Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = Alternanthera philoxeroides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 8159 KiB  
Article
CRISPR/Cas9-Mediated Knockout of the White Gene in Agasicles hygrophila
by Li Fu, Penghui Li, Zhiyi Rui, Jiang Sun, Jun Yang, Yuanxin Wang, Dong Jia, Jun Hu, Xianchun Li and Ruiyan Ma
Int. J. Mol. Sci. 2025, 26(10), 4586; https://doi.org/10.3390/ijms26104586 - 10 May 2025
Viewed by 458
Abstract
Agasicles hygrophila is the most effective natural enemy for the control of the invasive weed Alternanthera philoxeroides (Mart.) Griseb. However, research on the gene function and potential genetic improvement of A. hygrophila is limited due to a lack of effective genetic tools. In [...] Read more.
Agasicles hygrophila is the most effective natural enemy for the control of the invasive weed Alternanthera philoxeroides (Mart.) Griseb. However, research on the gene function and potential genetic improvement of A. hygrophila is limited due to a lack of effective genetic tools. In this study, we employed the A. hygrophila white (AhW) gene as a target gene to develop a CRISPR/Cas9-based gene editing method applicable to A. hygrophila. We showed that injection of Cas9/sgRNA ribonucleoprotein complexes (RNPs) of the AhW gene into pre-blastoderm eggs induced genetic insertion and deletion mutations, leading to white eyes. Our results demonstrate that CRISPR/Cas9-mediated gene editing is possible in A. hygrophila, offering a valuable tool for studies of functional genomics and genetic improvement of A. hygrophila, which could potentially lead to more effective control of invasive weeds through the development of improved strains of this biocontrol agent. In addition, the white-eyed mutant strain we developed could potentially be useful for other transgenic research studies on this species. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

19 pages, 4679 KiB  
Article
Effect of Alligator Weed (Alternanthera philoxeroides) Supplementation on Production Performance, Immune Response and Antioxidant Function of Improved Rural Chicken
by Kekungu-u Puro, Sayed Nabil Abedin, Zakir Hussain, Jaredth B. M. Wankhar, Sunil Doley, Chubasenla Aochen, Burhan Uddin Choudhury, Mahak Singh, Rahul Katiyar and Sourabh Deori
Animals 2025, 15(5), 742; https://doi.org/10.3390/ani15050742 - 5 Mar 2025
Viewed by 1165
Abstract
Alligator weed (AW; Alternanthera philoxeroides) can have severe ecological and economic consequences by impacting water quality, flow and the growth of native flora and fauna. Plants, both edible and inedible, contain phenolics, compounds that can serve as antioxidants. Using this background information, [...] Read more.
Alligator weed (AW; Alternanthera philoxeroides) can have severe ecological and economic consequences by impacting water quality, flow and the growth of native flora and fauna. Plants, both edible and inedible, contain phenolics, compounds that can serve as antioxidants. Using this background information, the study aimed to explore the possible antioxidative nature of AW by incorporating it as a supplement on production performance, gene expression, and antioxidant levels during the summer and winter seasons in improved-variety rural chicks. A total of 400 improved-variety Vanaraja chicks (35 days old), were used in each of the two seasons (summer and winter), making a combined total of 800 birds (n = 400 for each summer and winter season). The chicks were subjected to four experimental dietary treatments over a 35-day period during both seasons. The experimental diet consisted of the following: a control diet without any supplements (C); basal diet + 1% AW (T1); basal diet + 2% AW(T2); and basal diet + 4% AW(T3). The production performance, cytokine gene expression (IFN-γ, IL-1β, IL-6, IL-12 and iNOS) and serum antioxidants, viz. catalase (CAT) and superoxide dismutase (SOD), were evaluated. The results indicated that body weight, average body weight gain and weekly feed intake in the T1 group was significantly (p < 0.05) higher as compared to the other groups. The FCR in group T1 was significantly (p < 0.05) lower during winter than in summer. A significant (p < 0.001) upregulation in the expression of IL-6, IL-1β and IL-12 in T1 as compared to the other groups was reported. IFN-γ, IL-1β, IL-6 and iNOS were significantly (p < 0.001) upregulated in winter. SOD and CAT activity was significantly (p < 0.001) higher in T1 compared to C, and both were significantly (p < 0.05) higher during winter than in summer. The results suggested that AW has the potential to mitigate the consequences of cold stress on growth, immune response, and antioxidant function during winter. We propose adding 1% AW, which can possibly function as an antioxidant, to the diet of chicks to enhance their production performance and immunity levels. Full article
Show Figures

Figure 1

18 pages, 2885 KiB  
Article
Composition and Effects of Aerosol Particles Deposited on Urban Plant Leaves in Terrestrial and Aquatic Habitats
by Siqi Chen, Fangmin Fei, Yaobin Song, Ming Dong, Aiping Wu and Hua Yu
Plants 2024, 13(21), 3056; https://doi.org/10.3390/plants13213056 - 31 Oct 2024
Viewed by 1064
Abstract
Plants play a vital role in mitigating aerosol particles and improving air quality. This study investigated the composition characteristics and potential effects of particles retained on the leaf surfaces of two amphibious plants (i.e., Alternanthera philoxeroides and Hydrocotyle vulgaris) in both terrestrial [...] Read more.
Plants play a vital role in mitigating aerosol particles and improving air quality. This study investigated the composition characteristics and potential effects of particles retained on the leaf surfaces of two amphibious plants (i.e., Alternanthera philoxeroides and Hydrocotyle vulgaris) in both terrestrial and aquatic habitats. The results show that plant habitats influenced the composition of aerosol particles retained on leaf surfaces. Specifically, plants in terrestrial habitats retained a higher mass concentration of coarse and large particles rich in inorganic Ca2+, accounting for over 70% of total ions, whereas plants in aquatic habitats retained a greater abundance of fine and secondary particles with high fractions of water-soluble NO3 and SO42−, taking up over 65% of total anions. Secondary particles deposited on the surfaces of plants in aquatic habitats tend to deliquesce and transform from the particle phase to the liquid phase. Terrestrial habitats facilitate the deposition of large particles. Additionally, particle accumulation on leaf surfaces adversely affected the stomatal conductance of plant leaves, leading to reductions in both the transpiration and photosynthetic rates. This study provides insights into the impact and role of plants from different habitats in mitigating urban particulate pollution. Full article
(This article belongs to the Special Issue Physiology and Ecology of Aquatic Plants)
Show Figures

Figure 1

15 pages, 1992 KiB  
Article
The Addition of an Invasive Plant Alters the Home-Field Advantage of Native Leaf Litter Decomposition
by Shaojun Chen, Xiaohua Xie, Jie Wen, Hao Zhai, Huiqi Wang, Yuhang Jiang and Zhanxu Gou
Forests 2024, 15(10), 1708; https://doi.org/10.3390/f15101708 - 27 Sep 2024
Viewed by 1239
Abstract
Forest litter can decompose faster at home sites than at guest sites (home-field advantage, HFA), yet few studies have focused on the response of the HFA of native plant decomposition to the presence of invasive plants. We loaded the dry leaves of native [...] Read more.
Forest litter can decompose faster at home sites than at guest sites (home-field advantage, HFA), yet few studies have focused on the response of the HFA of native plant decomposition to the presence of invasive plants. We loaded the dry leaves of native Neosinocalamus affinis (decomposition resistant) and Ficus virens (more easily decomposable) leaves into litterbags with and without invasive Alternanthera philoxeroides, and incubated these litterbags at N. affinis and F. virens sites at the edge of the forest. The results showed that positive HFA effects with litter mass loss were at least 1.32% faster at home sites than at guest sites. The addition of A. philoxeroides reduced the mean HFA of N. affinis litter and increased that of F. virens litter. The HFA index without A. philoxeroides was significantly higher than that with A. philoxeroides. Soil faunal abundance colonized at home sites was always higher than that colonized at guest sites. Compared with the F. virens site, the abundance of Collembola, Arachnida, Formicidae and Lepismatidae at the N. affinis site was significantly higher compared to the F. virens site, while the abundance of Isopoda, Oligochaeta, Nematoda and Dermaptera was significantly lower. Our results indicate that invasive plants may regulate HFA effects by promoting the decomposition of native plants and increasing fauna abundance. Particularly, soil fauna groups play a very important role in this process. Our findings help us to re-understand the role of invasive plants in material cycling and energy flow in the context of achieving carbon neutrality goals. Full article
Show Figures

Figure 1

15 pages, 3961 KiB  
Article
Edible Paper Sheets from Alternanthera philoxeroides and Hypophthalmichthys molitrix: Smart Biomass Valorization
by Sharmin Suraiya, Mst. Ayesha Siddika Mohona, Mst Fatema, Monjurul Haq, Md. Anisur Rahman and Subrata Mondal
Biomass 2024, 4(2), 414-428; https://doi.org/10.3390/biomass4020020 - 9 May 2024
Cited by 4 | Viewed by 1478
Abstract
Alternanthera philoxeroides and Hypophthalmichthys molitrix offer significant nutritional benefits. This study evaluates the proximate composition, amino acid profile, GC-MS analysis, FT-IR spectroscopy, SEM and EDX, and color values of edible paper sheets (EPSs) derived from Alternanthera philoxeroides incorporating different levels of Hypophthalmichthys molitrix [...] Read more.
Alternanthera philoxeroides and Hypophthalmichthys molitrix offer significant nutritional benefits. This study evaluates the proximate composition, amino acid profile, GC-MS analysis, FT-IR spectroscopy, SEM and EDX, and color values of edible paper sheets (EPSs) derived from Alternanthera philoxeroides incorporating different levels of Hypophthalmichthys molitrix flesh. The protein content in the EPSs varied based on fish flesh incorporation, peaking at 52.66% in Ap100/Hm300 (Non-boil). Protein and carbohydrate contents showed an inverse correlation across EPSs, with the highest carbohydrate content of 60.89% in sample Ap400/Hm0 (Boil). Lipid content was also found to correlate with H. molitrix flesh content in EPSs, ranging from 1.59% to 18.41%. Amino acid analysis identified 11 types, with methionine as the most prevalent, followed by leucine, phenylalanine, and lysine. GC-MS analysis revealed 51 bioactive compounds, including carbonic acid, hentriacontane, and various fatty acids. FT-IR analysis showed characteristic bonds, while color analysis displayed L* values ranging from 24.37 to 30.97. SEM analyses depicted the microstructure, surface view, and elemental composition of the EPSs, and EDX showed an abundance of Ca, N, K, O, C, Mg, Na, P, Cl, Mn, and Fe. Therefore, EPSs prepared from A. philoxeroides and H. molitrix could offer a promising approach for effectively utilizing aquatic biomass and providing both plant and animal nutrients to consumers. Full article
Show Figures

Graphical abstract

18 pages, 3363 KiB  
Article
Impacts of Soil Properties on Species Diversity and Structure in Alternanthera philoxeroides-Invaded and Native Plant Communities
by Hao Wu, Yuxin Liu, Tiantian Zhang, Mingxia Xu and Benqiang Rao
Plants 2024, 13(9), 1196; https://doi.org/10.3390/plants13091196 - 25 Apr 2024
Cited by 6 | Viewed by 2194
Abstract
Soil properties can affect plant population dynamics and the coexistence of native and invasive plants, thus potentially affecting community structure and invasion trends. However, the different impacts of soil physicochemical properties on species diversity and structure in native and invaded plant communities remain [...] Read more.
Soil properties can affect plant population dynamics and the coexistence of native and invasive plants, thus potentially affecting community structure and invasion trends. However, the different impacts of soil physicochemical properties on species diversity and structure in native and invaded plant communities remain unclear. In this study, we established a total of 30 Alternanthera philoxeroides-invaded plots and 30 control plots in an area at the geographical boundary between North and South China. We compared the differences in species composition between the invaded and native plant communities, and we then used the methods of regression analysis, redundancy analysis (RDA), and canonical correspondence analysis (CCA) to examine the impacts of soil physicochemical properties on four α-diversity indices and the species distribution of these two types of communities. We found that A. philoxeroides invasion increased the difference between the importance values of dominant plant species, and the invasion coverage had a negative relationship with the soil-available potassium (R2 = 0.135; p = 0.046) and Patrick richness index (R2 = 0.322; p < 0.001). In the native communities, the species diversity was determined with soil chemical properties, the Patrick richness index, the Simpson dominance index, and the Shannon–Wiener diversity index, which all decreased with the increase in soil pH value, available potassium, organic matter, and ammonium nitrogen. However, in the invaded communities, the species diversity was determined by soil physical properties; the Pielou evenness index increased with increasing non-capillary porosity but decreased with increasing capillary porosity. The determinants of species distribution in the native communities were soil porosity and nitrate nitrogen, while the determinants in the invaded communities were soil bulk density and available potassium. In addition, compared with the native communities, the clustering degree of species distribution in the invaded communities intensified. Our study indicates that species diversity and distribution have significant heterogeneous responses to soil physicochemical properties between A. philoxeroides-invaded and native plant communities. Thus, we need to intensify the monitoring of soil properties in invaded habitats and conduct biotic replacement strategies based on the heterogeneous responses of native and invaded communities to effectively prevent the biotic homogenization that is caused by plant invasions under environmental changes. Full article
(This article belongs to the Special Issue Interactions within Invasive Ecosystems)
Show Figures

Figure 1

22 pages, 5511 KiB  
Article
Complete Chloroplast Genome of Alternanthera sessilis and Comparative Analysis with Its Congeneric Invasive Weed Alternanthera philoxeroides
by Yuanxin Wang, Xueying Zhao, Qianhui Chen, Jun Yang, Jun Hu, Dong Jia and Ruiyan Ma
Genes 2024, 15(5), 544; https://doi.org/10.3390/genes15050544 - 25 Apr 2024
Cited by 1 | Viewed by 1733
Abstract
Alternanthera sessilis is considered the closest relative to the invasive weed Alternanthera philoxeroides in China, making it an important native species for studying the invasive mechanisms and adaptations of A. philoxeroides. Chloroplasts play a crucial role in a plant’s environmental adaptation, with [...] Read more.
Alternanthera sessilis is considered the closest relative to the invasive weed Alternanthera philoxeroides in China, making it an important native species for studying the invasive mechanisms and adaptations of A. philoxeroides. Chloroplasts play a crucial role in a plant’s environmental adaptation, with their genomes being pivotal in the evolution and adaptation of both invasive and related species. However, the chloroplast genome of A. sessilis has remained unknown until now. In this study, we sequenced and assembled the complete chloroplast genome of A. sessilis using high-throughput sequencing. The A. sessilis chloroplast genome is 151,935 base pairs long, comprising two inverted repeat regions, a large single copy region, and a small single copy region. This chloroplast genome contains 128 genes, including 8 rRNA-coding genes, 37 tRNA-coding genes, 4 pseudogenes, and 83 protein-coding genes. When compared to the chloroplast genome of the invasive weed A. philoxeroides and other Amaranthaceae species, we observed significant variations in the ccsA, ycf1, and ycf2 regions in the A. sessilis chloroplast genome. Moreover, two genes, ccsA and accD, were found to be undergoing rapid evolution due to positive selection pressure. The phylogenetic trees were constructed for the Amaranthaceae family, estimating the time of independent species formation between A. philoxeroides and A. sessilis to be approximately 3.5186–8.8242 million years ago. These findings provide a foundation for understanding the population variation within invasive species among the Alternanthera genus. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

15 pages, 1728 KiB  
Article
Evaluation of the Impact of Alternanthera philoxeroides (Mart.) Griseb. Extract on Memory Impairment in D-Galactose-Induced Brain Aging in Mice through Its Effects on Antioxidant Enzymes, Neuroinflammation, and Telomere Shortening
by Possatorn Aon-im, Orawan Monthakantirat, Supawadee Daodee, Yaowared Chulikhit, Nattapatsorn Sriya, Chantana Boonyarat, Thanut Chumwangwapee, Charinya Khamphukdee and Anake Kijjoa
Molecules 2024, 29(2), 503; https://doi.org/10.3390/molecules29020503 - 19 Jan 2024
Cited by 7 | Viewed by 2518
Abstract
Aging is a well-known factor that accelerates brain deterioration, resulting in impaired learning and memory functions. This current study evaluated the potential of an extract of Alternanthera philoxeroides (AP), an edible flavonoid-rich plant, to ameliorate D-galactose-induced brain aging in male mice. Chronic administration [...] Read more.
Aging is a well-known factor that accelerates brain deterioration, resulting in impaired learning and memory functions. This current study evaluated the potential of an extract of Alternanthera philoxeroides (AP), an edible flavonoid-rich plant, to ameliorate D-galactose-induced brain aging in male mice. Chronic administration of D-galactose (150 mg/kg/day) in mice mimicked the characteristics of aging by accelerating senescence via downregulation of the following telomere-regulating factors: mouse telomerase reverse transcriptase (mTERT) and mouse telomeric repeat-binding factors 1 (mTRF1) and 2 (mTRF2). D-galactose also decreased the activities of the antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD), while increasing expression of neuroinflammatory cytokines in the frontal cortex and hippocampus. Daily treatment of D-galactose-induced aging mice with AP at 250 and 500 mg/kg/day or vitamin E (100 mg/kg/day) significantly increased the activities of SOD and CAT, as well as expression of mTERT, mTRF1, and mTRF2, which are involved in telomere stabilization, but decreased the levels of proinflammatory cytokines IL-1β, IL-6, and TNF-α. In the behavioral portion of the study, AP improved aging-related cognitive deficits in short-term memory as shown by the Y-maze task and the novel object recognition test (NORT) and long-term memory as shown by the Morris water maze test (MWMT). The flavones kaempferol-O-glucoside (1), quercetin (2), alternanthin B (3), demethyltorosaflavone D (4), and chrysoeriol-7-O-rhamnoside (5), which could be responsible for the observed effects of AP in the D-galactose-induced aging mice, were identified by HPLC analysis. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

18 pages, 1522 KiB  
Article
A Green Approach to Valorizing Abundant Aquatic Weeds for Nutrient-Rich Edible Paper Sheets Production in Bangladesh
by Sharmin Suraiya, Suraiya Afrin Bristy, Md. Sadek Ali, Anusree Biswas, Md. Rasal Ali and Monjurul Haq
Clean Technol. 2023, 5(4), 1269-1286; https://doi.org/10.3390/cleantechnol5040064 - 23 Oct 2023
Cited by 3 | Viewed by 3242
Abstract
The rapid and unprecedented expansion of the global population highlights concerns about the sufficiency of food resources to sustain this growth. This study investigates and substantiates the feasibility of renewable food resources in order to meet the nutritional requirements of consumers. Three edible [...] Read more.
The rapid and unprecedented expansion of the global population highlights concerns about the sufficiency of food resources to sustain this growth. This study investigates and substantiates the feasibility of renewable food resources in order to meet the nutritional requirements of consumers. Three edible aquatic weeds, helencha (Enhydra fluctuans), malancha (Alternanthera philoxeroides), and kalmi (Ipomoea aquatica), were used to produce edible paper sheets. The composition of the raw aquatic weeds and paper sheet samples was analyzed, including the proximate composition, amino acid content, minerals and heavy metal contents, and bioactive compounds. The dried raw aquatic weeds and paper sheets showed similar proximate compositions, with carbohydrates being the highest component (50.38–64.63%), followed by crude protein (15.25–19.13%), ash (9.30–15.88%), and lipid (1.55–3.43%). The raw weeds and paper sheets were rich in essential minerals like Na, Ca, and Zn with contents ranging from 27.7 mg/100 g to 30.4 mg/100 g, 126.8 mg/100 g to 489.65 mg/100 g, and 4.5 mg/100 g to 16.3 mg/100 g, respectively. Acceptable levels of heavy metals, including Ni, Pb, and Cu, were found. The paper sheets contained seven essential and eight non-essential amino acids. Among the essential amino acids, the phenylalanine content was the highest at 2735.9 mg/100 g in E. fluctuans paper sheets, followed by methionine at 2377.29 mg/100 g in the raw E. fluctuans and histidine at 1972.6 mg/100 g in E. fluctuans paper sheets. A. philoxeroides sheets showed the highest total amino acid content (16,146.81 mg/100 g), while I. aquatica showed the lowest (13,118.67 mg/100 g). The aquatic weed paper sheets were rich in bioactive compounds, and the numbers in E. fluctuans, A. philoxeroides, and I. aquatica paper sheets were 31, 33, and 40, respectively. There were no significant changes in the nutritional content of the aquatic weeds in paper sheet form compared with the raw weeds, which suggests promising prospects for their production and consumption as a source of nutrition and bioactive compounds. Full article
(This article belongs to the Special Issue Biomass-Based Green Technologies for Modern Bioeconomy)
Show Figures

Figure 1

10 pages, 2355 KiB  
Article
The Plant Invader Alternanthera philoxeroides Benefits from Clonal Integration More than Its Native Co-Genus in Response to Patch Contrast
by Wenhua You, Ningning Li, Jin Zhang, Ao Song and Daolin Du
Plants 2023, 12(12), 2371; https://doi.org/10.3390/plants12122371 - 19 Jun 2023
Cited by 10 | Viewed by 1782
Abstract
Different connected parts of clonal plants often grow in different patches and the resource contrast between patches has an important effect on the material transfer between the connected ramets. However, it is unclear whether the effect of clonal integration differs between the invasive [...] Read more.
Different connected parts of clonal plants often grow in different patches and the resource contrast between patches has an important effect on the material transfer between the connected ramets. However, it is unclear whether the effect of clonal integration differs between the invasive clonal plant and the related native species in response to patch contrast. To explore this, we grew the clonal fragment pairs of plant invader Alternanthera philoxeroides and its co-genus native species A. sessilis under high contrast, low contrast, and no contrast (control) nutrient patch environments, respectively, and with stolon connections either severed or kept intact. The results showed that, at the ramet level, clonal integration (stolon connection) significantly improved the growth of apical ramets of both species, and such positive effects were significantly greater in A. philoxeroides than in A. sessilis. Moreover, clonal integration greatly increased the chlorophyll content index of apical ramets and the growth of basal ramets in A. philoxeroides but not in A. sessilis under low and high contrast. At the whole fragment level, the benefits of clonal integration increased with increasing patch contrast, and such a positive effect was more pronounced in A. philoxeroides than in A. sessilis. This study demonstrated that A. philoxeroides possesses a stronger ability of clonal integration than A. sessilis, especially in patchy environments with a higher degree of heterogeneity, suggesting that clonal integration may give some invasive clonal plants a competitive advantage over native species, thus facilitating their invasion in patchy habitats. Full article
(This article belongs to the Special Issue Plant Invasion Ecology)
Show Figures

Figure 1

22 pages, 4950 KiB  
Article
Morphological Characterstics of the Sensilla in a Monophagous Insect: Agasicles hygrophila Selman and Vogt (Coleoptera: Chrysomelidae, Halticinae)
by Qianhui Chen, Shuang Li, Yingying Wang, Dong Jia, Yuanxin Wang and Ruiyan Ma
Insects 2023, 14(6), 501; https://doi.org/10.3390/insects14060501 - 30 May 2023
Cited by 6 | Viewed by 2314
Abstract
Agasicles hygrophila Selman and Vogt (Coleoptera: Chrysomelidae) is the key natural enemy of Alternanthera philoxeroides (Mart.) Griseb, an invasive weed worldwide. To understand the morphology of A. hygrophila and further explore the specific host localization mechanism, scanning electron microscopy was used to observe [...] Read more.
Agasicles hygrophila Selman and Vogt (Coleoptera: Chrysomelidae) is the key natural enemy of Alternanthera philoxeroides (Mart.) Griseb, an invasive weed worldwide. To understand the morphology of A. hygrophila and further explore the specific host localization mechanism, scanning electron microscopy was used to observe and study the morphological characteristics of sensilla on the head appendages, tarsi, and external genital segments of A. hygrophila. Twelve types and forty-six subtypes of sensilla were observed. These contain various types of head appendices, including sensilla chaetica, sensilla trichodea, sensilla basiconca, sensilla coeloconica, sensilla styloconica, Böhm bristles, sensilla campaniform, sensilla terminal, sensilla dome, sensilla digit-like, sensilla aperture, and many subtypes. A new type of sensor was reported for the first time, which may be related to host plant recognition. This sensor was located on the distal segment of the maxillary palps of A. hygrophila and was named as sensilla petal-shaped based on its morphological characteristics. Sensilla chaetica, sensilla trichodea, and sensilla basiconca are also found on the tarsi and external genital segments. In addition, sensilla basiconica 4, sensilla coeloconica 1 and 2, sensilla styloconica 2, Böhm bristles 2, and sensilla campaniform 1 were only found in females. On the contrary, sensilla styloconica 3, sensilla coeloconica 3, and sensilla dome were only found in males. Numbers and sizes of the sensilla were also different between males and females. The potential functions related to structure were discussed in comparison with previous investigations on beetles and other monophagous insects. Our results provide a microscopic morphological basis for further research on the localization and recognition mechanism of A. hygrophila and its obligate host. Full article
(This article belongs to the Section Other Arthropods and General Topics)
Show Figures

Figure 1

13 pages, 1581 KiB  
Article
Invasive Plant Alternanthera philoxeroides Benefits More Competition Advantage from Rhizosphere Bacteria Regardless of the Host Source
by Xu Li, Yi Zhang, Fang-Li Kong, Misbah Naz, Jian-Yu Zhou, Shan-Shan Qi, Zhi-Cong Dai and Dao-Lin Du
Plants 2023, 12(11), 2085; https://doi.org/10.3390/plants12112085 - 24 May 2023
Cited by 2 | Viewed by 2613
Abstract
The rhizosphere plays a vital role in the exchange of materials in the soil–plant ecosystem, and rhizosphere microorganisms are crucial for plant growth and development. In this study, we isolated two strains of Pantoea rhizosphere bacteria separately from invasive Alternanthera philoxeroides and native [...] Read more.
The rhizosphere plays a vital role in the exchange of materials in the soil–plant ecosystem, and rhizosphere microorganisms are crucial for plant growth and development. In this study, we isolated two strains of Pantoea rhizosphere bacteria separately from invasive Alternanthera philoxeroides and native A. sessilis. We conducted a control experiment to test the effects of these bacteria on the growth and competition of the two plant species using sterile seedlings. Our findings showed that the rhizobacteria strain isolated from A. sessilis significantly promoted the growth of invasive A. philoxeroides in monoculture compared to native A. sessilis. Both strains significantly enhanced the growth and competitiveness of invasive A. philoxeroides under competition conditions, regardless of their host source. Our study suggests that rhizosphere bacteria, including those from different host sources, can contribute to the invasion of A. philoxeroides by significantly enhancing its competitiveness. Full article
(This article belongs to the Special Issue Plant Invasion 2022)
Show Figures

Figure 1

17 pages, 1947 KiB  
Article
Niche Characteristics of Alternanthera philoxeroide-Invaded Plant Communities in Heterogeneous Habitats and Their Latitudinal Trends
by Hao Wu, Sijin Dong, Yanyan Wang, Li Wang and Benqiang Rao
Diversity 2023, 15(5), 651; https://doi.org/10.3390/d15050651 - 11 May 2023
Cited by 3 | Viewed by 2084
Abstract
Plant invasions are closely related to environmental filtering and biointeractions; however, the variations in invasive plant niches along latitudinal gradients in heterogeneous habitats remain unclear. In this study, we conducted a two-year survey in China spanning 21° N–37° N to explore the niche [...] Read more.
Plant invasions are closely related to environmental filtering and biointeractions; however, the variations in invasive plant niches along latitudinal gradients in heterogeneous habitats remain unclear. In this study, we conducted a two-year survey in China spanning 21° N–37° N to explore the niche characteristics of plant species within communities invaded by the amphibious alien weed Alternanthera philoxeroides in both terrestrial and aquatic habitats as well as their latitudinal trends. We found that A. philoxeroides had the greatest niche breadth in the studied communities. The species pairs with the highest niche similarity were A. philoxeroidesDigitaria sanguinalis in terrestrial communities and Cyperus rotundus–Kyllinga brevifolia in aquatic communities. The niche similarity between A. philoxeroides and its accompanying species in terrestrial habitats was significantly higher than that in aquatic habitats (t = 5.954; p < 0.001). The niche breadth of A. philoxeroides had no obvious latitudinal trend, while the niche breadth of its accompanying species in the terrestrial community significantly decreased with increasing latitude (F7, 57 = 4.364, p = 0.001). In the terrestrial communities, the niche similarity between A. philoxeroides and its accompanying species significantly decreased with increasing latitude (F7, 57 = 3.671, p = 0.003), while the niche overlap significantly increased with increasing latitude (F7, 57 = 8.916, p < 0.001). However, the aquatic species’ niche characteristics had no obvious latitudinal trends. These findings indicated that habitat heterogeneity significantly affected the species’ niche characteristics in A. philoxeroides-invaded communities. Environmental filtering at low latitudes allowed the invasive and accompanying species to evolve similar niches, while the cold climate at high latitudes increased the niche overlap between the invader and accompanying species. Our findings are crucial for predicting the dynamics of invasive plant communities under global change and for understanding the mechanisms of species coexistence. Full article
(This article belongs to the Topic Plant Invasion)
Show Figures

Figure 1

17 pages, 3146 KiB  
Article
Niche and Interspecific Association of the Dominant Species during the Invasion of Alternanthera philoxeroides in the Yangtze River Basin, China
by Qianru Nan, Qing Zhang, Xinghao Li, Danni Zheng, Zhaohua Li and Liya Zhao
Agriculture 2023, 13(3), 621; https://doi.org/10.3390/agriculture13030621 - 4 Mar 2023
Cited by 9 | Viewed by 2346
Abstract
The effects of invasive species on the local community (e.g., structure and stability) are highly environmentally dependent. Invasions of amphibious species usually take place in both xeric and humid environments, yet they are relatively poorly understood. In this study, we analyzed the communities [...] Read more.
The effects of invasive species on the local community (e.g., structure and stability) are highly environmentally dependent. Invasions of amphibious species usually take place in both xeric and humid environments, yet they are relatively poorly understood. In this study, we analyzed the communities that were dominated by Alternanthera philoxeroides using ecological niche and interspecific association. A total of 66 species and 67 species were recorded in the xeric environment and humid environment, respectively. In both environments, species in family Gramineae, such as Echinochloa crusgalli and Cynodon dactylon, exhibited a higher level of importance values and greater ecological niche widths. The interspecific association and stability of the dominant species were weak and the dominant species were relatively independent of each other. In the xeric environment, A. philoxeroides was more compatible with E. crusgalli and C. dactylon in terms of ecological niche requirements and habitat suitability. In humid habitats, A. philoxeroides had a greater correlation with E. crusgalli, C. dactylon, and Persicaria lapathifolia, suggesting a higher possibility of concomitant occurrence. Overall, we suggested that during the revegetation after A. philoxeroides invasion, E. crusgalli and C. dactylon can be the alternative plants. Meanwhile, alternative control measures for A. philoxeroides invasion in agricultural fields should give more consideration to the use of plants with economic or ecological value. Full article
(This article belongs to the Special Issue Diseases Diagnosis, Prevention and Weeds Control in Crops)
Show Figures

Figure 1

19 pages, 2816 KiB  
Article
Transgenerational Herbivory Effects on Performance of Clonal Offspring of the Invasive Plant Alternanthera philoxeroides
by Qiu-Yue Fu, Cheng-Ling Yu, Ran Dong, Juan Shi, Fang-Li Luo, Jun-Qin Gao, Hong-Li Li, Bi-Cheng Dong and Fei-Hai Yu
Plants 2023, 12(5), 1180; https://doi.org/10.3390/plants12051180 - 4 Mar 2023
Cited by 4 | Viewed by 2277
Abstract
Interactions between alien plants and local enemies in introduced ranges may determine plant invasion success. However, little is known about whether herbivory-induced responses are transmitted across vegetative generations of plants and whether epigenetic changes are involved during this process. In a greenhouse experiment, [...] Read more.
Interactions between alien plants and local enemies in introduced ranges may determine plant invasion success. However, little is known about whether herbivory-induced responses are transmitted across vegetative generations of plants and whether epigenetic changes are involved during this process. In a greenhouse experiment, we examined the effects of herbivory by the generalist herbivore Spodoptera litura on the growth, physiology, biomass allocation and DNA methylation level of the invasive plant Alternanthera philoxeroides in the first- (G1), second- (G2) and third-generation (G3). We also tested the effects of root fragments with different branching orders (i.e., the primary- or secondary-root fragments of taproots) of G1 on offspring performance. Our results showed that G1 herbivory promoted the growth of the plants in G2 that sprouted from the secondary-root fragments of G1 but had a neutral or negative effect on the growth of the plants in G2 from the primary-root fragments. The growth of plants in G3 was significantly reduced by G3 herbivory but not affected by G1 herbivory. Plants in G1 exhibited a higher level of DNA methylation when they were damaged by herbivores than when they were not, while neither plants in G2 nor G3 showed herbivory-induced changes in DNA methylation. Overall, the herbivory-induced growth response within one vegetative generation may represent the rapid acclimatization of A. philoxeroides to the unpredictable generalist herbivores in the introduced ranges. Herbivory-induced trans-generational effects may be transient for clonal offspring of A. philoxeroides, which can be influenced by the branching order of taproots, but be less characterized by DNA methylation. Full article
(This article belongs to the Special Issue Plant Invasion 2022)
Show Figures

Figure 1

Back to TopTop