Electrochemical Deposition of Multicomponent Mixed Metal Oxides on rGO/Ni Foam for All-Solid-State Asymmetric Supercapacitor Device: Mn, Co, and Ni Oxides with Ag Doping
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of Graphene Oxide (GO)
2.3. Synthesis of MTMO Electrodes
2.4. Characterization
2.5. Preparation of an All-Solid-State Supercapacitor and Electrochemical Analyses
3. Results and Discussion
3.1. Structural and Morphological Properties
3.2. Electrochemical Characterization
3.3. Electrochemical Performance of All-Solid-State ASSC Device
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, A.; Wang, H.; Zhu, Z.; Zhang, W.; Li, X.; Wang, Q.; Luo, S. Mesoporous CeO2-α-MnO2-Reduced Graphene Oxide Composite with Ultra-High Stability as a Novel Electrode Material for Supercapacitor. Surf. Interfaces 2021, 25, 101177. [Google Scholar] [CrossRef]
- Zhao, L.; Lei, S.; Tu, Q.; Rao, L.; Zen, W.; Xiao, Y.; Cheng, B. Phase-Controlled Growth of Nickel Hydroxide Nanostructures on Nickel Foam for Enhanced Supercapacitor Performance. J. Energy Storage 2021, 43, 103171. [Google Scholar] [CrossRef]
- Parale, V.G.; Kim, T.; Patil, A.M.; Phadtare, V.D.; Choi, H.; Dhavale, R.P.; Kim, Y.; Jun, S.C.; Park, H.H. Construction of Hierarchical Nickel Cobalt Sulfide@manganese Oxide Nanoarrays@nanosheets Core-Shell Electrodes for High-Performance Electrochemical Asymmetric Supercapacitor. Int. J. Energy Res. 2022, 46, 5250–5259. [Google Scholar] [CrossRef]
- BoopathiRaja, R.; Vadivel, S.; Parthibavarman, M.; Prabhu, S.; Ramesh, R. Effect of Polypyrrole Incorporated Sun Flower like Mn2P2O7 with Lab Waste Tissue Paper Derived Activated Carbon for Asymmetric Supercapacitor Applications. Surf. Interfaces 2021, 26, 101409. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, H.; Yan, X.; Zhang, W.; Zhang, M.; Zhu, W.; Pan, J.; Javed, M.S.; Cheng, W.; Guan, Y. Rationally Designed Mn2O3/CuxO Core–Shell Heterostructure Generated on Copper Foam as Binder-Free Electrode for Flexible Asymmetric Supercapacitor. Appl. Surf. Sci. 2021, 566, 150715. [Google Scholar] [CrossRef]
- Talluri, B.; Aparna, M.L.; Sreenivasulu, N.; Bhattacharya, S.S.; Thomas, T. High Entropy Spinel Metal Oxide (CoCrFeMnNi)3O4 Nanoparticles as a High-Performance Supercapacitor Electrode Material. J. Energy Storage 2021, 42, 103004. [Google Scholar] [CrossRef]
- Mani, M.P.; Venkatachalam, V.; Thamizharasan, K.; Jothibas, M. Evaluation of Cubic-Like Advanced ZnMn2O4 Electrode for High-Performance Supercapacitor Applications. J. Electron. Mater. 2021, 50, 4381–4387. [Google Scholar] [CrossRef]
- Muthu, D.; Vargheese, S.; Haldorai, Y.; Kumar, R.T.R. NiMoO4/Reduced Graphene Oxide Composite as an Electrode Material for Hybrid Supercapacitor. Mater. Sci. Semicond. Process. 2021, 135, 106078. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Wang, S.; Zhang, X.; Jin, X.; Chang, J.; Dong, J. A Porous ZnCo2O4 Nanosheets Arrays as a Binder-Free Electrode for High-Performance Flexible Supercapacitor Materials. J. Mater. Sci. Mater. Electron. 2021, 32, 25247–25257. [Google Scholar] [CrossRef]
- Yan, J.; Li, S.; Lan, B.; Wu, Y.; Lee, P.S. Rational Design of Nanostructured Electrode Materials toward Multifunctional Supercapacitors. Adv. Funct. Mater. 2020, 30, 1902564. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, M.; Song, Z.; Ma, T.; Huang, Z.; Wang, A.; Shao, S. A Super Hybrid Supercapacitor with High Energy Density Based on the Construction of CoMoO4/MoO2 Decorated 3D Sulfur-Doped Graphene and Porous Lotus Leaves Carbon. J. Alloys Compd. 2021, 881, 160660. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Anand, S.; Fatima, A.; Yang, D.J.; Choudhury, A. Facile Synthesis of Copper Oxide Nanoparticles-Decorated Polyaniline Nanofibers with Enhanced Electrochemical Performance as Supercapacitor Electrode. Polym. Adv. Technol. 2021, 32, 4070–4081. [Google Scholar] [CrossRef]
- Xu, Z.; Gao, R.; Yang, T.; Hou, X.; Cao, L. Three-Dimensional NiCo2O4 Nanosheets Arrays on Carbon Nanofibers for High-Performance Asymmetric Solid-State Supercapacitor. Diam. Relat. Mater. 2021, 119, 108584. [Google Scholar] [CrossRef]
- Makkar, P.; Ghosh, N.N. High-Performance All-Solid-State Flexible Asymmetric Supercapacitor Device Based on a Ag-Ni Nanoparticle-Decorated Reduced Graphene Oxide Nanocomposite as an Advanced Cathode Material. Ind. Eng. Chem. Res. 2021, 60, 1666–1674. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, D.; Lu, Z.; Liu, J.; Xuan, D.; Liu, Q.; Chen, M.; Luo, F.; Li, S.; Zheng, Z. Battery-Type MnCo2O4@carbon Nanofibers Composites with Mesoporous Structure for High Performance Asymmetric Supercapacitor. Diam. Relat. Mater. 2021, 119, 108586. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, C.; Wang, C.; Liu, T.; Wang, L.; Zhu, J. Hierarchical Structure of Self-Supported NiCo2S4 Nanoflowers@NiCo2S4 Nanosheets as High Rate-Capability and Cycling-Stability Electrodes for Advanced Supercapacitor. Appl. Surf. Sci. 2021, 563, 150324. [Google Scholar] [CrossRef]
- Beknalkar, S.A.; Teli, A.M.; Harale, N.S.; Pawar, K.K.; Patil, D.S.; Shin, J.C.; Patil, P.S. Hierarchical ITO Nanofibers Coated Mn3O4 Nanoplates Core-Shell Nanocomposites for High Performance All-Solid-State Symmetric Supercapacitor Device. Ceram. Int. 2021, 47, 29771–29785. [Google Scholar] [CrossRef]
- Shinde, S.K.; Karade, S.S.; Maile, N.C.; Yadav, H.M.; Ghodake, G.S.; Jagadale, A.D.; Jalak, M.B.; Lee, D.S.; Kim, D.Y. Synthesis of 3D Nanoflower-like Mesoporous NiCo2O4 N-Doped CNTs Nanocomposite for Solid-State Hybrid Supercapacitor; Efficient Material for the Positive Electrode. Ceram. Int. 2021, 47, 31650–31665. [Google Scholar] [CrossRef]
- Tamaekong, N.; Liewhiran, C.; Wisitsoraat, A.; Phanichphant, S. Sensing Characteristics of Flame-Spray-Made Pt/ZnO Thick Films as H2 Gas Sensor. Sensors 2009, 9, 6652–6669. [Google Scholar] [CrossRef]
- Wang, C.; Shang, H.; Li, J.; Wang, Y.; Xu, H.; Wang, C.; Guo, J.; Du, Y. Ultralow Ru Doping Induced Interface Engineering in MOF Derived Ruthenium-Cobalt Oxide Hollow Nanobox for Efficient Water Oxidation Electrocatalysis. Chem. Eng. J. 2021, 420, 129805. [Google Scholar] [CrossRef]
- Iliev, V.; Tomova, D.; Bilyarska, L. Promoting the Oxidative Removal Rate of 2,4-Dichlorophenoxyacetic Acid on Gold-Doped WO3/TiO2/Reduced Graphene Oxide Photocatalysts under UV Light Irradiation. J. Photochem. Photobiol. A Chem. 2018, 351, 69–77. [Google Scholar] [CrossRef]
- Sawangphruk, M.; Pinitsoontorn, S.; Limtrakul, J. Surfactant-Assisted Electrodeposition and Improved Electrochemical Capacitance of Silver-Doped Manganese Oxide Pseudocapacitor Electrodes. J. Solid State Electrochem. 2012, 16, 2623–2629. [Google Scholar] [CrossRef]
- Bai, X.L.; Gao, Y.L.; Gao, Z.Y.; Ma, J.Y.; Tong, X.L.; Sun, H.B.; Wang, J.A. Supercapacitor Performance of 3D-Graphene/MnO2foam Synthesized via the Combination of Chemical Vapor Deposition with Hydrothermal Method. Appl. Phys. Lett. 2020, 117, 183901. [Google Scholar] [CrossRef]
- Deokate, R.J.; Kalubarme, R.S.; Park, C.J.; Lokhande, C.D. Simple Synthesis of NiCo2O4 Thin Films Using Spray Pyrolysis for Electrochemical Supercapacitor Application: A Novel Approach. Electrochim. Acta 2017, 224, 378–385. [Google Scholar] [CrossRef]
- Lin, C.K.; Chuang, K.H.; Lin, C.Y.; Tsay, C.Y.; Chen, C.Y. Manganese Oxide Films Prepared by Sol-Gel Process for Supercapacitor Application. Surf. Coatings Technol. 2007, 202, 1272–1276. [Google Scholar] [CrossRef]
- Allado, K.; Liu, M.; Jayapalan, A.; Arvapalli, D.; Nowlin, K.; Wei, J. Binary MnO2/Co3O4 metal Oxides Wrapped on Superaligned Electrospun Carbon Nanofibers as Binder Free Supercapacitor Electrodes. Energy Fuels 2021, 35, 8396–8405. [Google Scholar] [CrossRef]
- Muzakir, M.M.; Zainal, Z.; Lim, H.N.; Abdullah, A.H.; Bahrudin, N.N. Enhanced Capacitive Performance of Cathodically Reduced Titania Nanotubes Pulsed Deposited with Mn2O3as Supercapacitor Electrode. RSC Adv. 2021, 11, 26700–26709. [Google Scholar] [CrossRef]
- Dharmadasa, I.M.; Haigh, J. Strengths and Advantages of Electrodeposition as a Semiconductor Growth Technique for Applications in Macroelectronic Devices. J. Electrochem. Soc. 2006, 153, G47. [Google Scholar] [CrossRef]
- Das, P.; Deoghare, A.B.; Maity, S.R. A Novel Approach to Synthesize Reduced Graphene Oxide (RGO) at Low Thermal Conditions. Arab. J. Sci. Eng. 2021, 46, 5467–5475. [Google Scholar] [CrossRef]
- Heiba, Z.K.; Deyab, M.A.; Mohamed, M.B.; Farag, N.M.; El-naggar, A.M.; Plaisier, J.R. Electrochemical Performance of CuCo2O4/CuS Nanocomposite as a Novel Electrode Material for Supercapacitor. Appl. Phys. A Mater. Sci. Process. 2021, 127, 2–11. [Google Scholar] [CrossRef]
- Chen, C.; Deng, H.; Wang, C.; Luo, W.; Huang, D.; Jin, T. Petal-like CoMoO4Clusters Grown on Carbon Cloth as a Binder-Free Electrode for Supercapacitor Application. ACS Omega 2021, 6, 19616–19622. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, J.; Ma, D.; Feng, X.; Wang, L.; Wang, B. Metal-Organic Framework-Derived Trimetallic Nanocomposites as Efficient Bifunctional Oxygen Catalysts for Zinc-Air Batteries. ACS Appl. Mater. Interfaces 2021, 13, 33209–33217. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Guo, H.; Wu, Y.; Cao, C.; Tao, S.; Wu, Z. Surface-Enabled Superior Lithium Storage of High-Quality Ultrathin NiO Nanosheets. J. Mater. Chem. A 2014, 2, 7904–7911. [Google Scholar] [CrossRef]
- Zheng, J.H.; Zhang, R.M.; Yu, P.F.; Wang, X.G. Binary Transition Metal Oxides (BTMO) (Co-Zn, Co-Cu) Synthesis and High Supercapacitor Performance. J. Alloys Compd. 2019, 772, 359–365. [Google Scholar] [CrossRef]
- Akhavan, O. Photocatalytic Reduction of Graphene Oxides Hybridized by ZnO Nanoparticles in Ethanol. Carbon N. Y. 2011, 49, 11–18. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, X.L.; Zhang, G.H.; Xue, H.; Ma, S.Y. A Comparative Study of the Microstructures and Optical Properties of Cu- and Ag-Doped ZnO Thin Films. Phys. B Condens. Matter 2009, 404, 3645–3649. [Google Scholar] [CrossRef]
- Potlog, T.; Duca, D.; Dobromir, M. Temperature-Dependent Growth and XPS of Ag-Doped ZnTe Thin Films Deposited by Close Space Sublimation Method. Appl. Surf. Sci. 2015, 352, 33–37. [Google Scholar] [CrossRef]
- Nagaraju, P.; Alsalme, A.; Alkathiri, A.M.; Jayavel, R. Rapid Synthesis of WO3/Graphene Nanocomposite via in-Situ Microwave Method with Improved Electrochemical Properties. J. Phys. Chem. Solids 2018, 120, 250–260. [Google Scholar] [CrossRef]
- Thangavel, S.; Elayaperumal, M.; Venugopal, G. Synthesis and Properties of Tungsten Oxide and Reduced Graphene Oxide Nanocomposites. Mater. Express 2012, 2, 327–334. [Google Scholar] [CrossRef]
- Thakur, A.K.; Limaye, M.V.; Rakshit, S.; Maity, K.N.; Gupta, V.; Sharma, P.K.; Singh, S.B. Controlled Synthesis of WO3 Nanostructures: Optical, Structural and Electrochemical Properties. Mater. Res. Express 2018, 6, 025006. [Google Scholar] [CrossRef]
- Thiyagarajan, K.; Muralidharan, M.; Sivakumar, K. Defects Induced Magnetism in WO3 and Reduced Graphene Oxide-WO3 Nanocomposites. J. Supercond. Nov. Magn. 2018, 31, 117–125. [Google Scholar] [CrossRef]
- Vinoth, S.; Wang, S.F. Modification of Glassy Carbon Electrode with Manganese Cobalt Oxide-Cubic like Structures Incorporated Graphitic Carbon Nitride Sheets for the Voltammetric Determination of 2,4,6 -Trichlorophenol. Microchim. Acta 2022, 189. [Google Scholar] [CrossRef] [PubMed]
- Jagadale, A.D.; Kumbhar, V.S.; Lokhande, C.D. Supercapacitive Activities of Potentiodynamically Deposited Nanoflakes of Cobalt Oxide (Co3O4) Thin Film Electrode. J. Colloid Interface Sci. 2013, 406, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Kondalkar, V.V.; Yang, S.S.; Patil, P.S.; Choudhury, S.; Bhosale, P.N.; Lee, K.K. Langmuir-Blodgett Assembly of Nanometric WO3 Thin Film for Electrochromic Performance: A New Way. Mater. Lett. 2017, 194, 102–106. [Google Scholar] [CrossRef]
- Wang, S.; Xu, Y.; Qin, J.; Chen, S.; Du, Y.; Xu, Y.; Xu, J.; Zhou, W. One-Pot Synthesis of MnX2O4(X = Co, Ni)/Graphite Nanoflakes Composites as High-Performance Supercapacitor Electrodes. Mater. Res. Bull. 2021, 141. [Google Scholar] [CrossRef]
- Xu, K.; Ma, S.; Shen, Y.; Ren, Q.; Yang, J.; Chen, X.; Hu, J. CuCo2O4 Nanowire Arrays Wrapped in Metal Oxide Nanosheets as Hierarchical Multicomponent Electrodes for Supercapacitors. Chem. Eng. J. 2019, 369, 363–369. [Google Scholar] [CrossRef]
- Sheng, R.; Hu, J.; Lu, X.; Jia, W.; Xie, J.; Cao, Y. Solid-State Synthesis and Superior Electrochemical Performance of MnMoO4 Nanorods for Asymmetric Supercapacitor. Ceram. Int. 2021, 47, 16316–16323. [Google Scholar] [CrossRef]
- Lin, J.H.; Chen, H.; Shuai, M.M.; Wu, W.Z.; Wang, Y.; Zhang, W.G.; Ling, Q.D. Facile Synthesis of the 3D Interconnecting Petal-like NiCoO2/C Composite as High-Performance Supercapacitor Electrode Materials. Mater. Today Nano 2019, 7, 3–10. [Google Scholar] [CrossRef]
- Wang, D.; Jiang, S.; Duan, C.; Mao, J.; Dong, Y.; Dong, K.; Wang, Z.; Luo, S.; Liu, Y.; Qi, X. Spinel-Structured High Entropy Oxide (FeCoNiCrMn)3O4 as Anode towards Superior Lithium Storage Performance. J. Alloys Compd. 2020, 844, 156158. [Google Scholar] [CrossRef]
- Singh, A.K.; Sarkar, D.; Karmakar, K.; Mandal, K.; Khan, G.G. High-Performance Supercapacitor Electrode Based on Cobalt Oxide-Manganese Dioxide-Nickel Oxide Ternary 1D Hybrid Nanotubes. ACS Appl. Mater. Interfaces 2016, 8, 20786–20792. [Google Scholar] [CrossRef]
- Patil, P.D.; Shingte, S.R.; Karade, V.C.; Kim, J.H.; Dongale, T.D.; Mujawar, S.H.; Patil, A.M.; Patil, P.B. Effect of Annealing Temperature on Morphologies of Metal Organic Framework Derived NiFe2O4 for Supercapacitor Application. J. Energy Storage 2021, 40, 102821. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Zhao, J.; Xia, J.; Wang, L.; Lai, W.Y.; Pang, H.; Huang, W. Room Temperature Synthesis of Cobalt-Manganese-Nickel Oxalates Micropolyhedrons for High-Performance Flexible Electrochemical Energy Storage Device. Sci. Rep. 2014, 5, 8536. [Google Scholar] [CrossRef] [PubMed]
- Biswal, A.; Panda, P.K.; Acharya, A.N.; Mohapatra, S.; Swain, N.; Tripathy, B.C.; Jiang, Z.T.; Minakshi Sundaram, M. Role of Additives in Electrochemical Deposition of Ternary Metal Oxide Microspheres for Supercapacitor Applications. ACS Omega 2020, 5, 3405–3417. [Google Scholar] [CrossRef] [PubMed]
- Huo, W.C.; Liu, X.L.; Yuan, Y.S.; Li, N.; Lan, T.; Liu, X.Y.; Zhang, Y.X. Facile Synthesis of Manganese Cobalt Oxide/Nickel Cobalt Oxide Composites for High-Performance Supercapacitors. Front. Chem. 2019, 7, 661. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, Z.; Xin, N.; Ying, Y.; Shi, W. High-Performance Supercapacitor Based on Highly Active P-Doped One-Dimension/Two-Dimension Hierarchical NiCo2O4/NiMoO4 for Efficient Energy Storage. J. Colloid Interface Sci. 2021, 601, 793–802. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, L.; Zhao, S.; Wu, L. Preparation of MnCo2O4@Ni(OH)2 Core–Shell Flowers for Asymmetric Supercapacitor Materials with Ultrahigh Specific Capacitance. Adv. Funct. Mater. 2016, 26, 4085–4093. [Google Scholar] [CrossRef]
- Yang, F.; Guo, H.; Chen, Y.; Xu, M.; Yang, W.; Wang, M.; Yang, M.; Zhang, J.; Sun, L.; Zhang, T.; et al. Ultrahigh Rate Capability and Lifespan MnCo2O4/Ni-MOF Electrode for High Performance Battery-Type Supercapacitor. Chem. A Eur. J. 2021, 27, 14478–14488. [Google Scholar] [CrossRef]
- Dhas, S.D.; Maldar, P.S.; Patil, M.D.; Waikar, M.R.; Sonkawade, R.G.; Chakarvarti, S.K.; Shinde, S.K.; Kim, D.Y.; Moholkar, A.V. Probing the Electrochemical Properties of NiMn2O4 Nanoparticles as Prominent Electrode Materials for Supercapacitor Applications. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2021, 271, 115298. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Lin, L.Y. Synthesis of Ternary Metal Oxides for Battery-Supercapacitor Hybrid Devices: Influences of Metal Species on Redox Reaction and Electrical Conductivity. ACS Appl. Energy Mater. 2018, 1, 2979–2990. [Google Scholar] [CrossRef]
- Chen, X.; Xin, N.; Li, Y.; Sun, C.; Li, L.; Ying, Y.; Shi, W.; Liu, Y. Novel 2D/2D NiCo2O4/ZnCo2O4@rGO/CNTs Self-Supporting Composite Electrode with High Hydroxyl Ion Adsorption Capacity for Asymmetric Supercapacitor. J. Mater. Sci. Technol. 2022, 127, 236–244. [Google Scholar] [CrossRef]
- Manohar, A.; Vijayakanth, V.; Prabhakar Vattikuti, S.V.; Kim, K.H. Synthesis and Characterization of Mg2+ Substituted MnFe2O4 Nanoparticles for Supercapacitor Applications. Ceram. Int. 2022, 48, 30695–30703. [Google Scholar] [CrossRef]
- Singh, G.; Kumar, Y.; Husain, S. Improved Electrochemical Performance of Symmetric Polyaniline/Activated Carbon Hybrid for High Supercapacitance: Comparison with Indirect Capacitance. Polym. Adv. Technol. 2021, 32, 4490–4501. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, Y.; Deng, S.; Chen, G.; Li, Q.; Han, B.; Han, R.; Wang, Y. Graphene Nanosheets-Tungsten Oxides Composite for Supercapacitor Electrode. Ceram. Int. 2014, 40, 4109–4116. [Google Scholar] [CrossRef]
Electrode Material | Specific Capacitance | Retention | Energy Density | Power Density | Ref. |
---|---|---|---|---|---|
Co0.5Mn0.4Ni0.1C2O4∗nH2O//Graphene | 990 Fg−1 at 0.6 Ag−1 | 98.6% 6000 cycle | 0.46 mWh cm−3 | 46 mW cm−3 | [52] |
Co3O4-MnO2-NiO | 2525 F g−1 | 88% 5700 cycle | 108.8 Wh kg−1 | 8 kW kg−1 | [50] |
MnCo2O4.5@NiCo2O4 | 325 F g−1 at 1 Ag−1 | 70.5% 3000 cycle | - | - | [54] |
P-NiCo2O4/NiMoO4//AC | 2334 F g−1 at 1 Ag−1 | 89.97% 8000 cycle | 45.1 Wh kg−1 | 800 W kg−1 | [55] |
(CoCrFeMnNi)3O4 | 239 F g−1 at 0.5 Ag−1 | 86% 1000 cycle | 24.1 Wh kg−1 | - | [6] |
MnCo2O4@Ni(OH)2 | 2514 F g−1 at 5 Ag−1 | 90% 2500 cycle | 48 Wh kg−1 | 14.9 kW kg−1 | [56] |
MnCo2O4/Ni-MOF | 957.11 F g−1 at 1 Ag−1 | 83.33% 16,000 cycle | 35.6 Wh kg−1 | 749.91 W kg−1 | [57] |
NiMn2O4 | 571 F g−1 at 5 mVs−1 | 96% 2000 cycle | 11.9 Wh kg−1 | 44.4 kW kg−1 | [58] |
Co-Ni-Cu mixed oxide | 188 F g−1 at 0.1 Ag−1 | 95% 1000 cycle | 61.6 Wh kg−1 | 1.5 kW kg−1 | [53] |
NixCoyMozO | 126 mF cm−2 | - | 22.02 Wh kg−1 | 3.5 W kg−1 | [59] |
NiCo2O4/ZnCo2O4@rGO/CNTs | 143 F g−1 at 1 Ag−1 | 86.1% 9000 cycle | 50.8 Wh kg−1 | 800 W kg−1 | [60] |
Mg0.1Mn0.9Fe2O4 | 226.4 F g−1 at 0.5Ag−1 | 94.5% 3000 cycle | - | - | [61] |
Ag:MnCoNiO//AC | 478.9 F g−1 at 5 mVs−1 | 86% 6000 cycle | 45.5 Wh kg−1 | 4.5 kW kg−1 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Firat, Y.E.; Čolić, V. Electrochemical Deposition of Multicomponent Mixed Metal Oxides on rGO/Ni Foam for All-Solid-State Asymmetric Supercapacitor Device: Mn, Co, and Ni Oxides with Ag Doping. Energies 2022, 15, 8559. https://doi.org/10.3390/en15228559
Firat YE, Čolić V. Electrochemical Deposition of Multicomponent Mixed Metal Oxides on rGO/Ni Foam for All-Solid-State Asymmetric Supercapacitor Device: Mn, Co, and Ni Oxides with Ag Doping. Energies. 2022; 15(22):8559. https://doi.org/10.3390/en15228559
Chicago/Turabian StyleFirat, Yunus Emre, and Viktor Čolić. 2022. "Electrochemical Deposition of Multicomponent Mixed Metal Oxides on rGO/Ni Foam for All-Solid-State Asymmetric Supercapacitor Device: Mn, Co, and Ni Oxides with Ag Doping" Energies 15, no. 22: 8559. https://doi.org/10.3390/en15228559
APA StyleFirat, Y. E., & Čolić, V. (2022). Electrochemical Deposition of Multicomponent Mixed Metal Oxides on rGO/Ni Foam for All-Solid-State Asymmetric Supercapacitor Device: Mn, Co, and Ni Oxides with Ag Doping. Energies, 15(22), 8559. https://doi.org/10.3390/en15228559