Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Ag and Mn co-doping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 8387 KB  
Article
Liquid-State Interfacial Reactions of Lead-Free Solders with FeCoNiCr and FeCoNiMn Medium-Entropy Alloys at 250 °C
by Chao-Hong Wang and Yue-Han Li
Materials 2025, 18(10), 2379; https://doi.org/10.3390/ma18102379 - 20 May 2025
Viewed by 856
Abstract
This study investigates the interfacial reactions of FeCoNiCr and FeCoNiMn medium-entropy alloys (MEAs) with Sn and Sn-3Ag-0.5Cu (SAC305) solders at 250 °C. The evolution of interfacial microstructures is analyzed over various aging periods. For comparison, the FeCoNiCrMn high-entropy alloy (HEA) is also examined. [...] Read more.
This study investigates the interfacial reactions of FeCoNiCr and FeCoNiMn medium-entropy alloys (MEAs) with Sn and Sn-3Ag-0.5Cu (SAC305) solders at 250 °C. The evolution of interfacial microstructures is analyzed over various aging periods. For comparison, the FeCoNiCrMn high-entropy alloy (HEA) is also examined. In the Sn/FeCoNiCr system, a faceted (Fe,Cr,Co)Sn2 layer initially forms at the interface. Upon aging, the significant spalling of large (Fe,Cr,Co)Sn2 particulates into the solder matrix occurs. Additionally, an extremely large, plate-like (Co,Ni)Sn4 phase forms at a later stage. In contrast, the Sn/FeCoNiMn reaction produces a finer-grained (Fe,Co,Mn)Sn2 phase dispersed in the solder, accompanied by the formation of the large (Co,Ni)Sn4 phase. This observation suggests that Mn promotes the formation of finer intermetallic compounds (IMCs), while Cr facilitates the spalling of larger IMC particulates. The Sn/FeCoNiCrMn system exhibits stable interfacial behavior, with the (Fe,Cr,Co)Sn2 layer showing no significant changes over time. The interfacial behavior and microstructure are primarily governed by the dissolution of the constituent elements and composition ratio of the HEAs, as well as their interactions with Sn. Similar trends are observed in the SAC305 solder reactions, where a larger amount of fine (Fe,Co,Cu)Sn2 particles spall from the interface. This behavior is likely attributed to Cu doping, which enhances nucleation and stabilizes the IMC phases, promoting the formation of finer particles. The wettability of SAC305 solder on MEA/HEA substrates was further evaluated by contact angle measurements. These findings suggest that the presence of Mn in the substrate enhances the wettability of the solder. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

15 pages, 3673 KB  
Article
Facile Synthesis of Nitrogen-Doped Graphene Quantum Dots/MnCO3/ZnMn2O4 on Ni Foam Composites for High-Performance Supercapacitor Electrodes
by Di Liu, Soeun Kim and Won Mook Choi
Materials 2024, 17(4), 884; https://doi.org/10.3390/ma17040884 - 14 Feb 2024
Cited by 6 | Viewed by 2204
Abstract
This study reports the facile synthesis of rationally designed composite materials consisting of nitrogen-doped graphene quantum dots (N-GQDs) and MnCO3/ZnMn2O4 (N/MC/ZM) on Ni foam using a simple hydrothermal method to produce high-performance supercapacitor applications. The N/MC/ZM composite was [...] Read more.
This study reports the facile synthesis of rationally designed composite materials consisting of nitrogen-doped graphene quantum dots (N-GQDs) and MnCO3/ZnMn2O4 (N/MC/ZM) on Ni foam using a simple hydrothermal method to produce high-performance supercapacitor applications. The N/MC/ZM composite was uniformly synthesized on a Ni foam surface with the hierarchical structure of microparticles and nanosheets, and the uniform deposition of N-GQDs on a MC/ZM surface was observed. The incorporation of N-GQDs with MC/ZM provides good conductivity, charge transfer, and electrolyte diffusion for a better electrochemical performance. The N/MC/ZM composite electrode delivered a high specific capacitance of 960.6 F·g−1 at 1 A·g−1, low internal resistance, and remarkable cycling stability over 10,000 charge–discharge cycles. Additionally, an all-flexible solid-state asymmetric supercapacitor (ASC) device was fabricated using the N/MC/ZM composite electrode. The fabricated ASC device produced a maximum energy density of 58.4 Wh·kg−1 at a power density of 800 W·kg−1 and showed a stable capacitive performance while being bent, with good mechanical stability. These results provide a promising and effective strategy for developing supercapacitor electrodes with a high areal capacitance and high energy density. Full article
Show Figures

Figure 1

13 pages, 4736 KB  
Article
3d (Co and Mn) and 4d (Ag) Transition Metal-Doped ZnO Nanoparticles Anchored on CdZnS for the Photodegradation of Rhodamine B
by Ann Wangari Mureithi, Chen Song, Thi Kim Tran Tran, Hawi N. Nyiera, Xueni Huang, Tejas S. Bhosale, Abiodun Daniel Aderibigbe, Ranjana Burman, Steven L. Suib and Jing Zhao
Crystals 2024, 14(1), 41; https://doi.org/10.3390/cryst14010041 - 28 Dec 2023
Cited by 3 | Viewed by 3022
Abstract
The construction of a heterojunction by coupling two semiconductor photocatalysts with appropriate band positions can effectively reduce the recombination of photogenerated charge carriers, thus improving their catalytic efficiency. Recently, ZnO photocatalysts have been highly sought after in the synthesis of semiconductor heterostructures due [...] Read more.
The construction of a heterojunction by coupling two semiconductor photocatalysts with appropriate band positions can effectively reduce the recombination of photogenerated charge carriers, thus improving their catalytic efficiency. Recently, ZnO photocatalysts have been highly sought after in the synthesis of semiconductor heterostructures due to their wide band gap and low conduction band position. Particularly, transition metal-doped ZnO nanoparticles are attractive due to the additional charge separation caused by temporary electron trapping by the dopant ions as well as the improved absorption of visible light. In this paper, we compare the effect of doping ZnO nanoparticles with 3d (Co and Mn) and 4d (Ag) transition metals on the structural and optical properties of ZnO/CdZnS heterostructures and their photocatalytic performance. With the help of scanning electron microscopy, the successful anchoring of doped and undoped ZnO nanoparticles onto CdZnS nanostructures was confirmed. Among the different heterostructures, Ag-doped ZnO/CdZnS exhibited the best visible-light-driven degradation of rhodamine B at a rate of 1.0 × 10−2 min−1. The photocurrent density analysis showed that AgZnO/CdZnS has the highest amount of photogenerated charges, leading to the highest photocatalytic performance. The reduction in the photocatalytic performance in the presence of hole scavengers and hydroxyl radical scavengers confirmed that the availability of photogenerated electrons and holes plays a pivotal role in the degradation of rhodamine B. Full article
(This article belongs to the Special Issue Photocatalytic Materials: New Perspectives and Challenges)
Show Figures

Figure 1

39 pages, 15083 KB  
Review
Ferrite Nanoparticles as Catalysts in Organic Reactions: A Mini Review
by Nilima Maji and Harmanjit Singh Dosanjh
Magnetochemistry 2023, 9(6), 156; https://doi.org/10.3390/magnetochemistry9060156 - 14 Jun 2023
Cited by 41 | Viewed by 10770
Abstract
Ferrites have excellent magnetic, electric, and optical properties that make them an indispensable choice of material for a plethora of applications, such as in various biomedical fields, magneto–optical displays, rechargeable lithium batteries, microwave devices, internet technology, transformer cores, humidity sensors, high-frequency media, magnetic [...] Read more.
Ferrites have excellent magnetic, electric, and optical properties that make them an indispensable choice of material for a plethora of applications, such as in various biomedical fields, magneto–optical displays, rechargeable lithium batteries, microwave devices, internet technology, transformer cores, humidity sensors, high-frequency media, magnetic recordings, solar energy devices, and magnetic fluids. Recently, magnetically recoverable nanocatalysts are one of the most prominent fields of research as they can act both as homogeneous and heterogenous catalysts. Nano-ferrites provide a large surface area for organic groups to anchor, increase the product and decrease reaction time, providing a cost-effective method of transformation. Various organic reactions were reported, such as the photocatalytic decomposition of a different dye, alkylation, dehydrogenation, oxidation, C–C coupling, etc., with nano-ferrites as a catalyst. Metal-doped ferrites with Co, Ni, Mn, Cu, and Zn, along with the metal ferrites doped with Mn, Cr, Cd, Ag, Au, Pt, Pd, or lanthanides and surface modified with silica and titania, are used as catalysts in various organic reactions. Metal ferrites (MFe2O4) act as a Lewis acid and increase the electrophilicity of specific groups of the reactants by accepting electrons in order to form covalent bonds. Ferrite nanocatalysts are easily recoverable by applying an external magnetic field for their reuse without significantly losing their catalytic activities. The use of different metal ferrites in different organic transformations reduces the catalyst overloading and, at the same time, reduces the use of harmful solvents and the production of poisonous byproducts, hence, serving as a green method of chemical synthesis. This review provides insight into the application of different ferrites as magnetically recoverable nanocatalysts in different organic reactions and transformations. Full article
Show Figures

Figure 1

15 pages, 2930 KB  
Article
Electrochemical Deposition of Multicomponent Mixed Metal Oxides on rGO/Ni Foam for All-Solid-State Asymmetric Supercapacitor Device: Mn, Co, and Ni Oxides with Ag Doping
by Yunus Emre Firat and Viktor Čolić
Energies 2022, 15(22), 8559; https://doi.org/10.3390/en15228559 - 16 Nov 2022
Cited by 9 | Viewed by 3337
Abstract
In this study, an asymmetric supercapacitor (ASSC) device is assembled by the deposition and annealing of silver-doped mixed metal oxides on reduced graphene oxide (rGO)/Ni foam and activated carbon (AC) on Ni foam as positive and negative electrodes, respectively. The best performing Ag:MnCoNiO [...] Read more.
In this study, an asymmetric supercapacitor (ASSC) device is assembled by the deposition and annealing of silver-doped mixed metal oxides on reduced graphene oxide (rGO)/Ni foam and activated carbon (AC) on Ni foam as positive and negative electrodes, respectively. The best performing Ag:MnCoNiO active material is synthesized on rGO/Ni foam using chronopotentiometry combined with heat treatment. The XRD study clearly confirms the crystalline nature of the electrode with MnCo2O4 and MnNi2O4 phases. FT-IR and XPS studies revealed the formation of Ag:MnCoNiO/rGO on Ni foam. SEM images show a thin-film layer of fabricated material on the surface of rGO/Ni foam. The supercapacitor properties were tested in two- and three-electrode configurations, with cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS) experiments in a 6 M KOH aqueous electrolyte. In the three-electrode configuration, reversible faradic reactions can be observed in a potential range of 0.0 and +0.6 V vs. Hg/HgSO4. In the two-electrode device configuration, the system exhibits a maximum energy density of 45.5 Wh kg−1 and provides a maximum power density of 4.5 kW kg−1. The results showed that the doping of Ag in a MnCoNiO electrode shows promising properties, achieved by a very simple fabrication process. The results showcase the synergistic effects achieved by mixed multiple-component metal oxides, leading to improved supercapacitive properties. Full article
Show Figures

Figure 1

9 pages, 2010 KB  
Communication
Auto-Combustion Synthesis of Mn1−xAgxCo2O4 Catalysts for Diesel Soot Combustion
by Huanrong Liu, Yanhong Chen, Dongmin Han, Weiwei Ma, Xiaodong Dai and Zifeng Yan
Catalysts 2022, 12(10), 1182; https://doi.org/10.3390/catal12101182 - 6 Oct 2022
Cited by 4 | Viewed by 1794
Abstract
The increase in diesel consumption has led to the proliferation of soot particles from diesel exhaust, resulting in pollution in the form of smog. To solve this problem, a series of Ag-doped Mn1−xAgxCo2O4 spinel catalysts were [...] Read more.
The increase in diesel consumption has led to the proliferation of soot particles from diesel exhaust, resulting in pollution in the form of smog. To solve this problem, a series of Ag-doped Mn1−xAgxCo2O4 spinel catalysts were successfully prepared using an auto-combustion synthesis method that uses glucose as a fuel. X-ray diffraction and Fourier transform infrared spectroscopy analysis were used to analyse the phase structure of the as-prepared samples. The results reveal that the selected catalysts featured a spinel-type structure. Moreover, the catalytic activity of the catalysts for soot combustion was evaluated by temperature-programmed reaction analysis. The temperature required for soot combustion depended heavily on the Ag concentration in the Mn1−xAgxCo2O4 catalyst. The Mn0.8Ag0.2Co2O4 catalyst had a superior catalytic activity with a T90 of 399 °C and CO2 selectivity of 99.3%. Full article
Show Figures

Figure 1

10 pages, 3946 KB  
Article
N, S, P-Codoped Graphene-Supported Ag-MnFe2O4 Heterojunction Nanoparticles as Bifunctional Oxygen Electrocatalyst with High Efficiency
by Hongzhou Dong, Yingjie Chen, Chong Gong, Lina Sui, Qiong Sun, Kangle Lv and Lifeng Dong
Catalysts 2021, 11(12), 1550; https://doi.org/10.3390/catal11121550 - 19 Dec 2021
Cited by 4 | Viewed by 3804
Abstract
Due to slow kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during discharging and charging processes, it is essential to rationally design and synthesize non-precious metal bifunctional electrocatalysts with good performance for metal-air batteries. Herein, Ag-MnFe2O4 heterojunction [...] Read more.
Due to slow kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during discharging and charging processes, it is essential to rationally design and synthesize non-precious metal bifunctional electrocatalysts with good performance for metal-air batteries. Herein, Ag-MnFe2O4 heterojunction nanoparticles supported on N, S, P-codoped graphene (NSPG) are developed with enhanced ORR and OER bifunctional electrocatalytic activities and stability. In contrast, S, P-doped graphene (SPG) and N, P-doped graphene (NPG) show less stabilization for the heterojunction particles. For example, under alkaline conditions, the ORR half-wave potential of Ag-MnFe2O4/NSPG can reach 0.831 V, and the over potential for OER is 0.56 V at the current density 10 mA·cm−2. Furthermore, Ag-MnFe2O4/NSPG shows better methanol resistance and durability than Pt/C catalysts. Full article
(This article belongs to the Topic Electromaterials for Environment & Energy)
Show Figures

Graphical abstract

9 pages, 2702 KB  
Communication
Highly Effective Self-Propagating Synthesis of Lamellar ZnO-Decorated MnO2 Nanocrystals with Improved Supercapacitive Performance
by Luming Li, Jing Li, Hongmei Li, Li Lan and Jie Deng
Nanomaterials 2021, 11(7), 1680; https://doi.org/10.3390/nano11071680 - 25 Jun 2021
Cited by 2 | Viewed by 2296
Abstract
A series of MOx (M = Co, Ni, Zn, Ce)-modified lamellar MnO2 electrode materials were controllably synthesized with a superfast self-propagating technology and their electrochemical practicability was evaluated using a three-electrode system. The results demonstrated that the specific capacitance varied with [...] Read more.
A series of MOx (M = Co, Ni, Zn, Ce)-modified lamellar MnO2 electrode materials were controllably synthesized with a superfast self-propagating technology and their electrochemical practicability was evaluated using a three-electrode system. The results demonstrated that the specific capacitance varied with the heteroatom type as well as the doping level. The low ZnO doping level was more beneficial for improving electrical conductivity and structural stability, and Mn10Zn hybrid nanocrystals exhibited a high specific capacitance of 175.3 F·g−1 and capacitance retention of 96.9% after 2000 cycles at constant current of 0.2 A·g−1. Moreover, XRD, SEM, and XPS characterizations confirmed that a small part of the heteroatoms entered the framework to cause lattice distortion of MnO2, while the rest dispersed uniformly on the surface of the carrier to form an interfacial collaborative effect. All of them induced enhanced electrical conductivity and electrochemical properties. Thus, the current work provides an ultrafast route for development of high-performance pseudocapacitive energy storage nanomaterials. Full article
Show Figures

Figure 1

11 pages, 14762 KB  
Article
Fabrication of Ag and Mn Co-Doped Cu2ZnSnS4 Thin Film
by Lei Qiu, Jiaxiong Xu and Xiao Tian
Nanomaterials 2019, 9(11), 1520; https://doi.org/10.3390/nano9111520 - 25 Oct 2019
Cited by 16 | Viewed by 3550
Abstract
Ag and Mn dopants were incorporated into Cu2ZnSnS4 thin film to reduce defects in thin film and improve thin film properties. Sol–gel and spin-coating techniques were employed to deposit Ag and Mn co-doped Cu2ZnSnS4 thin films. The [...] Read more.
Ag and Mn dopants were incorporated into Cu2ZnSnS4 thin film to reduce defects in thin film and improve thin film properties. Sol–gel and spin-coating techniques were employed to deposit Ag and Mn co-doped Cu2ZnSnS4 thin films. The structures, compositions, morphologies, and optical properties of the co-doped thin films were characterized. The experimental results indicate the formation of kesterite structure without Ag and Mn secondary phases. The amount of Ag in the thin films is close to that in the sols. The co-doped Cu2ZnSnS4 thin films have an absorption coefficient of larger than 1.3 × 104 cm−1, a direct optical band gap of 1.54–2.14 eV, and enhanced photoluminescence. The nonradiative recombination in Cu2ZnSnS4 thin film is reduced by Ag and Mn co-doping. The experimental results show that Ag and Mn incorporation can improve the properties of Cu2ZnSnS4 thin film. Full article
Show Figures

Figure 1

17 pages, 3774 KB  
Article
Graphene Oxide Decorated Nanometal-Poly(Anilino-Dodecylbenzene Sulfonic Acid) for Application in High Performance Supercapacitors
by Nomxolisi R. Dywili, Afroditi Ntziouni, Chinwe Ikpo, Miranda Ndipingwi, Ntuthuko W. Hlongwa, Anne L. D. Yonkeu, Milua Masikini, Konstantinos Kordatos and Emmanuel I. Iwuoha
Micromachines 2019, 10(2), 115; https://doi.org/10.3390/mi10020115 - 11 Feb 2019
Cited by 25 | Viewed by 4647
Abstract
Graphene oxide (GO) decorated with silver (Ag), copper (Cu) or platinum (Pt) nanoparticles that are anchored on dodecylbenzene sulfonic acid (DBSA)-doped polyaniline (PANI) were prepared by a simple one-step method and applied as novel materials for high performance supercapacitors. High-resolution transmission electron microscopy [...] Read more.
Graphene oxide (GO) decorated with silver (Ag), copper (Cu) or platinum (Pt) nanoparticles that are anchored on dodecylbenzene sulfonic acid (DBSA)-doped polyaniline (PANI) were prepared by a simple one-step method and applied as novel materials for high performance supercapacitors. High-resolution transmission electron microscopy (HRTEM) and high-resolution scanning electron microscopy (HRSEM) analyses revealed that a metal-decorated polymer matrix is embedded within the GO sheet. This caused the M/DBSA–PANI (M = Ag, Cu or Pt) particles to adsorb on the surface of the GO sheets, appearing as aggregated dark regions in the HRSEM images. The Fourier transform infrared (FTIR) spectroscopy studies revealed that GO was successfully produced and decorated with Ag, Cu or Pt nanoparticles anchored on DBSA–PANI. This was confirmed by the appearance of the GO signature epoxy C–O vibration band at 1040 cm−1 (which decreased upon the introduction of metal nanoparticle) and the PANI characteristic N–H stretching vibration band at 3144 cm−1 present only in the GO/M/DBSA–PANI systems. The composites were tested for their suitability as supercapacitor materials; and specific capacitance values of 206.4, 192.8 and 227.2 F·g−1 were determined for GO/Ag/DBSA–PANI, GO/Cu/DBSA–PANI and GO/Pt/DBSA–PANI, respectively. The GO/Pt/DBSA–PANI electrode exhibited the best specific capacitance value of the three electrodes and also had twice the specific capacitance value reported for Graphene/MnO2//ACN (113.5 F·g−1). This makes GO/Pt/DBSA–PANI a very promising organic supercapacitor material. Full article
(This article belongs to the Special Issue Carbon Based Electronic Devices)
Show Figures

Graphical abstract

12 pages, 2544 KB  
Article
Nano-MnO2 Decoration of TiO2 Microparticles to Promote Gaseous Ethanol Visible Photoremoval
by Marta Stucchi, Daria C. Boffito, Eleonora Pargoletti, Giuseppina Cerrato, Claudia L. Bianchi and Giuseppe Cappelletti
Nanomaterials 2018, 8(9), 686; https://doi.org/10.3390/nano8090686 - 3 Sep 2018
Cited by 26 | Viewed by 4579
Abstract
TiO2-based photocatalysis under visible light is an attractive way to abate air pollutants. Moreover, developing photocatalytic materials on a large-scale requires safe and low-cost precursors. Both high-performance TiO2 nanopowders and visible-light active noble metals do not match these requirements. Here, [...] Read more.
TiO2-based photocatalysis under visible light is an attractive way to abate air pollutants. Moreover, developing photocatalytic materials on a large-scale requires safe and low-cost precursors. Both high-performance TiO2 nanopowders and visible-light active noble metals do not match these requirements. Here, we report the design of novel Mn-decorated micrometric TiO2 particles. Pigmentary TiO2 replaced unsafe nano-TiO2 and firmly supported MnOx particles. Mn replaced noble metals such as Au or Ag, opening the way for the development of lower cost catalysts. Varying Mn loading or pH during the impregnation affected the final activity, thus giving important information to optimize the synthesis. Photocatalytic activity screening occurred on the gas-phase degradation of ethanol as a reference molecule, both under ultraviolet (UV) (6 h) and Light Emitting Diode (LED) (24 h) irradiation. Mn-doped TiO2 reached a maximum ethanol degradation of 35% under visible light after 24 h for the sample containing 20% of Mn. Also, we found that an acidic pH increased both ethanol degradation and mineralization to CO2, while an alkaline pH drastically slowed down the reaction. A strict correlation between photocatalytic results and physico-chemical characterizations of the synthesized powders were drawn. Full article
Show Figures

Graphical abstract

22 pages, 10525 KB  
Article
Ag2O Nanoparticles-Doped Manganese Immobilized on Graphene Nanocomposites for Aerial Oxidation of Secondary Alcohols
by Mohamed E. Assal, Mohammed Rafi Shaik, Mufsir Kuniyil, Mujeeb Khan, Abdulrahman Al-Warthan, Mohammed Rafiq H. Siddiqui and Syed Farooq Adil
Metals 2018, 8(6), 468; https://doi.org/10.3390/met8060468 - 19 Jun 2018
Cited by 6 | Viewed by 4762
Abstract
Ag2O nanoparticles-doped MnO2 decorated on different percentages of highly reduced graphene oxide (HRG) nanocomposites, i.e., (X%)HRG/MnO2–(1%)Ag2O (where X = 0–7), were fabricated through straight-forward precipitation procedure, and 400 °C calcination, while upon calcination at 300 °C [...] Read more.
Ag2O nanoparticles-doped MnO2 decorated on different percentages of highly reduced graphene oxide (HRG) nanocomposites, i.e., (X%)HRG/MnO2–(1%)Ag2O (where X = 0–7), were fabricated through straight-forward precipitation procedure, and 400 °C calcination, while upon calcination at 300 °C and 500 °C temperatures, it yielded MnCO3 and manganic trioxide (Mn2O3) composites, i.e., [(X%)HRG/MnCO3–(1%)Ag2O] and [(X%)HRG/Mn2O3–(1%)Ag2O], respectively. These nanocomposites have been found to be efficient and very effective heterogeneous catalysts for selective oxidation of secondary alcohols into their respective ketones using O2 as a sole oxidant without adding surfactants or nitrogenous bases. Moreover, a comparative catalytic study was carried out to investigate the catalytic efficiency of the synthesized nanocomposites for the aerobic oxidation of 1-phenylethanol to acetophenone as a substrate reaction. Effects of several factors were systematically studied. The as-prepared nanocomposites were characterized by TGA, XRD, SEM, EDX, HRTEM, BET, Raman, and FTIR. The catalyst with structure (5%)HRG/MnO2–(1%)Ag2O showed outstanding specific activity (16.0 mmol/g·h) with complete conversion of 1-phenylethanol and >99% acetophenone selectivity within short period (25 min). It is found that the effectiveness of the catalyst has been greatly improved after using graphene support. A broad range of alcohols have selectively transformed to desired products with 100% convertibility and no over-oxidation products have been detected. The recycling test of (5%)HRG/MnO2–(1%)Ag2O catalyst for oxidation of 1-phenylethanol suggested no obvious decrease in its performance and selectivity even after five subsequent runs. Full article
Show Figures

Figure 1

Back to TopTop