Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = AlTiZrN coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 21001 KiB  
Article
Wear Resistance and Failure Mode of Coatings Based on the ZrN System with the Introduction of Ti, Nb, and Hf Deposited on a Titanium Alloy Substrate
by Sergey Grigoriev, Catherine Sotova, Alexander Metel, Valery Zhylinski, Filipp Milovich, Anton Seleznev, Yanpeng Xue and Alexey Vereschaka
Metals 2025, 15(2), 163; https://doi.org/10.3390/met15020163 - 6 Feb 2025
Viewed by 932
Abstract
The article presents the results of a comparison of the wear resistance of coatings with a two-layer architecture (adhesion layer–wear-resistant layer) of Zr-ZrN, Zr-(Zr,Ti)N, Zr,Hf-(Zr,Hf)N, Zr,Nb-(Zr,Nb)N, Zr,Hf-(Ti,Zr,Hf)N, and Zr,Nb-(Ti,Zr,Nb)N coatings, deposited on a titanium alloy substrate. The wear resistance was studied using two [...] Read more.
The article presents the results of a comparison of the wear resistance of coatings with a two-layer architecture (adhesion layer–wear-resistant layer) of Zr-ZrN, Zr-(Zr,Ti)N, Zr,Hf-(Zr,Hf)N, Zr,Nb-(Zr,Nb)N, Zr,Hf-(Ti,Zr,Hf)N, and Zr,Nb-(Ti,Zr,Nb)N coatings, deposited on a titanium alloy substrate. The wear resistance was studied using two different counterbodies: Al2O3 and steel. When in contact with the Al2O3 counterbodies, the best wear resistance was demonstrated by samples with Zr,Hf-(Zr,Hf)N and Zr,Nb-(Zr,Nb,Ti)N coatings. In tests conducted in contact with the steel counterbody, the best resistance was demonstrated by samples with Zr-ZrN and Zr,Hf-(Ti,Zr,Hf)N coatings. The wear resistance of samples with (Zr,Hf)N and (Zr,Nb,Ti)N coatings was 2.5–3.3 times higher than that of the uncoated sample. The Zr,Nb adhesion layer ensures better adhesion of the coating to the substrate. It was found that not only the adhesion strength of the adhesion layer to the substrate and coating is of significant importance but also the strength of the adhesion layer itself. The surface film of titanium oxide must be completely etched off to ensure maximum strength of the adhesive bond between the coating and the substrate. It has been established that the adhesion of the coating and the titanium substrate is also affected by the characteristics of the outer (wear-resistant) coating layer, which is the composition and structure of the wear-resistant coating layer. Delamination can occur both at the boundary of the adhesive layer with the substrate and at the boundary of the wear-resistant and adhesive layers of the coating depending on the strength of the adhesive bonds in the corresponding pair. It is necessary to ensure a good combination of properties both in the substrate–adhesion layer system and in the adhesion layer–wear-resistant layer system. Full article
Show Figures

Figure 1

23 pages, 15156 KiB  
Article
Wear Resistance of Ceramic Cutting Inserts Using Nitride Coatings and Microtexturing by Electrical Discharge Machining
by Marina A. Volosova, Anna A. Okunkova, Elena Y. Kropotkina, Enver S. Mustafaev and Khasan I. Gkhashim
Eng 2025, 6(1), 11; https://doi.org/10.3390/eng6010011 - 9 Jan 2025
Cited by 1 | Viewed by 1297
Abstract
Today, the machining of heat-resistant alloys based on triple, quad, or penta equilibria high-entropy alloy systems of elements (ternary, quaternary, quinary iron-, titanium-, or nickel-rich alloys), including dual-phase by Gibb’s phase rule, steels of the austenite class, and nickel- and titanium-based alloys, are [...] Read more.
Today, the machining of heat-resistant alloys based on triple, quad, or penta equilibria high-entropy alloy systems of elements (ternary, quaternary, quinary iron-, titanium-, or nickel-rich alloys), including dual-phase by Gibb’s phase rule, steels of the austenite class, and nickel- and titanium-based alloys, are highly relevant for the airspace and aviation industry, especially for the production of gas turbine engines. Cutting tools in contact with those alloys should withstand intensive mechanical and thermal loads (tense state of 1.38·108–1.54·108 N/m2, temperature up to 900–1200 °C). The most spread material for those tools is cutting ceramics based on oxides, nitrides of the transition and post-transition metals, and metalloids. This work considers the wear resistance of the cutting insert of silicon nitride with two unique development coatings — titanium–zirconium nitride coating (Ti,Zr)N and complex quad nitride coating with TiN content up to 70% (Ti,Al,Cr,Si)N with a thickness of 3.8–4.0 µm on which microtextures were produced by the assisted electric discharge machining with the electrode-tool of ø0.25 mm. The microtextures were three parallel microgrooves of R0.13+0.02 mm at a depth of 0.025−0.05. The operational life was increased by ~1.33 when the failure criterion in turning nickel alloy was 0.4 mm. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

18 pages, 18179 KiB  
Article
Improving the Wear and Corrosion Resistance of Titanium Alloy Parts via the Deposition of DLC Coatings
by Alexander Metel, Catherine Sotova, Sergey Fyodorov, Valery Zhylinski, Vadzim Chayeuski, Filipp Milovich, Anton Seleznev, Yuri Bublikov, Kirill Makarevich and Alexey Vereschaka
C 2024, 10(4), 106; https://doi.org/10.3390/c10040106 - 16 Dec 2024
Cited by 4 | Viewed by 2013
Abstract
This article compares the properties of the diamond-like carbon (DLC) coating with those of ZrN and (Zr,Hf)N coatings deposited on the Ti-6Al-4V titanium alloy substrate. To improve substrate adhesion during the deposition of the DLC coating, preliminary etching with chromium ions was conducted, [...] Read more.
This article compares the properties of the diamond-like carbon (DLC) coating with those of ZrN and (Zr,Hf)N coatings deposited on the Ti-6Al-4V titanium alloy substrate. To improve substrate adhesion during the deposition of the DLC coating, preliminary etching with chromium ions was conducted, ensuring the formation of a chromium-saturated diffusion surface layer in the substrate. A Si-DLC layer followed by a pure DLC layer was then deposited. The hardness of the coatings, their surface morphology, fracture strength in the scratch test, and tribological properties and wear resistance in the pin-on-disk test in contact with Al2O3 and steel indenters were investigated. The structure of the DLC coating was studied using transmission electron microscopy, and its corrosion resistance in an environment simulating blood plasma was also investigated. In the pin-on-disk test in contact with Al2O3 and AISI 52100 indenters, the DLC-coated sample demonstrates a much lower friction coefficient and significantly better wear resistance compared to the nitride-coated and uncoated samples. Both nitride coatings—(Zr,Hf)N and ZrN—and the DLC coating slow down the corrosive dissolution of the base compared to the uncoated sample. The corrosion currents of the (Zr,Hf)N-coated samples are 37.01 nA/cm2, 20% higher than those of the ZrN-coated samples. The application of (Zr,Hf)N, ZrN, and DLC coatings on the Ti-6Al-4V alloy significantly inhibits dissolution currents (by 30–40%) and increases polarization resistance 1.5–2.0-fold compared to the uncoated alloy in 0.9% NaCl at 40 °C. Thus, the DLC coating of the described structure simultaneously provides effective wear and corrosion resistance in an environment simulating blood plasma. This coating can be considered in the manufacture of medical products (in particular, implants) from titanium alloys, including those functioning in the human body and subject to mechanical wear (e.g., knee joint endoprostheses). Full article
(This article belongs to the Special Issue High-Performance Carbon Materials and Their Composites)
Show Figures

Figure 1

17 pages, 7142 KiB  
Article
Wear and Corrosion Resistance of ZrN Coatings Deposited on Ti6Al4V Alloy for Biomedical Applications
by Stanislava Rabadzhiyska, Dimitar Dechev, Nikolay Ivanov, Tatyana Ivanova, Velichka Strijkova, Vesela Katrova, Velko Rupetsov, Nina Dimcheva and Stefan Valkov
Coatings 2024, 14(11), 1434; https://doi.org/10.3390/coatings14111434 - 11 Nov 2024
Cited by 7 | Viewed by 1576
Abstract
Zirconium nitrides films were synthesized on Ti6Al4V substrates at a bias voltage of −50 V, −80 V, −110 V and −150 V by the direct current (DC) reactive magnetron sputtering technique. The as-deposited coatings were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) [...] Read more.
Zirconium nitrides films were synthesized on Ti6Al4V substrates at a bias voltage of −50 V, −80 V, −110 V and −150 V by the direct current (DC) reactive magnetron sputtering technique. The as-deposited coatings were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The wear and corrosion resistance of the obtained ZrN coatings were evaluated to determine the possibility for their implementation in modern biomedical applications. It was found that the intensity of the diffraction peak of the Zr-N phase corresponding to the (1 1 1) crystallographic plane rose as the bias voltage increased, while the ZrN coatings’ thickness reduced from 1.21 µm to 250 nm. The ZrN films’ surface roughness rose up to 75 nm at −150 V. Wear tests showed an increase in the wear rate and wear intensity as the bias voltage increased. Corrosion studies of the ZrN coatings were carried out by three electrochemical methods: open circuit potential (OCP), cyclic voltammetry (polarization measurements) and electrochemical impedance spectroscopy (EIS). All electrochemical measurements confirmed that the highest protection to corrosion is the ZrN coating, which was deposited on the Ti6Al4V substrate at a bias voltage of −150 V. Full article
(This article belongs to the Special Issue Anti-corrosion Coatings of Metals and Alloys—New Perspectives)
Show Figures

Figure 1

20 pages, 10023 KiB  
Article
Features of the Application of Coatings Based on the ZrN System to Increase Resistance to Mechanical Wear and Corrosion of Titanium Alloy Products
by Marina Volosova, Valery Zhylinski, Catherine Sotova, Filipp Milovich, Anton Seleznev, Hanna Pyanka, Kirill Makarevich and Alexey Vereschaka
Coatings 2024, 14(10), 1304; https://doi.org/10.3390/coatings14101304 - 12 Oct 2024
Viewed by 1676
Abstract
The coatings of ZrN, (Zr,Ti)N, (Ti,Zr,Hf)N and (Ti,Zr,Nb)N deposited on the titanium alloy substrate were compared. The wear resistance in the pin-on-disk test together with the Al2O3 indenter and the corrosion resistance in 3.5% NaCl solution were studied. It was [...] Read more.
The coatings of ZrN, (Zr,Ti)N, (Ti,Zr,Hf)N and (Ti,Zr,Nb)N deposited on the titanium alloy substrate were compared. The wear resistance in the pin-on-disk test together with the Al2O3 indenter and the corrosion resistance in 3.5% NaCl solution were studied. It was found that the (Zr,Nb,Ti)N coating has the best resistance to wear, but has low corrosion resistance. The (Ti,Zr,Hf)N coating, on the contrary, has the best corrosion resistance, but low resistance to wear. The ZrN coating has good corrosion resistance combined with good resistance to wear. This coating is best suited for use in friction conditions with a ceramic counterbody under the influence of seawater. An important resource for increasing the properties of coatings is increasing their adhesion to the substrate, which can be achieved in two combined ways: (1) complete removal of the original oxide layer from the surface of the substrate and (2) the use of optimal compositions of the adhesive sublayer, which have not only high adhesive properties in relation to both the substrate and the coating, but also high strength. While the introduction of Nb into the ZrN coating composition increases wear resistance and the introduction of Hf increases corrosion resistance, the ZrN coating without additives best resists wear and corrosion simultaneously. Full article
Show Figures

Figure 1

21 pages, 13112 KiB  
Article
Mechanics and Cutting Performance of Multilayer Nanostructured TiAlN/TiSiN/ZrN Coatings
by Mingxing Li, Zhiyu Fan, Wenhai Zang and Jiankang Zhang
Coatings 2024, 14(10), 1255; https://doi.org/10.3390/coatings14101255 - 1 Oct 2024
Viewed by 1349
Abstract
The aerospace industry has made extensive use of titanium alloy material due to its exceptional qualities, which include high strength, low weight, and resistance to corrosion. However, these qualities also pose challenges for the material’s processing. This article examined the coated end mills [...] Read more.
The aerospace industry has made extensive use of titanium alloy material due to its exceptional qualities, which include high strength, low weight, and resistance to corrosion. However, these qualities also pose challenges for the material’s processing. This article examined the coated end mills for Ti6Al4V milling. First, an analysis was conducted on the solubility of Ti and Si elements. It was discovered that W and Co elements were far more soluble in Ti than Si and Zr elements, which could effectively stop element diffusion. Next, the base’s composition was planned. It was discovered that when the amount of Al increased, the base’s surface roughness increased, while its hardness and elastic modulus decreased. The binding force between the substrate and the base was greater at a 50:50 Ti:Al ratio. The H3/E2 was about 0.23 and the surface roughness was about 0.15 μm. TiSiN and TiSiN/ZrN functional layer properties were also examined. When Zr was added to TiSiN/ZrN coating, it improved the coating’s hardness and elastic modulus, increased density, and decreased surface roughness and friction coefficient when compared to TiSiN coating. There was an increase in hardness by 8.09% and an increase in elastic modulus by 9.65%. The average coefficient of friction decreased from 0.315 to 0.299. Lastly, an analysis of the initial and intermediate tool wear was done using the Ti6Al4V milling experiment. It was discovered that adding Zr element could successfully extend the tool’s cutting life by preventing adhesive wear. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

11 pages, 9819 KiB  
Article
Wear and Abrasion Resistance of Nitride Coatings on Ceramic Substrates Processed with Fast Argon Atoms
by Sergey N. Grigoriev, Alexander S. Metel, Marina A. Volosova, Enver S. Mustafaev and Yury A. Melnik
Surfaces 2024, 7(3), 714-724; https://doi.org/10.3390/surfaces7030046 - 4 Sep 2024
Viewed by 1035
Abstract
The surfaces of ceramic products are replete with numerous defects, such as those that appear during the diamond grinding of sintered SiAlON ceramics. The defective surface layer is the reason for the low effectiveness of TiZrN coatings under abrasive and fretting wear. An [...] Read more.
The surfaces of ceramic products are replete with numerous defects, such as those that appear during the diamond grinding of sintered SiAlON ceramics. The defective surface layer is the reason for the low effectiveness of TiZrN coatings under abrasive and fretting wear. An obvious solution is the removal of an up to 4-µm-thick surface layer containing the defects. It was proposed in the present study to etch the layer with fast argon atoms. At the atom energy of 5 keV and a 0.5 mA/cm2 current density, the ions were converted into fast atoms and the sputtering rate for the SiAlON samples reached 20 μm/h. No defects were observed in the microstructures of coatings deposited after beam treatment for half an hour. The treatment reduced the volumetric abrasive wear by five times. The fretting wear was reduced by three to four times. Full article
Show Figures

Figure 1

24 pages, 16048 KiB  
Article
Oxidation Performance of Nano-Layered (AlTiZrHfTa)Nx/SiNx Coatings Deposited by Reactive Magnetron Sputtering
by Djallel Eddine Touaibia, Sofiane Achache, Abdelhakim Bouissil, Fabrice Parent, Jaafar Ghanbaja, Alina Gorbunova, Pavel S. Postnikov, Mohamed Mehdi Chehimi, Frederic Schuster, Frederic Sanchette and Mohamed El Garah
Materials 2024, 17(12), 2799; https://doi.org/10.3390/ma17122799 - 7 Jun 2024
Cited by 2 | Viewed by 1424
Abstract
This work uses the direct current magnetron sputtering (DCMS) of equi-atomic (AlTiZrHfTa) and Si targets in dynamic sweep mode to deposit nano-layered (AlTiZrHfTa)Nx/SiNx refractory high-entropy coatings (RHECs). Transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), [...] Read more.
This work uses the direct current magnetron sputtering (DCMS) of equi-atomic (AlTiZrHfTa) and Si targets in dynamic sweep mode to deposit nano-layered (AlTiZrHfTa)Nx/SiNx refractory high-entropy coatings (RHECs). Transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) are used to investigate the effect of Si addition on the oxidation behavior of the nano-layered coatings. The Si-free nitride coating exhibits FCC structure and columnar morphology, while the Si-doped nitride coatings present a FCC (AlTiZrHfTa)N/amorphous-SiNx nano-layered architecture. The hardness decreases from 24.3 ± 1.0 GPa to 17.5 ± 1.0 GPa because of the nano-layered architecture, whilst Young’s modulus reduces from 188.0 ± 1.0 GPa to roughly 162.4 ± 1.0 GPa. By increasing the thickness of the SiNx nano-layer, kp values decrease significantly from 3.36 × 10−8 g2 cm−4 h−1 to 6.06 × 10−9 g2 cm−4 h−1. The activation energy increases from 90.8 kJ·mol−1 for (AlTiZrHfTa)Nx nitride coating to 126.52 kJ·mol−1 for the (AlTiZrHfTa)Nx/SiNx nano-layered coating. The formation of a FCC (AlTiZrHfTa)-Nx/a-SiNx nano-layered architecture results in the improvement of the resistance to oxidation at high temperature. Full article
(This article belongs to the Special Issue Preparation of Thin Films by PVD/CVD Deposition Techniques)
Show Figures

Figure 1

17 pages, 5879 KiB  
Article
Study on Microstructure and Tribological Mechanism of Mo Incorporated (AlCrTiZr)N High-Entropy Ceramics Coatings Prepared by Magnetron Sputtering
by Jia Zheng, Yiman Zhao, Jingchuan Li, Sam Zhang, Jian Zhang and Deen Sun
Nanomaterials 2024, 14(10), 814; https://doi.org/10.3390/nano14100814 - 7 May 2024
Cited by 4 | Viewed by 1616
Abstract
(AlCrTiZrMox)N coatings with varying Mo content were successfully prepared using a multi-target co-deposition magnetron sputtering system. The results reveal that the Mo content significantly affects the microstructure, hardness, fracture toughness, and tribological behavior of the coatings. As the Mo content in [...] Read more.
(AlCrTiZrMox)N coatings with varying Mo content were successfully prepared using a multi-target co-deposition magnetron sputtering system. The results reveal that the Mo content significantly affects the microstructure, hardness, fracture toughness, and tribological behavior of the coatings. As the Mo content in the coatings increases gradually, the preferred orientation changes from (200) to (111). The coatings consistently exhibit a distinct columnar structure. Additionally, the hardness of the coatings increases from 24.39 to 30.24 GPa, along with an increase in fracture toughness. The friction coefficient is reduced from 0.72 to 0.26, and the wear rate is reduced by 10 times. During the friction process, the inter-column regions of the coatings are initially damaged, causing the wear track to exhibit a wavy pattern. Greater frictional heat is generated at the crest of the wave, resulting in the formation of a MoO2 lubricating layer. The friction reaction helps to reduce the shear force during friction, demonstrating the lower friction coefficient of the (AlCrTiZrMox)N coatings. Both the hardness and fracture toughness work together to reduce the wear rate, and the (AlCrTiZrMox)N coatings show excellent wear resistance. Most notably, although the columnar structure plays a negative role in the hardness, it contributes greatly to the wear resistance. Full article
(This article belongs to the Special Issue Thin-Film Processing and Deposition Techniques)
Show Figures

Figure 1

16 pages, 5795 KiB  
Article
A First-Principles Study of Mechanical and Electronic Properties of Cr0.5-xAl0.5TMxN Hard Coatings (TM = Ti, V, Y, Zr, Hf, and Ta)
by Weike Dai, You Zou, Jiong Wang, Yue Su and Donglan Zhang
Materials 2024, 17(5), 1070; https://doi.org/10.3390/ma17051070 - 26 Feb 2024
Cited by 3 | Viewed by 1298
Abstract
The structural, mechanical, and electronic properties of cubic Cr0.5-xAl0.5TMxN, doped with TM (transition metal) elements (TM = Ti, V, Y, Zr, Hf, and Ta) at low concentrations (x = 0.03 and 0.06), was investigated by first-principles calculations. [...] Read more.
The structural, mechanical, and electronic properties of cubic Cr0.5-xAl0.5TMxN, doped with TM (transition metal) elements (TM = Ti, V, Y, Zr, Hf, and Ta) at low concentrations (x = 0.03 and 0.06), was investigated by first-principles calculations. The results of the structural properties calculations reveal that the addition of Ti, Y, Hf, Zr, and Ta expand the volume, while V has the opposite effect. All doped compounds are thermodynamically stable, and Cr0.5-xAl0.5TMxN with TM = Ti is energetically more favorable than other doped compounds. At the same doping concentration, Cr0.5-xAl0.5VxN possesses the highest stiffness, hardness, and resistance to external forces due to its greatest mechanical properties, and Cr0.5-xAl0.5TaxN possesses the highest elastic anisotropy and the lowest Young’s modulus. Substituting Cr atoms with TM atoms in a stepwise manner results in a decrease in the bulk modulus, shear modulus, Young’s modulus, and theoretical hardness of Cr0.5-xAl0.5TMxN, while increasing its toughness. Based on the calculation results of the total and partial density of states of Cr0.5Al0.5N and Cr0.47Al0.5TM0.03N, all compounds exhibit metallic behavior as indicated by the finite density of states at the Fermi level. The contribution of Ti-3d, V-3d, and Ta-3d orbitals at Fermi level is significantly higher than that of other TM atoms, resulting in a more pronounced metallic character for Cr0.47Al0.5Ti0.03N, Cr0.47Al0.5V0.03N, and Cr0.47Al0.5Ta0.03N. Full article
(This article belongs to the Special Issue Light Alloys and High-Temperature Alloys (Volume II))
Show Figures

Figure 1

22 pages, 22043 KiB  
Article
Development of Multicomponent Nanostructured Nitride Coatings to Protect against Corrosion Products from Titanium Alloy
by Alexey Vereschaka, Nikolai Cherenda, Catherine Sotova, Vladimir Uglov, Olga Reva, Anna Basalai, Alexander Isobello and Natalia Baranova
Coatings 2023, 13(12), 2028; https://doi.org/10.3390/coatings13122028 - 30 Nov 2023
Cited by 7 | Viewed by 1705
Abstract
Phase-structural characteristics and the corrosion resistance of coatings ZrN, (Zr,Ti)N, (Zr,Hf)N, (Zr,Nb)N, (Ti,Zr,Hf)N and (Ti,Zr,Nb)N, which were deposited on a Ti6Al-4V titanium alloy substrate, were investigated. It was found that the titanium substrate has a crystalline structure, including grains with high (up to [...] Read more.
Phase-structural characteristics and the corrosion resistance of coatings ZrN, (Zr,Ti)N, (Zr,Hf)N, (Zr,Nb)N, (Ti,Zr,Hf)N and (Ti,Zr,Nb)N, which were deposited on a Ti6Al-4V titanium alloy substrate, were investigated. It was found that the titanium substrate has a crystalline structure, including grains with high (up to 24 at.%) and low (less than 2 at.%) vanadium content. Thus, during the deposition process, the coating can form adhesive bonds with local areas of the substrate that have quite different compositions. The diffusion of the coating elements into the substrate takes place up to a depth of 200 nm. The diffusion of titanium alloy elements (primarily titanium and vanadium) into the adhesive sublayer of the coating to a depth of 100 nm is also observed. Corrosion studies were carried out in 1M solutions with acidic (H2SO4), alkaline (NaOH) and neutral (NaCl) media at a constant temperature of 50 °C. The actual change in the mass of the samples during corrosion tests is extremely small. The protective coatings under study have very high anti-corrosion characteristics and practically do not react with solutions that imitate the liquid environments of the human body. Full article
(This article belongs to the Special Issue Technologies of Coatings and Surface Hardening for Tool Industry III)
Show Figures

Figure 1

22 pages, 8599 KiB  
Article
Simple Deconvolution Models for Evaluating the True Microhardness of Thin Nanostructured Coatings Deposited via an Advanced Physical Vapor Deposition Technique
by Uldis Kanders, Karlis Kanders, Ernests Jansons, Janis Lungevics, Raimonds Sirants, Armands Leitans and Irina Boiko
Lubricants 2023, 11(12), 501; https://doi.org/10.3390/lubricants11120501 - 26 Nov 2023
Cited by 2 | Viewed by 1765
Abstract
This article discusses the micromechanical properties and true microhardness determination of nanostructured tribological coatings (NTCs) based on a multilayered alternating nitride/carbonitride bilayer substructure for transition metals. The constituent nitride/carbonitride bilayers in the superlattice structure of the NTC were alloyed with refractory metals, denoted [...] Read more.
This article discusses the micromechanical properties and true microhardness determination of nanostructured tribological coatings (NTCs) based on a multilayered alternating nitride/carbonitride bilayer substructure for transition metals. The constituent nitride/carbonitride bilayers in the superlattice structure of the NTC were alloyed with refractory metals, denoted as Me = Me1 or Me2= Cr, Hf, Nb, W, and Zr. The resulting NTC coatings were deposited onto 100Cr6 steel substrates using an advanced physical vapor deposition (PVD) technique, referred to here as high-power ion-plasma magnetron sputtering (HiPIPMS). The comprising crystalline nanometer-scale TiAlSiMe1-N/TiMe2-CN nanoparticles strengthened by Me additives significantly increased the NTC microhardness to over 3200 HV. The primary focus of this research was to determine the true microhardness of the NTC film samples. The apparent microhardness (Ha) of the film/substrate system for various NTC samples was measured during microindentation testing using the Vickers method. Nine NTC samples were tested, each generating a corresponding microindentation dataset containing between 430 and 640 imprints, depending on the specific NTC sample. These datasets were analyzed using three distinct empirical approaches: (i) the inverse power-law model (IPL-Model), (ii) the sigmoid-like decay model (SLD-Model), and (iii) the error function model (ERF-Model). The observed solid correlation between the proposed models and experiments suggests that the true microhardness estimates (Hf) obtained through the empirical mathematical modeling approach are reliable. Full article
(This article belongs to the Special Issue Tribological Behavior of Metal Coatings)
Show Figures

Figure 1

26 pages, 17033 KiB  
Article
Technological Principles of Complex Plasma-Beam Surface Treatment of Al2O3/TiC and SiAlON Ceramics
by Sergey N. Grigoriev, Marina A. Volosova, Maxim A. Lyakhovetsky, Artem P. Mitrofanov, Nataliya V. Kolosova and Anna A. Okunkova
J. Manuf. Mater. Process. 2023, 7(6), 205; https://doi.org/10.3390/jmmp7060205 - 21 Nov 2023
Cited by 3 | Viewed by 2260
Abstract
Thermomechanical action during high-performance diamond grinding of sintered cutting Al2O3/TiC and SiAlON ceramics leads to increased defectiveness of the surface layer of the deposited TiZrN and CrAlSiN/DLC coatings. It predetermines the discontinuous and porous coatings and reduces its effectiveness [...] Read more.
Thermomechanical action during high-performance diamond grinding of sintered cutting Al2O3/TiC and SiAlON ceramics leads to increased defectiveness of the surface layer of the deposited TiZrN and CrAlSiN/DLC coatings. It predetermines the discontinuous and porous coatings and reduces its effectiveness under abrasive exposure and fretting wear. The developed technological approach is based on “dry” etching with beams of accelerated argon atoms with an energy of 5 keV for high-performance removal of defects. It ensures the removal of the defective layer on ceramics and reduces the index of defectiveness (the product of defects’ density per unit surface area) by several orders of magnitude, compared with diamond grinding. There are no pronounced discontinuities and pores in the microstructure of coatings. Under mechanical loads, the coatings ensure a stable boundary anti-friction film between the ceramics and counter body that significantly increases the wear resistance of samples. The treatment reduces the volumetric wear under 20 min of abrasive action by 2 and 6 times for TiZrN and CrAlSiN/DLC coatings for Al2O3/TiC and by 5 and 23 times for SiAlON. The volumetric wear under fretting wear at 105 friction cycles is reduced by 2–3 times for both coatings for Al2O3/TiC and by 3–4 times for SiAlON. Full article
Show Figures

Figure 1

23 pages, 12284 KiB  
Article
Influence of Cr-Al-Si-N and DLC-Si Thin Coatings on Wear Resistance of Titanium Alloy Samples with Different Surface Conditions
by Marina A. Volosova, Maxim A. Lyakhovetsky, Artem P. Mitrofanov, Yury A. Melnik, Anna A. Okunkova and Sergey V. Fedorov
Coatings 2023, 13(9), 1581; https://doi.org/10.3390/coatings13091581 - 11 Sep 2023
Cited by 2 | Viewed by 1938
Abstract
The influence of Cr-Al-Si-N, DLC-Si, and Cr-Al-Si-N/DLC-Si thin coatings deposited on titanium alloy (Ti-Al-Zr-Sn-Nb system) samples with different surface reliefs on wear resistance under abrasion and fretting conditions was investigated. The influence of coatings on the initial microrelief after finishing milling and lapping [...] Read more.
The influence of Cr-Al-Si-N, DLC-Si, and Cr-Al-Si-N/DLC-Si thin coatings deposited on titanium alloy (Ti-Al-Zr-Sn-Nb system) samples with different surface reliefs on wear resistance under abrasion and fretting conditions was investigated. The influence of coatings on the initial microrelief after finishing milling and lapping with micro-grained abrasive was studied by profilometry. The Martens hardness (H) and the elastic modulus (E) were determined through nanoindentation. The H/E ratio was 0.08, 0.09, and 0.13, respectively. The adhesion bond strength and H/E ratio relationship was revealed using a scratch testing analysis. Volumetric wear after 20 min of abrasive exposure was reduced by 11, 25, and 31 times for Cr-Al-Si-N, DLC-Si, and Cr-Al-Si-N/DLC-Si coatings compared to uncoated ones after milling and by 15, 32, and 35 times after lapping. Volumetric wear under fretting conditions was reduced by 1.8 and 4 times for Cr-Al-Si-N coating after milling and lapping. It was reduced by tens of times for DLC-Si coating and by hundreds of times for Cr-Al-Si-N/DLC-Si coating. The Cr-Al-Si-N/DLC-Si coating (a thickness of 3.1 ± 0.15/2.0 ± 0.1 µm) is characterized by the best combination of hardness (24 ± 1 GPa), elastic modulus (185 ± 8 GPa), and friction coefficient (0.04–0.05 after milling and 0.1 after lapping) and ensures maximum wear resistance under a wide range of loads. The novelty of the work is that those coatings were not practically under study concerning the deposition on the titanium alloy regarding typical mechanical loads such as abrasive and fretting wear but are of interest to the aviation and aerospace industry. Full article
(This article belongs to the Special Issue Technologies of Coatings and Surface Hardening for Tool Industry III)
Show Figures

Figure 1

9 pages, 2529 KiB  
Article
Features of Tribooxidation of the High-Entropy Coating (AlCrZrTiTa)N during Dry High-Speed Cutting
by Anatoly Kovalev, Dmitry Wainstein, Egor Konovalov, Vladimir Vakhrushev, German Fox-Rabinovich, Michael Fox-Rabinovich, Stanislav Dmitrievskii and Alexandr Tomchuk
Coatings 2023, 13(9), 1508; https://doi.org/10.3390/coatings13091508 - 25 Aug 2023
Cited by 4 | Viewed by 1424
Abstract
The high-entropy PVD coating (AlCrZrTiTa)N, characterized by its high hardness (50–60 GPa), elastic modulus above 300 MPa, and high heat resistance up to 1300 °C, is used for coating cutting tools operating under extreme metalworking conditions. The nanostructured monolayer 3 μm PVD coating [...] Read more.
The high-entropy PVD coating (AlCrZrTiTa)N, characterized by its high hardness (50–60 GPa), elastic modulus above 300 MPa, and high heat resistance up to 1300 °C, is used for coating cutting tools operating under extreme metalworking conditions. The nanostructured monolayer 3 μm PVD coating was deposited on cutting plates in the hybrid arc deposition PVD coater. The coating had an amorphous nanocrystalline microstructure with a grain size of about 10–50 nm. The samples of SS 304 steel were investigated during dry high-speed (600 m/min) cutting. Raman spectroscopy was used to study the formation of tribooxides on the tool surface at the running-in stage of the cutting. After 130 m of cutting, Cr2O3 oxide appears on the wear surface while other elements are bound with N atoms. When the cutting length is increased to up to 260 m, oxide Al2O3 · ZrO2 (mullite) and amorphous oxides TaO2 and CrO2 are formed. The method EELFS made it possible to determine the amorphous nanocrystalline structure of triboceramics based on CrO2 and Al2O3 · ZrO2. The nearest atomic surrounding of Cr-Cr, O-O, and Cr-O and their subsequent comparison with the available literature data allow us to calculate the equilibrium lattice constants of the CrO2 unit cell, which are equal to (a, b) = 4.3754 Å and c = 0.5927. The triboceramic films on the base of non-equilibrium mullite Al2O3·ZrO2 have an amorphous structure. In the first coordination sphere, the interatomic distances of Zr-O and Al-O were 1.79 and 1.89 Å. An accelerated adaptive reaction to extreme external stimuli, at the very beginning of the running-in stage, is established. The tribological adaptability of the high-entropy ultra-fine amorphous nanocrystalline coating under extremely loaded dry high-speed cutting is based on non-equilibrium phenomena: the partial oxidation of fragments of the nitride and dynamic formation of protective tribooxides, which have a good thermal barrier and frictional properties. These factors interact synergistically and determine the life of the cutting tool. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

Back to TopTop