Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = AgSnO2 contact

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3340 KiB  
Article
Simulation and Experimental Investigation on the Performance of Co-, Bi-, and La-Doped AgSnO2 Contact Interface Models
by Yihong Lv, Jingqin Wang, Yuxuan Wang, Yancai Zhu and Ying Zhang
Coatings 2025, 15(8), 885; https://doi.org/10.3390/coatings15080885 - 29 Jul 2025
Viewed by 255
Abstract
The inferior electrical conductivity and elevated hardness of AgSnO2 electrical contact materials have impeded their development. To investigate the effects of Co, Bi, and La doping on the stability and electrical properties of AgSnO2, this study established interfacial models of [...] Read more.
The inferior electrical conductivity and elevated hardness of AgSnO2 electrical contact materials have impeded their development. To investigate the effects of Co, Bi, and La doping on the stability and electrical properties of AgSnO2, this study established interfacial models of doped AgSnO2 based on first-principles calculations initiated from the atomic structures of constituent materials, subsequently computing electronic structure parameters. The results indicate that doping effectively enhances the interfacial stability and bonding strength of AgSnO2 and thereby predicted improved electrical contact performance. Doped SnO2 powders were prepared experimentally using the sol–gel method, and AgSnO2 contacts were fabricated using high-energy ball milling and powder metallurgy. Testing of wettability and electrical contact properties revealed reductions in arc energy, arcing time, contact resistance, and welding force post-doping. Three-dimensional profilometry and scanning electron microscopy (SEM) were employed to characterize electrical contact surfaces, elucidating the arc erosion mechanism of AgSnO2 contact materials. Among the doped variants, La-doped electrical contact materials exhibited optimal performance (the lowest interfacial energy was 1.383 eV/Å2 and wetting angle was 75.6°). The mutual validation of experiments and simulations confirms the feasibility of the theoretical calculation method. This study provides a novel theoretical method for enhancing the performance of AgSnO2 electrical contact materials. Full article
Show Figures

Figure 1

22 pages, 4895 KiB  
Article
Ore Genesis of the Huanggang Iron-Tin-Polymetallic Deposit, Inner Mongolia: Constraints from Fluid Inclusions, H–O–C Isotopes, and U-Pb Dating of Garnet and Zircon
by Hanwen Xue, Keyong Wang, Qingfei Sun, Junchi Chen, Xue Wang and Haoming Li
Minerals 2025, 15(5), 518; https://doi.org/10.3390/min15050518 - 14 May 2025
Viewed by 508
Abstract
The Huanggang iron-tin deposit, located in the southern Greater Khingan Range, is one of the largest Fe-Sn deposits in Northern China (NE China). Iron-tin mineralization occurs mainly in the contact zone between granitoid intrusions and the marble of the Huanggang and Dashizhai formations. [...] Read more.
The Huanggang iron-tin deposit, located in the southern Greater Khingan Range, is one of the largest Fe-Sn deposits in Northern China (NE China). Iron-tin mineralization occurs mainly in the contact zone between granitoid intrusions and the marble of the Huanggang and Dashizhai formations. Six mineralization stages are identified: (I) anhydrous skarn, (II) hydrous skarn, (III) cassiterite-quartz-calcite, (IV) pyrite-arsenopyrite-quartz-fluorite, (V) polymetallic sulfides-quartz, and (VI) carbonate ones. Fluid inclusions (FIs) analysis reveals that Stage I garnet and Stage II–III quartz host liquid-rich (VL-type), vapor-rich two-phase (LV-type), and halite-bearing three-phase (SL-type) inclusions. Stage IV quartz and fluorite, along with Stage V quartz, are dominated by VL- and LV-type inclusions, while Stage VI calcite contains exclusively VL-type inclusions. The FIs in Stages I to VI homogenized at 392–513, 317–429, 272–418, 224–347, 201–281, and 163–213 °C, with corresponding salinities of 3.05–56.44, 2.56–47.77, 2.89–45.85, 1.39–12.42, 0.87–10.62, and 4.48–8.54 wt% NaCl equiv., respectively. The H–O–C isotopes data imply that fluids of the anhydrous skarn stage (δD = −101.2 to −91.4‰, δ18OH2O = 5.0 to 6.0‰) were of magmatic origin, the fluids of hydrous skarn and oxide stages (δD = −106.3 to −104.7‰, δ18OH2O = 4.3 to 4.9‰) were characterized by fluid mixing with minor meteoric water, while the fluids of sulfide stages (δD = −117.4 to −108.6‰, δ18OH2O = −3.4 to 0.3‰, δ13CV-PDB= −12.2 to −10.9‰, and δ18OV-SMOW = −2.2 to −0.7‰) were characterized by mixing of significant amount of meteoric water. The ore-forming fluids evolved from a high-temperature, high-salinity NaCl−H2O boiling system to a low-temperature, low-salinity NaCl−H2O mixing system. The garnet U-Pb dating constrains the formation of skarn to 132.1 ± 4.7 Ma (MSWD = 0.64), which aligns, within analytical uncertainty, with the weighted-mean U−Pb age of zircon grains in ore-related K-feldspar granite (132.6 ± 0.9 Ma; MSWD = 1.5). On the basis of these findings, the Huanggang deposit, formed in the Early Cretaceous, is a typical skarn-type system, in which ore precipitation was principally controlled by fluid boiling and mixing. Full article
Show Figures

Figure 1

30 pages, 7272 KiB  
Article
A Genetic Model for the Biggenden Gold-Bearing Fe Skarn Deposit, Queensland, Australia: Geology, Mineralogy, Isotope Geochemistry, and Fluid Inclusion Studies
by Mansour Edraki, Alireza K. Somarin and Paul M. Ashley
Minerals 2025, 15(1), 95; https://doi.org/10.3390/min15010095 - 20 Jan 2025
Cited by 1 | Viewed by 1542
Abstract
The Biggenden gold-bearing Fe skarn deposit in southeast Queensland, Australia, is a calcic magnetite skarn that has been mined for Fe and gold (from the upper portion of the deposit). Skarn has replaced volcanic and sedimentary rocks of the Early Permian Gympie Group, [...] Read more.
The Biggenden gold-bearing Fe skarn deposit in southeast Queensland, Australia, is a calcic magnetite skarn that has been mined for Fe and gold (from the upper portion of the deposit). Skarn has replaced volcanic and sedimentary rocks of the Early Permian Gympie Group, which formed in different tectonic settings, including island arc, back arc, and mid-ocean ridge. This group has experienced a hornblende-hornfels grade of contact metamorphism due to the intrusion of the Late Triassic Degilbo Granite. The intrusion is a mildly oxidized I-type monzogranite that has geochemical characteristics intermediate between those of granitoids typically associated with Fe-Cu-Au and Sn-W-Mo skarn deposits. The skarn mineralogy indicates that there was an evolution from prograde to various retrograde assemblages. Prograde garnet (Adr11-99Grs1-78Alm0-8Sps0-11), clinopyroxene (Di30-92Hd7-65Jo0-9), magnetite, and scapolite formed initially. Epidote and Cl-bearing amphibole (mainly ferropargasite) were the early retrograde minerals, followed by chlorite, calcite, actinolite, quartz, and sulfides. Late-stage retrograde reactions are indicated by the development of nontronite, calcite, and quartz. Gold is mainly associated with sulfide minerals in the retrograde sulfide stage. The fluids in equilibrium with the ore-stage calcites had δ13C and δ18O values that indicate deposition from magmatically derived fluids. The calculated δ18O values of the fluids in equilibrium with the skarn magnetite also suggest a magmatic origin. However, the fluids in equilibrium with epidote were a mixture of magmatic and meteoric water, and the fluids that deposited chlorite were at least partly meteoric. δD values for the retrograde amphibole and epidote fall within the common range for magmatic water. Late-stage chlorite was deposited from metasomatic fluids depleted in deuterium (D), implying a meteoric water origin. Sulfur isotopic compositions of the Biggenden sulfides are similar to other skarn deposits worldwide and indicate that sulfur was most probably derived from a magmatic source. Based on the strontium (87Sr/86Sr) and lead (206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb) isotope ratios, the volcanic and sedimentary rocks of the Gympie Group may have contributed part of the metals to the hydrothermal fluids. Lead isotope data are also consistent with a close age relationship between the mineralization at Biggenden and the crystallization of the Degilbo Granite. Microthermometric analysis indicates that there is an overall decrease in fluid temperature and salinity from the prograde skarn to retrograde alterations. Fluid inclusions in prograde skarn calcite and garnet yield homogenization temperatures of 500 to 600 °C and have salinities up to 45 equivalent wt % NaCl. Fluid inclusions in quartz and calcite from the retrograde sulfide-stage homogenized between 280 and 360 °C and have lower salinities (5–15 equivalent wt % NaCl). In a favored genetic model, hydrothermal fluids originated from the Degilbo Granite at depth and migrated through the shear zone, intrusive contact, and permeable Gympie Group rocks and leached extra Fe and Ca and deposited magnetite upon reaction with the adjacent marble and basalt. Full article
(This article belongs to the Special Issue Geochemistry and Genesis of Hydrothermal Ore Deposits)
Show Figures

Figure 1

24 pages, 3518 KiB  
Article
A Numerical Simulation Study of the Impact of Kesterites Hole Transport Materials in Quantum Dot-Sensitized Solar Cells Using SCAPS-1D
by Sindisiwe Jakalase, Azile Nqombolo, Edson L. Meyer, Mojeed A. Agoro and Nicholas Rono
Nanomaterials 2024, 14(24), 2016; https://doi.org/10.3390/nano14242016 - 15 Dec 2024
Cited by 3 | Viewed by 1636
Abstract
Energy generation and storage are critical challenges for developing economies due to rising populations and limited access to clean energy resources. Fossil fuels, commonly used for energy production, are costly and contribute to environmental pollution through greenhouse gas emissions. Quantum dot-sensitized solar cells [...] Read more.
Energy generation and storage are critical challenges for developing economies due to rising populations and limited access to clean energy resources. Fossil fuels, commonly used for energy production, are costly and contribute to environmental pollution through greenhouse gas emissions. Quantum dot-sensitized solar cells (QDSSCs) offer a promising alternative due to their stability, low cost, and high-power conversion efficiency (PCE) compared to other third-generation solar cells. Kesterite materials, known for their excellent optoelectronic properties and chemical stability, have gained attention for their potential as hole transport layer (HTL) materials in solar cells. In this study, the SCAPS-1D numerical simulator was used to analyze a solar cell with the configuration FTO/TiO2/MoS2/HTL/Ag. The electron transport layer (ETL) used was titanium dioxide (TiO2), while Cu2FeSnS4 (CFTS), Cu2ZnSnS4 (CZTSe), Cu2NiSnS4 (CNTS), and Cu2ZnSnSe4 (CZTSSe) kesterite materials were evaluated as HTLs. MoS2 quantum dot served as the absorber, with FTO as the anode and silver as the back metal contact. The CFTS material outperformed the others, yielding a PCE of 25.86%, a fill factor (FF) of 38.79%, a short-circuit current density (JSC) of 34.52 mA cm−2, and an open-circuit voltage (VOC) of 1.93 V. This study contributes to the advancement of high-performance QDSSCs. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

17 pages, 5464 KiB  
Article
Kinetic Study of Oxidation of Ag-Sn-Zn Solid Solution Powders via Hot Mechanochemical Processing
by Danny Guzmán, Augusto Figueroa, Alvaro Soliz, Alexis Guzmán, Claudio Aguilar, Felipe M. Galleguillos-Madrid, Carlos Portillo and Syed Ismat Shah
Materials 2024, 17(20), 5115; https://doi.org/10.3390/ma17205115 - 19 Oct 2024
Viewed by 1453
Abstract
Ag-based electrical contact materials are essential in low-voltage devices such as relays, switches, circuit breakers, and contactors. Historically, Ag-CdO composites have been preferred due to their superior electrical and thermal conductivities, resistance to arcing, and mechanical strength. However, the toxicity of Cd has [...] Read more.
Ag-based electrical contact materials are essential in low-voltage devices such as relays, switches, circuit breakers, and contactors. Historically, Ag-CdO composites have been preferred due to their superior electrical and thermal conductivities, resistance to arcing, and mechanical strength. However, the toxicity of Cd has led to increased restrictions on its use. With the aim of contributing to the development of a new environment-friendly, Ag-Zn2SnO4-based electrical contact material, the kinetics of the hot mechanochemical oxidation of a Ag-Sn-Zn solid solution obtained by mechanical alloying were investigated. The results indicated that the proposed synthesis route produces Ag-based composites with a homogeneous distribution of nanoscale Zn2SnO4 precipitates, which is unattainable through conventional material processing methods. This kinetic study established that the mechanochemical oxidation of the Ag-Sn-Zn solid solution follows the Johnson–Mehl–Avrami–Kolmogorov model. An analysis of the microstructure and the relationship between the activation energy “Ea” and the Avrami exponent “n” from experimental data fitting suggests that the primary mechanism for the oxidation of the Ag-Sn-Zn solid solution during the hot mechanochemical process is related to the three-dimensional oxide growth being limited by oxygen diffusion after its immediate initial nucleation. Full article
(This article belongs to the Special Issue Study on Advanced Metal Matrix Composites (2nd Edition))
Show Figures

Figure 1

13 pages, 3878 KiB  
Article
Wettability of Sn-3.0Ag-0.5Cu Solder Reinforced with TiO2 and Al2O3 Nanoparticles at Different Reflow Times
by Nur Haslinda Mohamed Muzni, Ervina Efzan Mhd Noor and Mohd Mustafa Al Bakri Abdullah
Nanomaterials 2023, 13(20), 2811; https://doi.org/10.3390/nano13202811 - 23 Oct 2023
Cited by 6 | Viewed by 2074
Abstract
This study investigated the influence of reinforcing 0.50 wt.% of titanium oxide (TiO2) and aluminium oxide (Al2O3) nanoparticles on the wettability performance of a Sn-3.0Ag-0.5Cu (SAC305) solder alloy. The thermal properties of the SAC305 nanocomposite solder are [...] Read more.
This study investigated the influence of reinforcing 0.50 wt.% of titanium oxide (TiO2) and aluminium oxide (Al2O3) nanoparticles on the wettability performance of a Sn-3.0Ag-0.5Cu (SAC305) solder alloy. The thermal properties of the SAC305 nanocomposite solder are comparable with thos of an SAC305 solder with a peak temperature window within a range of 240 to 250 °C. The wetting behaviour of the non-reinforced and reinforced SAC305 nanocomposite solder was determined and measured using the contact angle and spreading area and the relationships between them were studied. There is an increment in the spreading area (5.6 to 7.32 mm) by 30.71% and a reduction in the contact angle (26.3 to 18.6°) by 14.29% with an increasing reflow time up to 60 s when reinforcing SAC305 solder with 0.50 wt.% of TiO2 and Al2O3 nanoparticles. The SAC305 nanocomposite solder has a better wetting performance compared with the SAC305 solder. As the reflow time increased, the spreading area increased and the contact angle decreased, which restricted intermetallic compound growth and thus improved wettability performance Full article
Show Figures

Figure 1

28 pages, 8500 KiB  
Review
Metallogenic Model and Prospecting Progress of the Qiandongshan–Dongtangzi Large Pb-Zn Deposit, Fengtai Orefield, West Qinling Orogeny
by Ruiting Wang, Zhenjia Pang, Qingfeng Li, Geli Zhang, Jiafeng Zhang, Huan Cheng, Wentang Wu and Hongbo Yang
Minerals 2023, 13(9), 1163; https://doi.org/10.3390/min13091163 - 31 Aug 2023
Cited by 3 | Viewed by 1504
Abstract
The Qiandongshan–Dongtangzi large Pb-Zn deposit is located in the Fengxian–Taibai (abbr. Fengtai) polymetallic orefield. The ore bodies primarily occur within and around the contact surface between the limestone of the Gudaoling Formation and the phyllite of the Xinghongpu Formation, which are clearly controlled [...] Read more.
The Qiandongshan–Dongtangzi large Pb-Zn deposit is located in the Fengxian–Taibai (abbr. Fengtai) polymetallic orefield. The ore bodies primarily occur within and around the contact surface between the limestone of the Gudaoling Formation and the phyllite of the Xinghongpu Formation, which are clearly controlled by anticline and specific lithohorizon. Magmatic rocks are well developed in the mining area, consisting mainly of granitoid plutons and mafic–felsic dikes. Previous metallogenic geochronology studies have yielded a narrow range of ages between 226 and 211 Ma, overlapped by the extensive magmatism during the Late Triassic period in this region. The ω(Co)/ω(Ni) ratio of pyrite in lead–zinc ore ranges from 4.44 to 15.57 (avg. 8.56), implying that its genesis is probably related to volcanic and magmatic-hydrothermal fluids. The δD and δ18O values (ranging from −94.2‰ to −82‰, and 18.89‰ to 20.72‰, respectively,) of the ore-bearing quartz indicate that the fluids were perhaps derived from a magmatic source. The δ34S values of ore-related sulfides display a relatively narrow range of 4.29‰ to 9.63‰ and less than 10‰, resembling those of magmatic-hydrothermal origin Pb-Zn deposits. The Pb isotopic composition of the sulfides from the Qiandongshan–Dongtangzi Pb-Zn deposit (with 206Pb/204Pb ratios of 18.06 to 18.14, the 207Pb/204Pb ratios of 15.61 to 15.71, and 208Pb/204Pb ratios of 38.15 to 38.50) is similar to that of the Late Triassic Xiba granite pluton, suggesting that they share the same Pb source. The contents of W, Mo, As, Sb, Hg, Bi, Cd, and other elements associated with magmatic-hydrothermal fluids are high in lead–zinc ores, and the contents of Sn, W, Co, and Ni are also enriched in sphalerite. The contents of trace elements and rare earth elements in the ore are similar to those in the Xiba granite pluton, and they maybe propose a magmatic-hydrothermal origin as well. As a result of this information, the Qiandongshan–Dongtangzi large Pb-Zn deposit may be classified as a magmatic hydrothermal stratabound type, with the Si/Ca contact area being the ore-forming structural plane. Thus, a mineralization model has been proposed based on a comparative analysis of the geological and geochemical properties of the lead–zinc deposit in the Fengtai orefield. It is considered that the secondary anticlines developed on both wings of the Qiandongshan–Dongtangzi composite anticline are the favorable sites for Pb-Zn deposition. Accordingly, the Si/Ca plane and secondary anticline are the major ore-controlling factors and prospecting targets. The verification project was first set up on the north wing of the composite anticline, and thick lead–zinc ore bodies were found in all verification boreholes, accumulating successful experience for deep exploration of lead–zinc deposits in this region. Full article
(This article belongs to the Special Issue Genesis and Evolution of Pb-Zn-Ag Polymetallic Deposits)
Show Figures

Figure 1

12 pages, 4388 KiB  
Article
A Comprehensive Study of CsSnI3-Based Perovskite Solar Cells with Different Hole Transporting Layers and Back Contacts
by Seyedeh Mozhgan Seyed-Talebi, Mehrnaz Mahmoudi and Chih-Hao Lee
Micromachines 2023, 14(8), 1562; https://doi.org/10.3390/mi14081562 - 6 Aug 2023
Cited by 31 | Viewed by 3507
Abstract
By an abrupt rise in the power conservation efficiency (PCE) of perovskite solar cells (PSCs) within a short span of time, the instability and toxicity of lead were raised as major hurdles in the path toward their commercialization. The usage of an inorganic [...] Read more.
By an abrupt rise in the power conservation efficiency (PCE) of perovskite solar cells (PSCs) within a short span of time, the instability and toxicity of lead were raised as major hurdles in the path toward their commercialization. The usage of an inorganic lead-free CsSnI3-based halide perovskite offers the advantages of enhancing the stability and degradation resistance of devices, reducing the cost of devices, and minimizing the recombination of generated carriers. The simulated standard device using a 1D simulator like solar cell capacitance simulator (SCAPS) with Spiro-OMeTAD hole transporting layer (HTL) at perovskite thickness of 330 nm is in good agreement with the previous experimental result (12.96%). By changing the perovskite thickness and work operating temperature, the maximum efficiency of 18.15% is calculated for standard devices at a perovskite thickness of 800 nm. Then, the effects of replacement of Spiro-OMeTAD with other HTLs including Cu2O, CuI, CuSCN, CuSbS2, Cu2ZnSnSe4, CBTS, CuO, MoS2, MoOx, MoO3, PTAA, P3HT, and PEDOT:PSS on photovoltaic characteristics were calculated. The device with Cu2ZnSnSe4 hole transport in the same condition shows the highest efficiency of 21.63%. The back contact also changed by considering different metals such as Ag, Cu, Fe, C, Au, W, Ni, Pd, Pt, and Se. The outcomes provide valuable insights into the efficiency improvement of CsSnI3-based PSCs by Spiro-OMeTAD substitution with other HTLs, and back-contact modification upon the comprehensive analysis of 120 devices with different configurations. Full article
(This article belongs to the Special Issue Perovskite Materials and Devices: Past, Present and Future)
Show Figures

Figure 1

15 pages, 2304 KiB  
Article
Fabrication and Arc Erosion Behavior of Ag-SnO2-ZnO Electrical Contact Materials
by Danny Guzmán, Felipe González, Diego Muranda, Claudio Aguilar, Alexis Guzmán, Álvaro Soliz, Lorena Lozada, Iñigo Iturriza and Felipe Castro
Materials 2023, 16(10), 3618; https://doi.org/10.3390/ma16103618 - 9 May 2023
Cited by 16 | Viewed by 2976
Abstract
This study investigated the synthesis of Ag-SnO2-ZnO by powder metallurgy methods and their subsequent electrical contact behavior. The pieces of Ag-SnO2-ZnO were prepared by ball milling and hot pressing. The arc erosion behavior of the material was evaluated using [...] Read more.
This study investigated the synthesis of Ag-SnO2-ZnO by powder metallurgy methods and their subsequent electrical contact behavior. The pieces of Ag-SnO2-ZnO were prepared by ball milling and hot pressing. The arc erosion behavior of the material was evaluated using homemade equipment. The microstructure and phase evolution of the materials were investigated through X-ray diffraction, energy-dispersive spectroscopy and scanning electron microscopy. The results showed that, although the mass loss of the Ag-SnO2-ZnO composite (9.08 mg) during the electrical contact test was higher than that of the commercial Ag-CdO (1.42 mg), its electrical conductivity remained constant (26.9 ± 1.5% IACS). This fact would be related to the reaction of Zn2SnO4’s formation on the material’s surface via electric arc. This reaction would play an important role in controlling the surface segregation and subsequent loss of electrical conductivity of this type of composite, thus enabling the development of a new electrical contact material to replace the non-environmentally friendly Ag-CdO composite. Full article
(This article belongs to the Special Issue Powder Metallurgy: Materials and Processing)
Show Figures

Figure 1

12 pages, 6635 KiB  
Article
Superior Plasticity of Silver-Based Composites with Reinforcing Pyrochlore
by Lingjie Zhang, Weiwei Cai, Ningzhong Bao, Xueyu Geng and Hui Yang
Metals 2023, 13(2), 325; https://doi.org/10.3390/met13020325 - 6 Feb 2023
Cited by 2 | Viewed by 1795
Abstract
Silver (Ag) has difficult forming strong bonding with oxides due to its deep d band beneath the Fermi level and completely filled 4d orbital. Thus, it is difficult to fabricate silver-based composites with superior plasticity and processability because of the easy debonding at [...] Read more.
Silver (Ag) has difficult forming strong bonding with oxides due to its deep d band beneath the Fermi level and completely filled 4d orbital. Thus, it is difficult to fabricate silver-based composites with superior plasticity and processability because of the easy debonding at their interface. Herein, La2Sn2O7 pyrochlore was used as a reinforcing phase for a silver matrix. The enhanced interfacial bonding strength of Ag-La2Sn2O7 was confirmed both theoretically and experimentally, indicating that Ag could form more localized ionic bonding with La2Sn2O7 than with SnO2. The superior plasticity was further confirmed for the Ag-La2Sn2O7 composite, as the uniform elongation (UE) of the Ag-La2Sn2O7 composite was ~19%, i.e., ~14% higher than and 2.8 times that of the conventional Ag-SnO2 composite. The plasticity enhancement mechanism was also unraveled by calculating the interfacial mobility. This work verified the usefulness of pyrochlore to fabricate silver-based composites with superior plasticity and also provides a new strategy for the construction of advanced silver-based composites for application in the electrical contact field. Full article
Show Figures

Graphical abstract

23 pages, 5203 KiB  
Article
Preparation and Performance of Biodegradable Poly(butylene adipate-co-terephthalate) Composites Reinforced with Novel AgSnO2 Microparticles for Application in Food Packaging
by Raja Venkatesan, Krishnapandi Alagumalai and Seong-Cheol Kim
Polymers 2023, 15(3), 554; https://doi.org/10.3390/polym15030554 - 21 Jan 2023
Cited by 20 | Viewed by 4364
Abstract
Biodegradable composites with antimicrobial properties were prepared with microparticles of silver stannate (AgSnO2) and poly(butylene adipate-co-terephthalate) (PBAT) and tested for applications in food packaging. The PBAT matrix was synthesized and confirmed by 1H-nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, [...] Read more.
Biodegradable composites with antimicrobial properties were prepared with microparticles of silver stannate (AgSnO2) and poly(butylene adipate-co-terephthalate) (PBAT) and tested for applications in food packaging. The PBAT matrix was synthesized and confirmed by 1H-nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction (XRD). Ultrasonic and coprecipitation methods were used to synthesize AgSnO2. A two-step mixing method and a solvent cast technique were utilized to fabricate the PBAT composites (different weight % of AgSnO2) for packaging foods. Attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy, XRD, and scanning electron microscopy were used to investigate the formation, structure, and size of the composites. Thermogravimetric analysis and differential thermal calorimetry were used to examine the PBAT/AgSnO2 composites. The best characteristics are exhibited in 5.0 wt. % AgSnO2 loaded PBAT composite. The tensile strength, elongation at break, water vapor transmission rate, and oxygen transmission rate were 22.82 MPa, 237.00%, 125.20 g/m2/day, and 1104.62 cc/m2/day.atm, respectively. Incorporating AgSnO2 enhanced the hydrophobicity of the PBAT materials as evaluated by the water contact angle. The 5.0 wt. % AgSnO2/PBAT film shows a favorable zone of inhibition against the bacteria pathogens S. aureus and E. coli, according to an evaluation of its antimicrobial activity. The weight loss of 5% AgSnO2/PBAT film was 78.4% after eight weeks in the natural soil environments. In addition, the results of food quality studies recommend that AgSnO2/PBAT (5.0 wt. %) film had a longer food shelf life than the neat PBAT and commercial, increasing it from one to 14 days for carrot vegetables. Full article
(This article belongs to the Special Issue Polymers: Environmental Aspects)
Show Figures

Figure 1

40 pages, 17209 KiB  
Article
Age and Origin of the Massangana Intrusive Suite and Associated Mineralizations, in the Rondônia Tin Province: Petrography, U-Pb, and Lu-Hf Isotopes Zircons
by Beatriz Pereira Debowski, Guilherme Loriato Potratz, Armando Dias Tavares Júnior, Maria Virgínia Alves Martins and Mauro Cesar Geraldes
Minerals 2022, 12(10), 1304; https://doi.org/10.3390/min12101304 - 16 Oct 2022
Cited by 2 | Viewed by 2866
Abstract
Rondônia intrusive suites represent the youngest A-type magmatism that occurred in the SW of the Amazon craton, with mineralizations in Sn, Nb, Ta, W, and topaz. Petrological and isotopic studies (U-Pb and Lu-Hf by LA-ICP-MS) allowed the Massangana granite to be subdivided into [...] Read more.
Rondônia intrusive suites represent the youngest A-type magmatism that occurred in the SW of the Amazon craton, with mineralizations in Sn, Nb, Ta, W, and topaz. Petrological and isotopic studies (U-Pb and Lu-Hf by LA-ICP-MS) allowed the Massangana granite to be subdivided into São Domingos facies (medium to fine biotite-granite), Bom Jardim facies (fine granite), Massangana facies (pyterlites and coarse granites) and Taboca facies (fine granites). The crystallization ages obtained were between 995.7 ± 9.5 Ma to 1026 ± 16 Ma, and the εHf values vary significantly between positive and negative, showing predominantly crustal sources for forming these rocks. Petrographic studies on ore samples indicate the action of co-magmatic hydrothermal fluids enriched in CO2, H2O, and F. These ores are characterized by endogreisens, exogreisens, pegmatites, and quartz veins that are explored in the São Domingos facies area. The endogreisens and exogreisens are formed by topaz-granites and zinnwaldite-granites; the pegmatites are formed by topaz-zinnwaldite-cassiterite-granites; and the veins by cassiterite-sulfides and quartz. The geometries of the mineralized bodies indicate a dome-shaped contact with the host rocks in the magma chamber and can be attributed to residual accumulation. In this sense, the origin of these ores is related to the evolution of intrusive granitic bodies where the terminal phases of the fluid-enriched magma are lodged in the apical portions, and the origin of the mineralized bodies present a biotite-granite, albite-granite, and endogreisens evolution (potassium series), or biotite-granite, alkali-granite and endogreisens (sodic series) and these rocks present TDM ages that indicate a concerning relation to the non-mineralized rocks of Massangana granite. Full article
(This article belongs to the Special Issue Crustal Evolution and Its Temporal Correlations with Mineral Deposits)
Show Figures

Figure 1

14 pages, 3111 KiB  
Article
Properties of AgSnO2 Contact Materials Doped with Different Concentrations of Cr
by Jingqin Wang, Jingting Xu, Yancai Zhu, Delin Hu, Ningyi Lu, Defeng Cui and Peijian Guo
Materials 2022, 15(14), 4793; https://doi.org/10.3390/ma15144793 - 8 Jul 2022
Cited by 8 | Viewed by 2684
Abstract
As an important component carrying the core function and service life of switching appliances, the selection and improvement of electrical contact materials is of great significance. AgSnO2, which is non-toxic, environmentally friendly and has excellent performance, has become the most promising [...] Read more.
As an important component carrying the core function and service life of switching appliances, the selection and improvement of electrical contact materials is of great significance. AgSnO2, which is non-toxic, environmentally friendly and has excellent performance, has become the most promising contact material to replace AgCdO. However, it has deficiencies in machinability and electrical conductivity. The property of AgSnO2 contact material was improved by doping element Cr. The relationship between the mechanical and electrical properties of AgSnO2 contact materials and doping concentrations were investigated and analyzed by simulation and experiment. Based on the first principle, the elastic constants of supercell models Sn1−xCrxO2 (x = 0, 0.083, 0.125, 0.167, 0.25) were calculated. The results show that the material with a doping ratio of 25% is least prone to warp and crack, and the material with a doping ratio of 12.5% has the best toughness and ductility and the lowest hardness, which leads to molding and is subsequently easier to process. The Cr-doped AgSnO2 contacts with different doping proportions were prepared by the sol–gel and powder metallurgy method. Additionally, their physical performance and electrical contact properties were measured in experiments. The results show that the doped SnO2 powders prepared by the sol–gel method realize integration doping, which is consistent with the crystal model constructed in the simulation calculation. Sn0.875Cr0.125O2 has lower hardness, which is beneficial to process and form. Doping helps to stabilize the arc root, inhibit the ablation of contact by arc, reduces arc duration and arc energy, improves the resistance to arc erosion of AgSnO2 contact material, and makes electrical contact performance more stable. The contact material with a doping concentration of 16.7% has the best arc erosion resistance. Full article
Show Figures

Figure 1

12 pages, 2471 KiB  
Article
Influence of the Electron Selective Contact on the Interfacial Recombination in Fresh and Aged Perovskite Solar Cells
by Jesús Jiménez-López, Maria Méndez and Emilio Palomares
Appl. Sci. 2022, 12(9), 4545; https://doi.org/10.3390/app12094545 - 29 Apr 2022
Cited by 1 | Viewed by 2505
Abstract
In this work, we have used TiO2 and SnO2 layers as electron selective contact (ESC) in n-i-p perovskite solar cells configuration. To study and compare the ion migration kinetics of these ESC, CsFAMAPbIBr and MAPbI3-based devices were fabricated and [...] Read more.
In this work, we have used TiO2 and SnO2 layers as electron selective contact (ESC) in n-i-p perovskite solar cells configuration. To study and compare the ion migration kinetics of these ESC, CsFAMAPbIBr and MAPbI3-based devices were fabricated and characterised in fresh (1 day) and aged (28 days) conditions. Depending on the ESC and perovskite composition, devices reveal a different progression over time in terms of hysteresis and performance. Using transient photovoltage (TPV) and transient photocurrent (TPC) techniques, we studied the kinetics of carrier extraction and recombination, which showed that aged devices present slower recombination kinetics compared to their fresh counterparts, revealing a positive effect of the aging process. Finally, transient of the transient, derived from the TPV technique, discloses that TiO2 accumulates more charges in the ESC/perovskite interface compared to SnO2 and that the ion migration kinetics are directly related to the perovskite composition. Full article
(This article belongs to the Special Issue Organic and Hybrid Photovoltaics)
Show Figures

Figure 1

26 pages, 5962 KiB  
Article
Many-Scale Investigations of Deformation Behavior of Polycrystalline Composites: II—Micro-Macro Simultaneous FE and Discrete Dislocation Dynamics Simulation
by Yanling Schneider, Dennis-Michael Rapp, Yifang Yang, Werner Wasserbäch and Siegfried Schmauder
Materials 2022, 15(8), 2852; https://doi.org/10.3390/ma15082852 - 13 Apr 2022
Cited by 1 | Viewed by 2429
Abstract
The current work numerically investigates commercial polycrystalline Ag/17vol.%SnO2 composite tensile deformation behavior with available experimental data. Such composites are useful for electric contacts and have a highly textured initial material status after hot extrusion. Experimentally, the initial sharp fiber texture and the [...] Read more.
The current work numerically investigates commercial polycrystalline Ag/17vol.%SnO2 composite tensile deformation behavior with available experimental data. Such composites are useful for electric contacts and have a highly textured initial material status after hot extrusion. Experimentally, the initial sharp fiber texture and the number of Σ3-twins were reduced due to tensile loading. The local inhomogeneous distribution of hardness and Young’s modulus gradually decreased from nanoindentation tests, approaching global homogeneity. Many-scale simulations, including micro-macro simultaneous finite element (FE) and discrete dislocation dynamics (DDD) simulations, were performed. Deformation mechanisms on the microscale are fundamental since they link those on the macro- and nanoscale. This work emphasizes micromechanical deformation behavior. Such FE calculations applied with crystal plasticity can predict local feature evolutions in detail, such as texture, morphology, and stress flow in individual grains. To avoid the negative influence of boundary conditions (BCs) on the result accuracy, BCs are given on the macrostructure, i.e., the microstructure is free of BCs. The particular type of 3D simulation, axisymmetry, is preferred, in which a 2D real microstructural cutout with 513 Ag grains is applied. From FE results, Σ3-twins strongly rotated to the loading direction (twins disappear), which, possibly, caused other grains to rotate away from the loading direction. The DDD simulation treats the dislocations as discrete lines and can predict the resolved shear stress (RSS) inside one grain with dependence on various features as dislocation density and lattice orientation. The RSS can act as the link between the FE and DDD predictions. Full article
Show Figures

Figure 1

Back to TopTop