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Abstract: A series of MOx (M = Co, Ni, Zn, Ce)-modified lamellar MnO2 electrode materials were
controllably synthesized with a superfast self-propagating technology and their electrochemical
practicability was evaluated using a three-electrode system. The results demonstrated that the
specific capacitance varied with the heteroatom type as well as the doping level. The low ZnO
doping level was more beneficial for improving electrical conductivity and structural stability, and
Mn10Zn hybrid nanocrystals exhibited a high specific capacitance of 175.3 F·g−1 and capacitance
retention of 96.9% after 2000 cycles at constant current of 0.2 A·g−1. Moreover, XRD, SEM, and
XPS characterizations confirmed that a small part of the heteroatoms entered the framework to
cause lattice distortion of MnO2, while the rest dispersed uniformly on the surface of the carrier to
form an interfacial collaborative effect. All of them induced enhanced electrical conductivity and
electrochemical properties. Thus, the current work provides an ultrafast route for development of
high-performance pseudocapacitive energy storage nanomaterials.

Keywords: energy storage; MnO2; dopant; nanocrystals; self-propagating

1. Introduction

The energy storage of pseudocapacitors is based on both ion adsorption and fast
surface redox reactions, which can beneficially endow high specific capacitance and energy
density compared to electrochemical double-layer capacitors [1,2]. The transition metal ox-
ides, such as MnOx, RuO2, CoOx, Cr2O3, CuO, NiO, CeO2, and FeOx, are widely employed,
thanks to their low cost, low toxicity, and environmental friendliness, as active electrode
materials for pseudocapacitors [3–6]. For example, manganese oxide (MnO2) has stood out
because of its amazingly high theoretical specific capacitance of 1370 F·g−1 [7]. However,
poor inherent electronic conductivity (10−5–10−6 S/cm) usually imparts the bulk of MnO2
materials with low practical capacitances (less than 100 F·g−1), well below the theoretical
value [8]. This severely hampers the practical delivery of MnO2 as high-performance
pseudocapacitive electrode nanomaterials.

To dispose of this problem, MnO2-based composites combined with conductive mate-
rials, such as carbon materials, polymers, metals, and some transition metal oxides, have
attracted much attention [9,10]. However, the promotion of MnO2 conductivity through
external conductive improvements is very limited, due to the weak interactions of the
MnO2/conductor interfaces. The question of how to efficiently integrate nanostructured
MnO2 and a conductive modifier using a facile route to enhance pseudocapacitance per-
formance of energy storage devices, as well as cycle stability, is of significance and has
attracted much attention. Chen et al. reported that the NiO@MnO2 core/shell nanocom-
posites prepared with a two-step method resulted in improved electronic conductivity
and enhanced specific capacitance, with an excellent cycling stability of 81.7% retention
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after 2000 cycles at a current density of 1 A·g−1 [11]. Lu et al. found that MnO2 loaded on
hydrogen-treated TiO2 (H-TiO2) conducting nanowire (H-TiO2@MnO2 NWS) electrodes
could deliver a high specific capacitance with a cycling performance of 91.2% [12]. Zhu
et al. developed a simple self-assembly route and prepared a CeO2@MnO2 heterojunction
nanostructure with an excellent capacitive performance thanks to the synergistic effect be-
tween CeO2 and MnO2 [13]. In addition, the doping of hetero elements, such as Co, Ce, Cu,
and Zn, can also validly vary the electronic structure of MnO2 and thereby induce better
electronic conductivity and electrochemical performance, as well as improved retention
ability [7,14,15]. Thus, it is highly desirable to fabricate heteroatom-modified MnO2 hybrid
materials with special constructed nanostructures and controlled crystal morphologies via
a facile step.

In this study, the enhanced conductivity of MnO2-based composites was treated as
a classical factor in order to command their electrochemical performance via regulation
of doping elements and optimization of dopant levels, as well as bridging of the special
nanostructure. According to our previous studies, hydrocarbons and CO decomposed
by copper acetate can be easily ignited in oxygen-enriched circumstances of potassium
permanganate after their mixed grinding, leading to formation of novel CuO-δ-MnO2
hybrid mixtures [16]. This sample provides catalytic activity comparable to that of the Pt-
based catalyst for toluene catalytic combustion, owing to the synergetic effect of combining
MnO2 and additional copper oxide [16]. Inspired by the foregoing synergies between
CuO and MnO2, we hypothesized that incorporating ZnO into the optimized lamellar
MnO2 systems might produce functionalized electronic structures for promoting intrinsic
conductivity and augmenting electrochemical performance. In this study, a series of metal
oxide-functionalized MnO2 electrode materials were prepared by a superfast and eco-
friendly self-propagating technology (SPT), and an advisable amount of Zn-decorated
lamellar MnO2 nanocrystals were found to deliver excellent electrochemical performance
and high capacitance retention. These outcomes have significant potential for engineering
state-of-the-art doped MnO2 nanostructures for electrochemical energy storage.

2. Materials and Methods
2.1. Preparation of Layered MOx-δ-MnO2

Layered MOx-δ-MnO2 (M = Co, Ni, Zn, Ce) electrode materials were fabricated
through a superfast SPT process with potassium permanganate (KMnO4) and acetic salt
(M(CH3COO)x·xH2O, where M was labeled as Co, Ni, Zn, Ce) (Figure 1). Specifically,
M(CH3COO)2·xH2O was mixed with KMnO4 in a mortar at a fixed molar ratio of Mn to
M (8:1), and the mixture was ground to homogeneity for approximately 10 min. Then,
the mixture was placed on a smooth stainless plate and ignited with a flame for several
seconds (3–5 s). After that, the final cooled black product was washed until the pH value
was 7, then it was filtered and dried at 100 ◦C for 12 h. The related produced catalysts were
marked by Mn8Co, Mn8Ni, Mn8Zn, and Mn8Ce. The series of ZnO-δ-MnO2 catalysts with
different zinc oxide contents were also synthesized with the above strategy with KMnO4
and (CH3COO)2·Zn. The molar ratios of Mn/Zn were adjusted to 5:1 and 10:1, and the
obtained samples were listed as Mn5Zn and Mn10Zn, respectively.

2.2. Characterization of Synthesized Materials

X-ray diffraction (XRD) was implemented on a Haoyuan DX-2700 with Cu Kα

(Haoyuan Co., Liaoning, China). Scanning electron microscopy (SEM) was also carried
out on a FEI Nova NanoSEM 450 microscope (FEI, Hillsboro, OR, USA). N2 adsorption–
desorption isotherms were carried out using a V-Sorb 2800P analyzer (Gold APP Instru-
ments Corporation, Beijing, China). An inductively coupled plasma mass spectrometer
(Thermo Scientific, ICP-MS, Waltham, MA, USA) equipped with an automatic sampler
(ASX-560) was employed to investigate the actual molar ratio of Mn/Zn. The surface
species were examined by X-ray photoelectron spectroscopy (XPS, XSAM800) (KRATOS,
Manchester, UK).
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Figure 1. Schematic illustration of the self-propagating technology (SPT) strategy and electrochemical performance
evaluation.

2.3. Electrochemical Tests

The electrochemical tests were performed on a CHI 660E workstation (Chenhua
Instrument Co., Shanghai, China) using a three-electrode system with a Pt mesh as the
counter electrode (CE) and a saturated Hg/HgO electrode as the reference electrode (RE), as
depicted in Figure 1. It can be noted that the electrode of the layered MOx-δ-MnO2 materials
was manufactured by mixing the conductive agent of black carbon and polyvinylidene
fluoride, in which the mass ratio was designated as 8:1:1 in N-methyl-2-pyrrolidone (NMP).
The mixture was ground and loaded on nickel foam (1 cm × 1 cm) with roughly 1 mg of
layered MOx-δ-MnO2 materials. Then, 1 M Na2SO4 aqueous solution was employed as an
electrolyte for all the electrochemical measurements, due to its environmental friendliness,
cost-effectiveness, and electrochemical stability.

3. Results

The phase composition and morphology of the synthesized layered MOx-δ-MnO2
(M = Co, Ni, Zn, Ce) materials were studied by XRD and SEM (Figure 2). It can be observed
that the MOx-δ-MnO2 (M = Co, Ni, Zn) samples with the same doping levels featured
the typical characteristic diffraction peaks at the 2θ values of 12.3 and 24.9◦ (Figure 2a),
which can be attributed to the crystal planes of (001) and (002) of the parent lamellar MnO2
(JCPDS no. 43-1456) [17]. Moreover, the diffraction peak slightly shifted to a higher location
with the higher dopant (Zn) level (Figure 2b and, inserted, an enlarged view), which can be
ascribed to the heteroatom-induced lattice distortion of parent manganese oxide [16]. It
is worth noting that the doping of cerium oxide probably resulted in a higher degree of
lattice distortion, along with a more complex crystal composition, because of the large ion
radius of Ce and the formation of a fluorite structure of CeO2 (Figure 2a).

Figure 2c,d display the SEM images of the Mn5Zn and Mn10Zn samples, respectively.
It can be seen that both had lamellar morphologies, and the high molar ratio of Mn/Zn
brought about a thick lamellar structure. It was suggested that overloading with ZnO
might restrain the formation of high specific surface areas in the modified δ-MnO2 cat-
alysts during the SPT process, as the N2 adsorption–desorption curves showed that the
value (33.2 m2/g) of the specific surface area of Mn10Zn was higher than that of Mn5Zn
(22.8 m2/g) (Figure S1). This corresponds well with our previous report [16]. To investigate
the dispersion of elements of the Zn-decorated MnO2, energy-dispersive spectroscopy
(EDS) was also employed in this study. Figure S2 depicts the dispersion of elements of
Mn, Zn, and O, respectively. It was found that a lot of green points of Zn nanoparticles
were highly dispersed on MnO2 nanosheets, indicating the uniform dispersion of ZnO
nanoparticles (NPs) on the birnessite-type MnO2 carrier.
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Figure 2. (a,b) XRD patterns of the layered MOx-δ-MnO2 (M = Co, Ni, Zn, Ce) materials; (c,d) SEM images of the Mn5Zn
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Figure 3a presents the XPS survey spectrum of the Mn10Zn sample. Mn (642 eV),
O (530 eV), K (292 eV), and Zn (1022 eV) can be observed based on the binding energy val-
ues. According to previous reports, K+ has a positive effect on improving the conductivity
and stabilizing the structure of MnO2 [18,19]. In our recent report, we also found that the
moderating effect of potassium ions remained within the structure of the mezzanine of the
δ-MnO2 catalysts and probably played a key role in adjusting the structure stability due
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to the pillared effect of K+ [20]. Figure 3b shows that the high-resolution Mn 2p spectrum
consisted of two peaks at 642.1 eV (Mn 2p3/2) and 653.9 eV (Mn 2p1/2), with a spin-energy
spilt-up of 11.8 eV, which is in good agreement with previous studies from the literature
and thus evidences the presence of MnO2 [21]. In addition, the molar ratio of Mn4+/Mn3+

was roughly 1.7 from the integration of the correlating peak areas, implying that the Mn4+

ion was the main component for Mn10Zn. The Zn 2p3/2 and Zn 2p1/2 profiles were ob-
served at the locations of 1021.7 eV and 1044.8 eV, where the value of energy separation was
23.1 eV. This result directly confirmed the existence of ZnO and/or interfacial ZnMn2O4
(Figure 3c) [22]. Moreover, the local environment of oxygen played an important role in
regulating the electrochemical performance. There were three bonding states of oxygen,
including Mn-O-Mn (529.8 eV), Mn-O-H (531.3 eV), and H-O-H (532.6 eV), and the level of
Mn-O-Mn was dominant, as displayed in Figure 3d.
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The value of the specific capacitance for electrode materials reflects the prospect of
practical applicability to some extent. In this study, we employed galvanostatic charge/
discharge (GCD), cyclic voltammetry (CV), and impedance experiments to assess the
electrochemical application of layered MOx-δ-MnO2 (M = Co, Ni, Zn, Ce) bimetallic ma-
terials in 1 M Na2SO4 aqueous solution. Figure 4a,b provide the GCD profiles of layered
MOx-δ-MnO2 with the same Mn/M ratio of 8 and of the lamellar Zn-decorated MnO2
nanocrystal with a different doping level, respectively. It was found that zinc doping with a
Mn/Zn ratio of 8 resulted in the best improvement of the specific capacitance and a higher
value 163.6 F/g compared to the parent MnO2 (153.7 F/g) and other heteroatomic modu-
lations, while the Mn8Ce afforded a much-diminished specific capacitance of 108.6 F/g,
manifesting the negative doping effect. It can be noted that the improved electrochemical
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performance of CeO2 mainly hinged on the specific surface area, particle size, morphology,
and defect states [23]. In this study, CeO2 layer-doped MnO2 electrode materials were
prepared using a superfast SPT process within several seconds, and it was a little hard to
efficiently control the vital parameters of their structures. This was most likely a result
of the negative enhancement effect of the modifier. However, the specific capacitance of
Zn-decorated MnO2 could be further promoted by adjusting the doping level of Zn; for
example, the value of Mn10Zn was increased up to 175.3 F/g. These data clearly indicate
that the boost of electrochemical performance of MnO2 strongly hinged on the dopant
type and the optimized content. Qiao et al. found that a suitable amount of ZnO with an
ionic conductor of La/Pr co-doped with CeO2 can lead to increasing the power density
in solid oxide fuel cells, but further increases of ZnO to 40–60 wt% only brought about a
negative impact on power density [24]. Similarly, overloading of ZnO with the sample of
Mn/Zn of ratio 5:1 also provided a negative impact on the specific performance, which
corresponds well with previous studies from the literature. It is well-known that incor-
porating appropriate atoms or ions into host lattices of MnO2 can enhance its electronic
conductivity and electrochemical performance [17]. Herein, the enhanced electrochemical
capacitance should have been due to the synergistic effect from the entry of heteroatoms
into the framework of MnO2 and interfacial interaction between the ZnO nanocatalysts
and the parent MnO2 carrier.
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Additionally, the CV of Mn10Zn exhibited a typical rectangle shape within a potential
window of 0–0.9 V at different scan rates (Figure 4c), revealing that the reversible redox
reaction rapidly occurred at the interface of Mn10Zn and the electrolyte ion via the follow-
ing reaction mechanism (Equation (1)), suggesting good pseudocapacitive behavior [25].
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Moreover, GCD curves displayed symmetrical charge–discharge behavior at different
current densities, which also implied a fast and reversible Faradic reaction between the
alkali cation of Na+ and the lamellar ZnO-decorated MnO2 nanocrystals (Figure 4d). It
is worth noting that the specific capacitance for all the samples decreased with the in-
crease of current density owing to the inadequate reaction between the active materials
and electrolyte ions under fast-changing potential [26]. Figure 5a shows the sequence of
electrochemical rate capabilities with the increase of current density as follows: Mn8Zn
(42.8%), Mn8Co (32.1%), Mn8Ni (25.9%), and Mn8Ce (23.6%). This was consistent with
the variation trend of the specific capacitance at the same current density. Moreover, the
relatively low content of ZnO doping modification led to a better rate performance, as
shown in Figure 5b. However, the Zn-decorated lamellar MnO2 nanocrystal with opti-
mized doping level (Mn10Zn) possessed a high-performance rate (43.1%) compared to the
other heteroatom-doped MnO2 (Figures 4d and 5b), and the specific capacitance remained
74.8 F/g at a high charge/discharge rate of 10 A g−1.

(Mn10Zn)surface + Na+ + e− ←→ [(Mn10Zn)surface]
−Na+ (1)
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Moreover, the slope of the Warburg resistance of the Zn-decorated MnO2 nanocatalysts
with low-level modification was higher than that with high doping content (Figure 6a),
suggesting the decline of charge transfer resistance arising from the optimized surface
structure of the MnO2 layer. This could account for the negative effect of overdoping
modification of heteroatoms. Furthermore, cyclic stability is an important index to evaluate
the practical potential of electrode materials. As displayed in Figure 6b, Mn10Zn presented
excellent operation stability with a capacitance retention of 96.9% after 2000 cycles at
a constant current density of 0.2 A·g−1. Therefore, the electrochemical performance of
MOx (M = Co, Ni, Zn, Ce)-doped δ-MnO2 electrode materials was closely related to the
Mn/Zn molar ratio. Relatively low levels of ZnO modification were conducive to better
electrochemical activity for energy storage devices due to the better electronic conductivity,
the highly dispersed ZnO phase with a small grain size, and the rich content of the
interfacial defects.
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4. Conclusions

In summary, a series of MOx (M = Co, Ni, Zn, Ce)-doped δ-MnO2 nanosheets were
prepared using a superfast and eco-friendly SPT strategy. XRD, SEM, and XPS charac-
terizations confirmed that a small part of the heteroatoms entered the framework and
caused lattice distortion of MnO2, while the rest of them dispersed uniformly on the
surface of the carrier to form an interfacial collaborative effect. All of them induced en-
hanced electrical conductivity and electrochemical properties. Among the synthesized
electrode materials, Mn10Zn hybrid nanocrystals exhibited a high specific capacitance of
175.3 F·g−1 and a capacitance retention of 96.9% after 2000 cycles at a constant current
density of 0.2 A·g−1. This study demonstrates that both the distortion defects of the matrix
lattice and interfacial interaction between the dopant and carrier lead to positive effects on
electrochemical performances.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11071680/s1. Figure S1. The N2 adsorption-desorption curves of Mn10Zn and Mn5Zn
samples. Figure S2. Images of element mapping of Mn, Zn and O, respectively.
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