solani, [...] Read more.
Concerns about mycotoxin contamination by Alternaria spp. in tomato-based products emphasize the need for understanding the effect of the environment on their production. In the current study, we focused on three species frequently associated with tomato (A. alternata, A. solani, and A. tenuissima) by evaluating the effects of different temperatures (5 to 40 °C) and substrata (PDA and V8) on mycelial growth and the production of mycotoxins (alternariol, alternariol monomethyl ether, and tenuazonic acid). Both biological processes were supported between 5 and 35 °C, with optimal temperatures between 20 and 30 °C, depending on the species. Temperature and its interaction with species significantly (p < 0.05) affected both processes. However, the species factor alone was not significant (p > 0.05), indicating that environmental conditions affect Alternaria spp. growth and mycotoxin production more than the species itself does. Mathematical equations were developed to describe the effect of temperature on mycelial growth, as well as on the production of AOH, AME, and TeA, for each Alternaria species. High concordance (CCC ≥ 0.807) between observed and predicted data and low levels of residual error (RMSE ≤ 0.147) indicated the high goodness of fit of the developed equations, which may be used for the development of models to predict Alternaria contamination both in field and during post-harvest storage. Full article
(This article belongs to the Special Issue Mycotoxins in Food Safety: Challenges and Biocontrol Strategies)
Show Figures

Figure 1

16 pages, 2530 KiB  
Article
Development of Procymidone and Difenoconazole Resistance in Alternaria alternata, the Causal Agent of Kiwifruit Brown Spot Disease
by Yahui Liu, Manfei Bao, Yanxin Wang and Chuanqing Zhang
Plants 2025, 14(14), 2245; https://doi.org/10.3390/plants14142245 - 21 Jul 2025
Viewed by 279
Abstract
Brown spot, caused by Alternaria alternata, is the most important leaf fungal disease threatening kiwifruit production in China, and it is typically controlled through the application of fungicides, such as procymidone and difenoconazole. To date, fungicide resistance development has not yet been [...] Read more.
Brown spot, caused by Alternaria alternata, is the most important leaf fungal disease threatening kiwifruit production in China, and it is typically controlled through the application of fungicides, such as procymidone and difenoconazole. To date, fungicide resistance development has not yet been systematically reported for the pathogen of kiwifruit. A total of 135 single-conidium A. alternata isolates were collected from different cities in Zhejiang Province, China. Alternaria alternata developed prevailing resistance to procymidone and initial resistance to difenoconazole, with resistance frequencies of 60.7 and 13.3%, respectively. Positive cross-resistance was observed between procymidone and iprodione but not between procymidone and difenoconazole, tebuconazole, prochloraz, pydiflumetofen, pyraclostrobin, or thiophanate-methyl. Moreover, no cross-resistance was observed between difenoconazole and all other tested fungicides, including the two other demethylation inhibitors, tebuconazole and prochloraz. A fitness penalty was not detected in procymidone-resistant (ProR) or difenoconazole-resistant (DifR) isolates. However, double-resistant (ProR DifR) isolates had a fitness penalty, showing significantly decreased sporulation, germination, and pathogenicity. The P894L single point mutation, caused by the change from CCA to CTA at the 894th codon of Os1, was detected in ProR isolates. Molecular dynamic simulation showed that the P894L mutation significantly decreased the inhibitory activity of procymidone against AaOs1 in A. alternata. These results provide insight into the development and characteristics of fungicide resistance, offering guidance for the study and management of kiwifruit diseases. Full article
Show Figures

Figure 1

22 pages, 3025 KiB  
Article
A Novel Hybrid Technique for Detecting and Classifying Hyperspectral Images of Tomato Fungal Diseases Based on Deep Feature Extraction and Manhattan Distance
by Guifu Ma, Seyed Mohamad Javidan, Yiannis Ampatzidis and Zhao Zhang
Sensors 2025, 25(14), 4285; https://doi.org/10.3390/s25144285 - 9 Jul 2025
Viewed by 334
Abstract
Accurate and early detection of plant diseases is essential for effective management and the advancement of sustainable smart agriculture. However, building large annotated datasets for disease classification is often costly and time-consuming, requiring expert input. To address this challenge, this study explores the [...] Read more.
Accurate and early detection of plant diseases is essential for effective management and the advancement of sustainable smart agriculture. However, building large annotated datasets for disease classification is often costly and time-consuming, requiring expert input. To address this challenge, this study explores the integration of few-shot learning with hyperspectral imaging to detect four major fungal diseases in tomato plants: Alternaria alternata, Alternaria solani, Botrytis cinerea, and Fusarium oxysporum. Following inoculation, hyperspectral images were captured every other day from Day 1 to Day 7 post inoculation. The proposed hybrid method includes three main steps: (1) preprocessing of hyperspectral image cubes, (2) deep feature extraction using the EfficientNet model, and (3) classification using Manhattan distance within a few-shot learning framework. This combination leverages the strengths of both spectral imaging and deep learning for robust detection with minimal data. The few-shot learning approach achieved high detection accuracies of 85.73%, 80.05%, 90.33%, and 82.09% for A. alternata, A. solani, B. cinerea, and F. oxysporum, respectively, based on data collected on Day 7 post inoculation using only three training images per class. Accuracy improved over time, reflecting the progressive nature of symptom development and the model’s adaptability with limited data. Notably, A. alternata and B. cinerea were reliably detected by Day 3, while A. solani and F. oxysporum reached dependable detection levels by Day 5. Routine visual assessments showed that A. alternata and B. cinerea developed visible symptoms by Day 5, whereas A. solani and F. oxysporum remained asymptomatic until Day 7. The model’s ability to detect infections up to two days before visual symptoms emerged highlights its value for pre-symptomatic diagnosis. These findings support the use of few-shot learning and hyperspectral imaging for early, accurate disease detection, offering a practical solution for precision agriculture and timely intervention. Full article
Show Figures

Figure 1

24 pages, 10260 KiB  
Article
Functional Characterization of Deubiquitinase UBP Family and Proteomic Analysis of Aaubp14-Mediated Pathogenicity Mechanism in Alternaria alternata
by Jiejing Tang, Hang Zhou, Chen Jiao and Hongye Li
J. Fungi 2025, 11(7), 495; https://doi.org/10.3390/jof11070495 - 29 Jun 2025
Viewed by 521
Abstract
The Alternaria alternata tangerine pathotype causes Alternaria brown spot, a devastating disease of susceptible tangerine varieties and their hybrids. Alternaria citri toxin (ACT) is the primary virulence factor, but the regulatory mechanisms governing ACT synthesis remain unclear. Deubiquitinating enzymes maintain ubiquitination homeostasis and [...] Read more.
The Alternaria alternata tangerine pathotype causes Alternaria brown spot, a devastating disease of susceptible tangerine varieties and their hybrids. Alternaria citri toxin (ACT) is the primary virulence factor, but the regulatory mechanisms governing ACT synthesis remain unclear. Deubiquitinating enzymes maintain ubiquitination homeostasis and regulate fungal pathogenicity, yet their role in A. alternata remains unexplored. We characterized 13 ubiquitin-specific protease (UBP) family members in A. alternata tangerine pathotype. Six UBP genes (Aaubp2, Aaubp3, Aaubp4, Aaubp6, Aaubp14, and Aaubp15) regulated mycelial growth. Aaubp14 deletion abolished sporulation, while mutations of Aaubp3, Aaubp4, Aaubp6, Aaubp8, and Aaubp15 altered conidial morphology. qRT-PCR demonstrated distinct host-induced expression patterns among Aaubp genes. Pathogenicity tests showed that ΔAaubp6, ΔAaubp14, and ΔAaubp15 mutants failed to produce lesions on Citrus reticulata cv. Hongjv leaves. Moreover, Aaubp14 deletion significantly suppressed ACT biosynthesis gene expression and blocked ACT production. Comparative proteomics showed Aaubp14 regulates ACT biosynthesis by modulating protein ubiquitination in metabolic pathways and controls pathogenicity via a complex network. Our findings elucidate Aaubp gene function in development and pathogenicity, particularly the Aaubp14-mediated regulation mechanism, providing insights into ubiquitination-mediated pathogenicity in phytopathogenic fungi. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Graphical abstract

24 pages, 1894 KiB  
Article
Honey as a Bioindicator: Pollution’s Effects on Its Quality in Mining vs. Protected Sites
by Mirel Glevitzky, Mihai-Teopent Corcheş, Maria Popa and Mihaela Laura Vică
Appl. Sci. 2025, 15(13), 7297; https://doi.org/10.3390/app15137297 - 28 Jun 2025
Viewed by 351
Abstract
Heavy metal toxicity is an ecological concern in regions affected by processes like mining. This study underscores the potential of honey as a natural bioindicator for monitoring and assessing the levels of environmental contamination in mining-impacted areas. The study evaluated the physico-chemical characteristics, [...] Read more.
Heavy metal toxicity is an ecological concern in regions affected by processes like mining. This study underscores the potential of honey as a natural bioindicator for monitoring and assessing the levels of environmental contamination in mining-impacted areas. The study evaluated the physico-chemical characteristics, heavy metal content, and antimicrobial activity of honey samples collected from areas adjacent to former mining sites, as well as from protected areas within the same county in Romania. The results revealed significant differences between the two categories of locations. The samples from the protected areas showed higher levels of bioactive compounds (phenols and flavonoids) and exhibited stronger antibacterial activity. The heavy metal analysis indicated significantly higher concentrations of lead, cadmium, and iron in the honey samples from former mining areas compared to those from protected zones, suggesting pronounced industrial-origin contamination. The maximum recorded values were for Pb (0.607 mg/kg), Cd (0.02 mg/kg), Fe (12.131 mg/kg), Cu (0.545 mg/kg), and Zn (6.170 mg/kg). Their antimicrobial activity was tested against several bacterial and fungal strains, including Escherichia coli, Salmonella enteritidis, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus, Listeria monocytogenes, Candida albicans, Aspergillus niger, Aspergillus flavus, Penicillium chrysogenum, Rhizopus stolonifer, Fusarium oxysporum, and Alternaria alternata. The antibacterial and antifungal activity were more pronounced in the honey samples from the protected areas. These findings support the use of honey as a bioindicator of environmental quality and highlight the influence of its geographical origin on its therapeutic and chemical properties. Full article
(This article belongs to the Special Issue Advances in Honeybee and Their Biological and Environmental Threats)
Show Figures

Figure 1

16 pages, 3071 KiB  
Article
Xylem Sap Mycobiota in Grapevine Naturally Infected with Xylella fastidiosa: A Case Study: Interaction of Xylella fastidiosa with Sclerotinia sclerotiorum
by Analía Perelló, Antonia Romero-Munar, Sergio I. Martinez, Antonio Busquets, María Cañellas, Bárbara M. Quetglas, Rafael Bosch, Jaume Vadell, Catalina Cabot and Marga Gomila
Plants 2025, 14(13), 1976; https://doi.org/10.3390/plants14131976 - 27 Jun 2025
Viewed by 492
Abstract
Grapevine (Vitis vinifera) is a key crop in Mediterranean agriculture, now increasingly threatened by Xylella fastidiosa subsp. Fastidiosa (Xff), the causal agent of Pierce’s disease. This study investigated: (1) the diversity of culturable fungal endophytes in the xylem sap [...] Read more.
Grapevine (Vitis vinifera) is a key crop in Mediterranean agriculture, now increasingly threatened by Xylella fastidiosa subsp. Fastidiosa (Xff), the causal agent of Pierce’s disease. This study investigated: (1) the diversity of culturable fungal endophytes in the xylem sap of naturally Xff-infected grapevines, and (2) the interaction between Xff and the pathogenic fungus Sclerotinia sclerotiorum identified in the sap. The xylem sap was collected from Cabernet Sauvignon vines in Mallorca, Spain, and fungal communities were characterized using culture-dependent methods. Both beneficial fungi (e.g., Aureobasidium pullulans, Rhodotorula mucilaginosa) and pathogenic species (e.g., S. sclerotiorum, Cladosporium sp., Alternaria alternata, and the Phoma complex) were isolated from both Xff-positive and Xff-negative plants, indicating similar community profiles. Although limited by small sample size, these findings offer preliminary evidence of complex ecological interactions between Xff and the xylem-associated mycobiota, with potential implications for grapevine health and disease development under varying environmental and management conditions. Further experiments under controlled conditions revealed that grapevines co-inoculated with Xff and S. sclerotiorum showed increased disease severity, suggesting a synergistic interaction. These preliminary results highlight the complex interplay between Xff and the fungal endophytic microbiome, which may modulate grapevine susceptibility depending on environmental and management conditions. Full article
Show Figures

Figure 1

21 pages, 3945 KiB  
Article
Microbial Community Composition Associated with Potato Plants Displaying Early Dying Syndrome
by Tudor Borza, Rhea Amor Lumactud, So Yeon Shim, Khalil Al-Mughrabi and Balakrishnan Prithiviraj
Microorganisms 2025, 13(7), 1482; https://doi.org/10.3390/microorganisms13071482 - 26 Jun 2025
Viewed by 386
Abstract
Potato early dying disease complex (PED) leads to premature senescence and rapid decline in potato plants. Unlike potato wilt caused solely by Verticillium species, PED symptoms are more severe due to the synergistic effects of multiple pathogens, including root-lesion nematodes, fungi such as [...] Read more.
Potato early dying disease complex (PED) leads to premature senescence and rapid decline in potato plants. Unlike potato wilt caused solely by Verticillium species, PED symptoms are more severe due to the synergistic effects of multiple pathogens, including root-lesion nematodes, fungi such as Colletotrichum and Fusarium, and soft-rot bacteria. To investigate the microbiome responsible for PED, soil and stem samples from healthy-looking and symptomatic plants were analyzed using amplicon-targeted next-generation sequencing (Illumina MiSeq and PacBio technologies). Samples were collected from four locations in New Brunswick, Canada from fields previously rotated with barley or oat. Comparative analysis of the bacterial, fungal, and eukaryotic diversity in soil samples showed minimal differences, with only bacterial alpha diversity influenced by the plant health status. Verticillium dahliae was abundant in all soil samples, and its abundance was significantly higher in the stems of diseased plants. Additional fungal species implicated in PED, including Plectosphaerella cucumerina, Colletotrichum coccodes, Botrytis sp., and Alternaria alternata, were also identified in the stems. This study highlights the complex, plant-associated microbial interactions underlying PED and provides a foundation for microbiome-informed disease management strategies. Full article
Show Figures

Figure 1

16 pages, 1751 KiB  
Article
Enhancement of Tomato Growth Through Rhizobacteria and Biocontrol of Associated Diseases
by Hasna El hjouji, Redouan Qessaoui, Salahddine Chafiki, El Hassan Mayad, Hafsa Houmairi, Khadija Dari, Bouchaib Bencharki and Hinde Aassila
Life 2025, 15(7), 997; https://doi.org/10.3390/life15070997 - 23 Jun 2025
Viewed by 552
Abstract
The purpose of this study was to investigate the growth-promoting effects of four rhizobacterial isolates (RS60, RS65, RS46, and RP6) isolated from the tomato rhizosphere. These isolates were screened for key plant growth-promoting rhizobacteria (PGPR) mechanisms, including ammonia production, nitrogen fixation, phosphate solubilization, [...] Read more.
The purpose of this study was to investigate the growth-promoting effects of four rhizobacterial isolates (RS60, RS65, RS46, and RP6) isolated from the tomato rhizosphere. These isolates were screened for key plant growth-promoting rhizobacteria (PGPR) mechanisms, including ammonia production, nitrogen fixation, phosphate solubilization, indole-3-acetic acid (IAA) production, and siderophore synthesis. Their potential to enhance seed germination and tomato plant growth was investigated in controlled and greenhouse conditions. Four isolates exhibited multiple PGPR attributes, notably IAA and ammonia production as well as phosphate solubilization. The results revealed that these strains significantly enhanced tomato seed germination and shoot growth in vitro, with RS65 showing the highest germination rate (70%). However, no significant differences in early seedling responses were observed under greenhouse conditions when compared to the control. Thirty days after inoculation, greenhouse results revealed that the four studied strains significantly increased growth metrics including shoot length, number of leaves, collar diameter, and dry weight. The isolate RP6 showed a significant effect on the growth of the plant, with an average shoot length of 34.40 cm and nine leaves per plant. In vitro antagonism assays demonstrated that isolates RS60, RS65, and RP6 effectively inhibited the growth of Botrytis cinerea, Alternaria alternata, and Oidium lycopersici, with inhibition rates exceeding 65%. These antagonistic activities were linked to the production of hydrolytic enzymes (chitinase, cellulase, pectinase, protease), siderophores, and hydrogen cyanide (HCN). Molecular identification through 16S rRNA gene sequencing confirmed the isolates as Bacillus cereus (RS60), Bacillus pumilus (RS46), Bacillus amyloliquefaciens (RP6), and Bacillus velezensis (RS65), each showing over 97% sequence similarity with reference strains. These findings underscore the potential of the selected Bacillus spp. as promising biofertilizers and biocontrol agents for sustainable tomato cultivation and support their inclusion in integrated disease and nutrient management strategies. Full article
(This article belongs to the Special Issue Plant–Soil Interactions Under Global Change)
Show Figures

Figure 1

20 pages, 1953 KiB  
Article
Cepharanthine Inhibits Fusarium solani via Oxidative Stress and CFEM Domain-Containing Protein Targeting
by Yuqing Wang, Zenghui Yang, Jingwen Xue, Yitong Wang, Haibo Li, Zhihong Wu and Yizhou Gao
Microorganisms 2025, 13(6), 1423; https://doi.org/10.3390/microorganisms13061423 - 18 Jun 2025
Viewed by 563
Abstract
Cepharanthine (CEP) is a natural bisbenzylisoquinoline alkaloid known for its antibacterial, antiviral, and anti-inflammatory activities. Its antifungal effect, however, has not been well studied. In this work, we used machine learning-based virtual screening with Random Forest, Neural Network, and Support Vector Machine models [...] Read more.
Cepharanthine (CEP) is a natural bisbenzylisoquinoline alkaloid known for its antibacterial, antiviral, and anti-inflammatory activities. Its antifungal effect, however, has not been well studied. In this work, we used machine learning-based virtual screening with Random Forest, Neural Network, and Support Vector Machine models to identify potential inhibitors of Fusarium solani. CEP was selected as a candidate and tested experimentally. The results showed that it inhibited the growth of Fusarium solani, Fusarium proliferatum, Fusarium oxysporum, Alternaria alternata, and Botrytis cinerea. It also reduced the sporulation and spore germination of Fusarium solani and disrupted its redox balance. Transcriptome analysis showed changes in gene expression related to basic metabolic pathways. Molecular docking suggested that CEP binds to the FsCFEM1 protein, and molecular dynamics simulations confirmed stable binding, with key roles for residues THR748 and LEU950. These results suggest that CEP is a potential bio-based antifungal agent and provide novel insights into its mechanism against Fusarium solani. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

20 pages, 1159 KiB  
Article
Assessing Alternaria Species and Related Mycotoxin Contamination in Wheat in Algeria: A Food Safety Risk
by Meriem Barkahoum Daichi, Mario Masiello, Miriam Haidukowski, Annalisa De Girolamo, Antonio Moretti, Amor Bencheikh, Noureddine Rouag and Stefania Somma
Toxins 2025, 17(6), 309; https://doi.org/10.3390/toxins17060309 - 18 Jun 2025
Viewed by 993
Abstract
Alternaria species are important fungal pathogens occurring worldwide in wheat, causing both productive and qualitative losses, and posing a toxicological risk to human health due to the production of their mycotoxins in kernels. This study aimed to investigate the occurrence of Alternaria species [...] Read more.
Alternaria species are important fungal pathogens occurring worldwide in wheat, causing both productive and qualitative losses, and posing a toxicological risk to human health due to the production of their mycotoxins in kernels. This study aimed to investigate the occurrence of Alternaria species and their mycotoxins in 48 wheat grain samples collected from the northeast to the southeast of Algeria. Seventy-two representative Alternaria strains were molecularly analyzed using a multi-locus sequence approach and evaluated for their capability to produce mycotoxins under in vitro conditions. Alternaria alternata, representing 42% of the strains, was the dominant species, followed to a lesser extent by species included in the Infectoriae section (26%). In addition, three species not previously reported in Algerian wheat, A. eureka, A. consortialis and A. tellustris, were identified, accounting for 5% of the total strains. Mycotoxin analyses showed high contamination of grains with alternariol monomethyl ether, alternariol and tenuazonic acid, occurring in 75, 69 and 35% of the samples, respectively. Moreover, 41 out of 48 samples showed the co-occurrence of multiple Alternaria mycotoxins. This study provides, for the first, time a clear picture of the occurrence and the distribution of Alternaria species on wheat in Algeria. Finally, the extensive monitoring activities carried out revealed the great biodiversity of Alternaria species able to colonize wheat grains. Moreover, findings on mycotoxin contamination raise concerns about the significant mycotoxigenic risk in Algerian wheat, emphasizing the need for strict monitoring and regulatory measures on Alternaria mycotoxins in food and feed. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Graphical abstract

21 pages, 2694 KiB  
Article
Isolation and Identification of Endophytic Bacterium B5 from Mentha haplocalyx Briq. and Its Biocontrol Mechanisms Against Alternaria alternata-Induced Tobacco Brown Spot
by Qunying Qin, Boyu Liu, Baige Ma, Xihong Wei, Yi Zhou and Zhengxiang Sun
J. Fungi 2025, 11(6), 446; https://doi.org/10.3390/jof11060446 - 12 Jun 2025
Viewed by 1283
Abstract
The fungus Alternaria alternata, which causes tobacco brown spot disease, poses a serious threat to the tobacco industry. Beneficial microorganisms and their secondary metabolites have emerged as a promising green strategy for disease management. This study recovered 16 endophytic bacterial strains from [...] Read more.
The fungus Alternaria alternata, which causes tobacco brown spot disease, poses a serious threat to the tobacco industry. Beneficial microorganisms and their secondary metabolites have emerged as a promising green strategy for disease management. This study recovered 16 endophytic bacterial strains from Mentha haplocalyx Briq., a therapeutic herb. The study revealed that strain B5, with an inhibition rate of 82.76%, exhibited the highest antifungal activity against A. alternata. This strain exhibited broad-spectrum antifungal activity, with inhibition rates ranging from 66.34% to 87.23%. Phylogenetic analysis of 16S rDNA and gyrA gene sequences identified it as Bacillus velezensis (GenBank: PV168970 and PV173738). Further characterization revealed that strain B5 can secrete cell wall-degrading enzymes, produce IAA, and synthesize siderophores. The growth of mycelium in A. alternata was greatly reduced by both the ethyl acetate extract and the filtered liquid from the sterile fermentation, resulting in marked morphological abnormalities. Multiple antifungal active substances were identified through liquid LC-MS analysis. Greenhouse experiments demonstrated that the B5 fermentation broth effectively suppressed the occurrence of tobacco brown spot disease, achieving a relative control efficacy of 60.66%, comparable to that of 10% difenoconazole water dispersible granule (WDG). Additionally, strain B5 enhances plant disease resistance by activating the activities of key defense enzymes. B. velezensis B5 serves as a safe alternative to chemical fungicides and is highly effective at controlling tobacco brown spot disease. Full article
(This article belongs to the Special Issue Biological Control of Fungal Plant Pathogens)
Show Figures

Figure 1

22 pages, 1677 KiB  
Systematic Review
Plant Protection Products to Control Alternaria Brown Spot Caused by Alternaria alternata in Citrus: A Systematic Review
by Alfonso Garmendia, María Ferriol, Roberto Beltrán, Francisco García-Breijo, María Dolores Raigón, María Del Carmen Parra and Hugo Merle
Agronomy 2025, 15(6), 1343; https://doi.org/10.3390/agronomy15061343 - 30 May 2025
Viewed by 851
Abstract
Alternaria Brown Spot (ABS) is one of the most critical diseases affecting susceptible mandarins worldwide, being a limiting factor in their cultivation. Although there are numerous reports on effective plant protection products against the disease, field control is failing. In the literature, some [...] Read more.
Alternaria Brown Spot (ABS) is one of the most critical diseases affecting susceptible mandarins worldwide, being a limiting factor in their cultivation. Although there are numerous reports on effective plant protection products against the disease, field control is failing. In the literature, some of the results are contradictory, depending on the study and experimental scale. Therefore, this paper aimed to analyze the empirical evidence to answer the following questions: (i) What plant protection products have been used to control ABS? (ii) What are the methodologies used to test the substances? (iii) Why is ABS field control failing? An extensive literature search was performed in five databases: WoS, Scopus, Google Scholar, PubMed, and SciELO. The search string used was “Alternaria alternata” AND “Citrus”. Records were classified into ten groups according to their main topic. Group 3 “microorganisms and natural substances” and group 4 “fungicides” were full-text reviewed for data extraction (98 reports). Details of the microorganisms, natural substances, and fungicides used against A. alternata, as well as summaries of the methodologies, are provided. During this research, we highlighted significant aspects that may be hindering the control of Alternaria alternata in citrus: long periods of fruit sensitivity, abundance and floatability of inoculum, rapid infections, the appearance of resistance to fungicides, moderate effectiveness inhibiting the germination of conidia, uncertainty about the times of application, and persistence of the products. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

Back to TopTop