Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = Aeromonas sobria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 319 KB  
Review
Aeromonas Infections in Humans—Antibiotic Resistance and Treatment Options
by Noelia Calvo Sánchez, Laura Sancha Domínguez, Ana Cotos Suárez and Juan Luis Muñoz Bellido
Pathogens 2025, 14(11), 1161; https://doi.org/10.3390/pathogens14111161 - 14 Nov 2025
Cited by 1 | Viewed by 1758
Abstract
The genus Aeromonas is widely distributed in aquatic environments, where it is a frequent fish pathogen. It has also been described in association with human infections, with most cases caused by A. caviae, A. veronii biovar sobria, and A. hydrophila. [...] Read more.
The genus Aeromonas is widely distributed in aquatic environments, where it is a frequent fish pathogen. It has also been described in association with human infections, with most cases caused by A. caviae, A. veronii biovar sobria, and A. hydrophila. More recently, A. dhakensis has emerged as an increasingly important human pathogen. Transmission occurs primarily through ingestion or contacts with aquatic sources, or by consuming contaminated food, particularly from aquatic origins. Growing resistance in Aeromonas has been reported for penicillins (including their combinations with classical β-lactamase inhibitors), cephalosporins, and carbapenems. Among the β-lactam antibiotics, only fourth-generation cephalosporins remain almost uniformly active. Furthermore, the co-occurrence of resistance genes for third-generation cephalosporins and carbapenems within the same isolates is increasing. Recently, the presence of mobile genes conferring colistin resistance has also been documented, with resistance rates sometimes exceeding 30%. This evolution of colistin resistance is likely linked to its use in aquaculture, and together with the rise in β-lactam resistance, may be transforming Aeromonas into a significant reservoir of resistance genes that could potentially be transferred to species more commonly associated with human infections, such as the Enterobacterales. Full article
20 pages, 12743 KB  
Article
Aeromonas Species Diversity, Virulence Characteristics, and Antimicrobial Susceptibility Patterns in Village Freshwater Aquaculture Ponds in North India
by Alka Nokhwal, Rajesh Kumar Vaid, Taruna Anand, Ravikant Verma and Rachna Gulati
Antibiotics 2025, 14(3), 294; https://doi.org/10.3390/antibiotics14030294 - 12 Mar 2025
Cited by 3 | Viewed by 3074
Abstract
Background/Objectives: Motile aeromonads are ubiquitous aquatic Gram-negative opportunistic pathogens with environmental, animal, aquatic, and human health implications. Methods: Motile aeromonads were isolated from village pond water samples (n = 100) of the Hisar district of Haryana state in India. Selective isolation and [...] Read more.
Background/Objectives: Motile aeromonads are ubiquitous aquatic Gram-negative opportunistic pathogens with environmental, animal, aquatic, and human health implications. Methods: Motile aeromonads were isolated from village pond water samples (n = 100) of the Hisar district of Haryana state in India. Selective isolation and enumeration were followed by biochemical and genotypic identification using gyrB gene; evaluation of seven putative virulence factors and antimicrobial resistance studies and determination of extended spectrum beta lactamase (ESBL) and AmpC beta lactamase (ACBL) enzyme-producing abilities took place. Results: The viable counts of motile aeromonads varied from 1.6 × 102 CFU/mL to 1.2 × 108 CFU/mL. Six species of Aeromonas were identified with high prevalence of A. veronii (74.7%), followed by A. caviae (8.9%), A. hydrophila (7.6), A. jandaei (5%), A. sobria (2.5%), and A. dhakensis (1.3%). PCR amplification of seven genes related to virulence indicated that the majority of the isolates were positive for enolase (eno, 98%), cytotoxic enterotoxin (act, 88%), and hemolysin (asa1, 86%). Many isolates were also positive for type III secretion system inner membrane component (ascV, 53%), ADP-ribosylating toxin (aexT, 47%), and extracellular hemolysin (ahh1, 4%). The antimicrobial resistance (AMR) profile of the isolated Aeromonas isolates indicated the high resistance observed to nalidixic acid (40.2%), cefoxitin (33%), and imipenem (6.2%). In addition, the occurrence of 10.3% ESBL, 32% ACBL, and 29.9% multi-drug resistant (MDR) isolates is alarming. Phylogenetic analysis of gyrB sequences of A. veronii isolates (n = 59) together with GenBank sequences of A. veronii from different geographical regions of the world indicated high genotypic diversity. Conclusions: the village aquaculture ponds in Hisar district have a high occurrence of MDR A. veronii, A. hydrophila, and A. caviae, posing significant animal and public health concern. Full article
(This article belongs to the Section Antibiotics in Animal Health)
Show Figures

Figure 1

22 pages, 5102 KB  
Article
Dietary Chitosan Nanoparticles Enhance Growth, Antioxidant Defenses, Immunity, and Aeromonas veronii biovar sobria Resistance in Nile tilapia Oreochromis niloticus
by Nesreen Hossam-Elden, Nermeen M. Abu-Elala, Huda O. AbuBakr, Zhi Luo, Samira H. Aljuaydi, Marwa Khattab, Sara E. Ali, Mohamed S. Marzouk and Islam I. Teiba
Fishes 2024, 9(10), 388; https://doi.org/10.3390/fishes9100388 - 28 Sep 2024
Cited by 8 | Viewed by 3058
Abstract
While chitosan is widely used in aquaculture feed, chitosan nanoparticles (CNPs) offer potential advantages due to their enhanced absorption. This study investigated the safe use of CNP levels in Nile tilapia feed, evaluating its impact on growth, immunity, and disease resistance. Five experimental [...] Read more.
While chitosan is widely used in aquaculture feed, chitosan nanoparticles (CNPs) offer potential advantages due to their enhanced absorption. This study investigated the safe use of CNP levels in Nile tilapia feed, evaluating its impact on growth, immunity, and disease resistance. Five experimental diets were formulated and supplemented with zero chitosan (served as a control group), 1g/kg of chitosan (CS), and 1, 3, and 5 g/kg of CNPs. Each diet was randomly assigned to three replicate groups of 45 fish per group (15 fish/tank) with an average weight of (42.10 ± 0.05g, mean ± S.E.) twice daily (09:00 a.m. and 4:00 p.m.) to apparent satiation for two months. At the end of the feeding trial, fish fed 5 g/ kg of CNPs had the highest growth performance. However, no significant variations (p > 0.05) in somatic index were seen between the experimental groups. All chitosan and CNP-enriched groups exhibited improved intestinal morphology compared to the control group, characterized by increased villus length and width, reduced necrosis of intestinal tips, and better overall tissue integrity, with the CNP 3g and 5g groups demonstrating the most favorable intestinal structure. The CNP-treated groups (3, 5 g/kg) had significantly higher blood indices and serum globulin. Malondialdehyde (MDA) levels were lower in the CNP-treated groups compared to the chitosan macromolecule group. There was a substantial rise in glutathione (GSH), total antioxidant capacity (TAC), phagocytic index, and respiratory burst activity in the 5 g/kg CNP-treated group. The dietary addition of 5 g/kg of CNPs raised mRNA expression for TLR-2, MUC-2, and IGF-1, but there was no significant difference in HSP70 expression across treatments. After the experimental challenge with Aeromonas veronii biovar sobria, the groups that received 3 and 5 g/kg of CNPs exhibited the lowest mortality rates. Overall, the results suggest that including 5g/kg of CNPs in fish food is safe and effective for enhancing their health and growth, making it a promising addition to aquaculture feed. Full article
(This article belongs to the Section Nutrition and Feeding)
Show Figures

Figure 1

26 pages, 8053 KB  
Article
Polyinfection in Fish Aeromoniasis: A Study of Co-Isolated Aeromonas Species in Aeromonas veronii Outbreaks
by Yanelys Cantillo Villa, Adriana Triga and Pantelis Katharios
Pathogens 2023, 12(11), 1337; https://doi.org/10.3390/pathogens12111337 - 10 Nov 2023
Cited by 6 | Viewed by 3809
Abstract
We studied the phenotypic and genomic characteristics related to the virulence and antibiotic resistance of two Aeromonas strains, which were co-isolated before an outbreak of Aeromonas veronii among diseased seabass on Agathonisi Island, Greece, in April 2015. The first strain, AG2.13.2, is a [...] Read more.
We studied the phenotypic and genomic characteristics related to the virulence and antibiotic resistance of two Aeromonas strains, which were co-isolated before an outbreak of Aeromonas veronii among diseased seabass on Agathonisi Island, Greece, in April 2015. The first strain, AG2.13.2, is a potentially pathogenic mesophilic variant of Aeromonas salmonicida, and the second, AG2.13.5, corresponds to an Aeromonas rivipollensis related to A. rivipollensis KN-Mc-11N1 with an ANI value of 97.32%. AG2.13.2 lacks the type III secretion system just like other mesophilic strains of A. salmonicida. This characteristic has been associated with lower virulence. However, the genome of AG2.13.2 contains other important virulence factors such as type II and type VI secretion systems, and toxins such as rtxA, aerolysin aer/act, and different types of hemolysins. The strain also carries several genes associated with antibiotic resistance such as the tetE efflux pump, and exhibits resistance to tetracycline, ampicillin, and oxolinic acid. In an in vivo challenge test with gilthead seabream larvae, the A. veronii bv sobria strain AG5.28.6 exhibited the highest virulence among all tested strains. Conversely, both A. salmonicida and A. rivipollensis showed minimal virulence when administered alone. Interestingly, when A. veronii bv sobria AG5.28.6 was co-administered with A. rivipollensis, the larvae survival probability increased compared to those exposed to A. veronii bv sobria AG5.28.6 alone. This finding indicates an antagonistic interaction between A. veronii bv sobria AG5.28.6 and A. rivipollensis AG2.13.5. The co-administration of A. veronii bv sobria AG5.28.6 with Aeromonas salmonicida did not yield distinct survival probabilities. Our results validate that the primary pathogen responsible for European seabass aeromoniasis is Aeromonas veronii bv sobria. Full article
(This article belongs to the Special Issue Aeromonas: Genome, Transmission, Pathogenesis, and Treatment)
Show Figures

Figure 1

17 pages, 2139 KB  
Article
Antioxidant, Immunostimulant, and Growth-Promoting Effects of Dietary Annona squamosa Leaf Extract on Nile Tilapia, Oreochromis niloticus, and Its Tolerance to Thermal Stress and Aeromonas sobria Infection
by Salem Hamad Almarri, Alshimaa A. Khalil, Abdallah Tageldein Mansour and Walaa El-Houseiny
Animals 2023, 13(4), 746; https://doi.org/10.3390/ani13040746 - 19 Feb 2023
Cited by 38 | Viewed by 5620
Abstract
Plant extracts are a phytochemically-rich alternative to antibiotic and synthetic feed additives, with high systemic bioactivity in animals. The present study aimed to evaluate the effect of a hydroalcoholic extract of custard apple (Annona squamosa) leaf (ASLE) on the growth, hematobiochemical [...] Read more.
Plant extracts are a phytochemically-rich alternative to antibiotic and synthetic feed additives, with high systemic bioactivity in animals. The present study aimed to evaluate the effect of a hydroalcoholic extract of custard apple (Annona squamosa) leaf (ASLE) on the growth, hematobiochemical parameters, digestive enzyme activities, redox status, nonspecific immune response, and cold and bacterial infection tolerance in Nile tilapia (Oreochromis niloticus). A total of 300 Nile tilapia fingerlings (11.87 ± 0.48 g) were fed ASLE-supplemented diets at increasing levels of 0, 5, 10, 15, and 20 g/kg for 60 days. At the end of the feeding period, the fish were experimentally challenged with cold water stress or Aeromonas sobria, and mortalities were recorded for 10 days. The results revealed that the growth performance and feed conversion ratio were significantly improved with an increasing level of ASLE supplementation. The hematologic profile and hepato-renal functions were retained within a healthy range in the various groups supplemented with an ASLE diet. Antioxidant status was significantly improved in the serum of fish fed ASLE-supplemented diets, in terms of superoxide dismutase (SOD), catalase (CAT) activities, reduced glutathione, and total antioxidant capacity. Meanwhile, the myeloperoxidase (MPO) and malondialdehyde (MDA) levels decreased significantly. Similarly, there was a noticeable improvement in the hepatic CAT and SOD activities and a reduction of hepatic MDA. Marked improvements in lysozyme activity, nitric oxide production, complement3 level, and phagocytic activity were recorded in groups fed ASLE-supplemented diets, which peaked with the 20 g ASLE/kg diet. Moreover, the serum glucose and cortisol levels significantly declined in groups fed ASLE at levels of 15–20 g/kg compared to the other groups. Supplementation with ASLE increased the activities of protease, lipase, and α-amylase. ASLE supplementation at a concentration of 10–20 g/kg diet enhanced the resistance of Nile tilapia to A. sobria infection. According to this study, ASLE supplementation enhanced the antioxidant balance, non-specific immune response, physiological status, resistance against infection, and growth performance of Nile tilapia at supplementation levels of 10–20 g/kg diet. Full article
(This article belongs to the Special Issue New Nutritional Strategies to Control Disease of Aquaculture)
Show Figures

Figure 1

14 pages, 1787 KB  
Article
Virulence, Antibiotic Resistance, and Phylogenetic Relationships of Aeromonas spp. Carried by Migratory Birds in China
by Bing Liang, Xue Ji, Bowen Jiang, Tingyu Yuan, Chao Lu Men Gerile, Lingwei Zhu, Tiecheng Wang, Yuanguo Li, Jun Liu, Xuejun Guo and Yang Sun
Microorganisms 2023, 11(1), 7; https://doi.org/10.3390/microorganisms11010007 - 20 Dec 2022
Cited by 10 | Viewed by 2529
Abstract
This study aimed to evaluate antimicrobial resistance, virulence, and the genetic diversity of Aeromonas isolated from migratory birds from Guangxi Province, Guangdong Province, Ningxia Hui Autonomous Region, Jiangxi Province, and Inner Mongolia in China. A total of 810 samples were collected, including fresh [...] Read more.
This study aimed to evaluate antimicrobial resistance, virulence, and the genetic diversity of Aeromonas isolated from migratory birds from Guangxi Province, Guangdong Province, Ningxia Hui Autonomous Region, Jiangxi Province, and Inner Mongolia in China. A total of 810 samples were collected, including fresh feces, cloacal swabs, and throat swabs. The collected samples were processed and subjected to bacteriological examination. The resistance to 21 antibiotics was evaluated. A phylogenetic tree was constructed using concatenated gltA-groL-gyrB-metG-PPSA-recA sequences. Eight putative virulence factors were identified by PCR and sequencing, and a biofilm formation assay was performed using a modified microtiter plate method. In total, 176 Aeromonas isolates were isolated including A. sobria, A. hydrophila, A. veronii, and A. caviae. All isolates showed variable resistance against all 16 tested antibiotic discs, and only one antibiotic had no reference standard. Six kinds of virulence gene markers were discovered, and the detection rates were 46.0% (hlyA), 76.1% (aerA), 52.3% (alt), 4.5% (ast), 54.0% (fla), and 64.2% (lip). These strains were able to form biofilms with distinct magnitudes; 102 were weakly adherent, 14 were moderately adherent, 60 were non-adherent, and none were strongly adherent. Our results suggest that migratory birds carry highly virulent and multidrug-resistant Aeromonas and spread them around the world through migration, which is a potential threat to public health. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

14 pages, 2525 KB  
Article
The Quality and Bacterial Community Changes in Freshwater Crawfish Stored at 4 °C in Vacuum Packaging
by Liang Qiu, Yunchun Zhao, Hui Ma, Xiaofei Tian, Chan Bai and Tao Liao
Molecules 2022, 27(23), 8618; https://doi.org/10.3390/molecules27238618 - 6 Dec 2022
Cited by 15 | Viewed by 2982
Abstract
Crawfish can be easily spoiled due to their rich nutrition and high water content, which is difficult to preserve. In this study, the dominant spoilage organisms in crawfish which were stored at 4 °C in vacuum packaging were identified by high-throughput sequencing technology; [...] Read more.
Crawfish can be easily spoiled due to their rich nutrition and high water content, which is difficult to preserve. In this study, the dominant spoilage organisms in crawfish which were stored at 4 °C in vacuum packaging were identified by high-throughput sequencing technology; after sequencing the full-length 16S rRNA gene, the changes in the bacterial community structure, diversity and quality (texture, flavor, etc.) were analyzed. Our results reflected that the specific spoilage organisms (SSOs) of crawfish were Aeromonas sobria, Shewanella putrefaciens, Trichococcus pasteurii and Enterococcus aquimarinus, since their abundances significantly increased after being stored for 12 days at 4 °C under vacuum conditions. At the same time, the abundance and diversity of the microbial community decreased with storage time, which was related to the rapid growth of the dominant spoilage organisms and the inhibition of other kinds of microorganisms at the end of the spoilage stage. Function prediction results showed that the gene which contributed to metabolism influenced the spoilage process. Moreover, the decline in texture of crawfish was negatively correlated to the richness of SSOs; this may be because SSOs can produce alkaline proteases to degrade the myofibrillar protein. On the contrary, the unpleasant flavor of crawfish, resulting from volatile flavor compounds such as S-containing compounds and APEOs, etc., is negatively correlated to the richness of SSOs, due to the metabolism of SSOs by secondary metabolites such as terpenoids, polyketides and lips, which can lead to decarboxylation, deamination and enzymatic oxidation. These results are very important to achieve the purpose of targeted inhibition of crawfish spoilage at 4 °C in vacuum packaging. Full article
Show Figures

Figure 1

19 pages, 2225 KB  
Article
Exploring the Interactive Effects of Thymol and Thymoquinone: Moving towards an Enhanced Performance, Gross Margin, Immunity and Aeromonas sobria Resistance of Nile Tilapia (Oreochromis niloticus)
by Doaa Ibrahim, Sara E. Shahin, Leena S. Alqahtani, Zeinab Hassan, Fayez Althobaiti, Sarah Albogami, Mohamed Mohamed Soliman, Rania M. S. El-Malt, Helal F. Al-Harthi, Nada Alqadri, Mohamed Tharwat Elabbasy and Marwa I. Abd El-Hamid
Animals 2022, 12(21), 3034; https://doi.org/10.3390/ani12213034 - 4 Nov 2022
Cited by 34 | Viewed by 3473
Abstract
Plant-derived bioactive compounds with promising nutritional and therapeutic attributes (phytogenics) are among the top priorities in the aquaculture sector. Therefore, the impact of thymol (Thy) and/or thymoquinone (ThQ) on the growth, immune response antioxidant capacity, and Aeromonas sobria (A. sobria) resistance [...] Read more.
Plant-derived bioactive compounds with promising nutritional and therapeutic attributes (phytogenics) are among the top priorities in the aquaculture sector. Therefore, the impact of thymol (Thy) and/or thymoquinone (ThQ) on the growth, immune response antioxidant capacity, and Aeromonas sobria (A. sobria) resistance of Nile tilapia was investigated. Four fish groups were fed a control diet and three basal diets supplemented with 200 mg/kg diet of Thy or ThQ and a blend of both Thy and ThQ at a level of 200 mg/kg diet each. At the end of the feeding trial (12 weeks), the tilapias were challenged intraperitoneally with virulent A. sobria (2.5 × 108 CFU/mL) harboring aerolysin (aero) and hemolysin (hly) genes. The results revealed that tilapias fed diets fortified with a combination of Thy and ThQ displayed significantly enhanced growth rate and feed conversion ratio. Notably, the expression of the genes encoding digestive enzymes (pepsinogen, chymotrypsinogen, α-amylase and lipase) and muscle and intestinal antioxidant enzymes (glutathione peroxidase, catalase and superoxide dismutase) was significantly upregulated in Thy/ThQ-fed fish. An excessive inflammatory response was subsided more prominently in the group administrated Thy/ThQ as supported by the downregulation of il-β, il-6 and il-8 genes and in contrast, the upregulation of the anti-inflammatory il-10 gene. Remarkably, dietary inclusion of Thy/ThQ augmented the expression of autophagy-related genes, whilst it downregulated that of mtor gene improving the autophagy process. Furthermore, Thy/ThQ protective effect against A. sobria was evidenced via downregulating the expression of its aero and hly virulence genes with higher fish survival rates. Overall, the current study encouraged the inclusion of Thy/ThQ in fish diets to boost their growth rates, promote digestive and antioxidant genes expression, improve their immune responses and provide defense against A. sorbia infections with great economic benefits. Full article
Show Figures

Figure 1

22 pages, 4700 KB  
Article
Evaluation of Proteomic and Lipidomic Changes in Aeromonas-Infected Trout Kidney Tissue with the Use of FT-IR Spectroscopy and MALDI Mass Spectrometry Imaging
by Joanna Matys, Anna Turska-Szewczuk, Barbara Gieroba, Maria Kurzylewska, Agnieszka Pękala-Safińska and Anna Sroka-Bartnicka
Int. J. Mol. Sci. 2022, 23(20), 12551; https://doi.org/10.3390/ijms232012551 - 19 Oct 2022
Cited by 12 | Viewed by 3149
Abstract
Aeromonas species are opportunistic bacteria causing a vast spectrum of human diseases, including skin and soft tissue infections, meningitis, endocarditis, peritonitis, gastroenteritis, and finally hemorrhagic septicemia. The aim of our research was to indicate the molecular alterations in proteins and lipids profiles resulting [...] Read more.
Aeromonas species are opportunistic bacteria causing a vast spectrum of human diseases, including skin and soft tissue infections, meningitis, endocarditis, peritonitis, gastroenteritis, and finally hemorrhagic septicemia. The aim of our research was to indicate the molecular alterations in proteins and lipids profiles resulting from Aeromonas sobria and A. salmonicida subsp. salmonicida infection in trout kidney tissue samples. We successfully applied FT-IR (Fourier transform infrared) spectroscopy and MALDI-MSI (matrix-assisted laser desorption/ionization mass spectrometry imaging) to monitor changes in the structure and compositions of lipids, secondary conformation of proteins, and provide useful information concerning disease progression. Our findings indicate that the following spectral bands’ absorbance ratios (spectral biomarkers) can be used to discriminate healthy tissue from pathologically altered tissue, for example, lipids (CH2/CH3), amide I/amide II, amide I/CH2 and amide I/CH3. Spectral data obtained from 10 single measurements of each specimen indicate numerous abnormalities concerning proteins, lipids, and phospholipids induced by Aeromonas infection, suggesting significant disruption of the cell membranes. Moreover, the increase in the content of lysolipids such as lysophosphosphatidylcholine was observed. The results of this study suggest the application of both methods MALDI-MSI and FT-IR as accurate methods for profiling biomolecules and identifying biochemical changes in kidney tissue during the progression of Aeromonas infection. Full article
(This article belongs to the Special Issue Spectroscopy of Biological Molecules)
Show Figures

Figure 1

11 pages, 772 KB  
Article
Pharmacokinetics and Pharmacokinetic/Pharmacodynamic Integration of Enrofloxacin Following Single Oral Administration of Different Doses in Brown Trout (Salmo trutta)
by Kamil Uney, Ertugrul Terzi, Duygu Durna Corum, Rahmi Can Ozdemir, Soner Bilen and Orhan Corum
Animals 2021, 11(11), 3086; https://doi.org/10.3390/ani11113086 - 28 Oct 2021
Cited by 28 | Viewed by 4652
Abstract
The pharmacokinetic of enrofloxacin was investigated in brown trout (Salmo trutta) following oral administration of 10, 20, and 40 mg/kg doses at 11 ± 1.5 °C. Furthermore, MICs of enrofloxacin against Aeromonas hydrophila and A. sobria were determined. The plasma concentrations [...] Read more.
The pharmacokinetic of enrofloxacin was investigated in brown trout (Salmo trutta) following oral administration of 10, 20, and 40 mg/kg doses at 11 ± 1.5 °C. Furthermore, MICs of enrofloxacin against Aeromonas hydrophila and A. sobria were determined. The plasma concentrations of enrofloxacin and ciprofloxacin were determined using HPLC–UV and analyzed by non-compartmental method. Following oral administration at dose of 10 mg/kg, total clearance (CL/F), area under the concentration–time curve (AUC0−) and peak plasma concentrations (Cmax) were 41.32 mL/h/kg, 242.02 h*μg/mL and 4.63 μg/mL, respectively. When compared to 10 mg/kg dose, the dose-normalized AUC0– and Cmax were increased by 56.30% and 30.08%, respectively, while CL/F decreased by 38.4% at 40 mg/kg dose, suggesting the non-linearity. Ciprofloxacin was not detected in the all of plasma samples. The MIC values of enrofloxacin were ranged 0.0625–4 μg/mL for A. hydrophila and 0.0625–2 μg/mL for A. sobria. The oral administration of enrofloxacin at 10 (for 192 h) and 20 (for 240 h) mg/kg doses provided the AUC of enrofloxacin equal to 1.23 and 1.96-fold MICs, respectively, for A. hydrophila and A. sobria with the MIC90 values of 1 µg/mL. However, further researches are needed on the PK/PD study of enrofloxacin for the successful treatment of infections caused by A. hydrophila and A. sobria in brown trout. Full article
(This article belongs to the Special Issue Pharmacokinetics and Pharmacodynamics in Veterinary Medicine)
Show Figures

Figure 1

22 pages, 10314 KB  
Article
Characterization and Antimicrobial Resistance of Environmental and Clinical Aeromonas Species Isolated from Fresh Water Ornamental Fish and Associated Farming Environment in Sri Lanka
by Pavithra M. Dhanapala, Ruwani S. Kalupahana, Anil W. Kalupahana, D.P.H. Wijesekera, Sanda A. Kottawatta, Niromi K. Jayasekera, Ayona Silva-Fletcher and S.S.S. de S. Jagoda
Microorganisms 2021, 9(10), 2106; https://doi.org/10.3390/microorganisms9102106 - 6 Oct 2021
Cited by 61 | Viewed by 6633
Abstract
The aims of this study were to characterize and investigate antimicrobial susceptibility and presence of integrons in 161 Aeromonas spp. isolated from ornamental freshwater fish farming environment, apparently healthy and diseased fish. Phylogenetic analyses of the gyrB gene sequences identified Aeromonas veronii as [...] Read more.
The aims of this study were to characterize and investigate antimicrobial susceptibility and presence of integrons in 161 Aeromonas spp. isolated from ornamental freshwater fish farming environment, apparently healthy and diseased fish. Phylogenetic analyses of the gyrB gene sequences identified Aeromonas veronii as the most abundant species (75.8%) followed by Aeromonashydrophila (9.3%), Aeromonas caviae (5%), Aeromonas jandaei (4.3%), Aeromonas dhakensis (3.7%), Aeromonas sobria (0.6%), Aeromonas media (0.6%), and Aeromonas popoffii (0.6%). Susceptibility to thirteen antimicrobials was determined and antimicrobial resistance frequencies were: amoxicillin (92.5%), enrofloxacin (67.1%), nalidixic acid (63.4%), erythromycin (26.1%), tetracycline (23.6%), imipenem (18%), trimethoprim-sulfamethoxazole (16.8%), and gentamicin (16.8%). Multi-drug resistance (MDR) was widespread among the isolates (51.6%, 83/161) with 51.6% (63/122) A. veronii isolates being MDR. In addition, 68.3% of isolates had multiple antibiotic resistance (MAR) indexes higher than 0.2, suggesting that they originated from a high-risk source of contamination where antimicrobials are often used. In all, 21.7% isolates carried class 1 integrons, with 97.1% having gene cassettes, while there were 12 isolates carrying class 2 integron gene cassettes. Our findings highlight that the aquatic environment and ornamental fish act as reservoirs of multidrug resistant Aeromonas spp. and underline the need for a judicious use of antimicrobials and timely surveillance of antimicrobial resistance (AMR) in aquaculture. Full article
(This article belongs to the Special Issue Antibiotic Resistance of Aeromonas: A One Health Perspective)
Show Figures

Figure 1

16 pages, 4061 KB  
Article
Antibacterial Effects of Essential Oils of Seven Medicinal-Aromatic Plants Against the Fish Pathogen Aeromonas veronii bv. sobria: To Blend or Not to Blend?
by Manolis Mandalakis, Thekla I. Anastasiou, Natalia Martou, Sofoklis Keisaris, Vasileios Greveniotis, Pantelis Katharios, Diamanto Lazari, Nikos Krigas and Efthimia Antonopoulou
Molecules 2021, 26(9), 2731; https://doi.org/10.3390/molecules26092731 - 6 May 2021
Cited by 12 | Viewed by 4213
Abstract
Despite progress achieved, there is limited available information about the antibacterial activity of constituents of essential oils (EOs) from different medicinal-aromatic plants (MAPs) against fish pathogens and the complex interactions of blended EOs thereof. The present study aimed to investigate possible synergistic antimicrobial [...] Read more.
Despite progress achieved, there is limited available information about the antibacterial activity of constituents of essential oils (EOs) from different medicinal-aromatic plants (MAPs) against fish pathogens and the complex interactions of blended EOs thereof. The present study aimed to investigate possible synergistic antimicrobial effects of EOs from seven Greek MAPs with strong potential against Aeromonas veronii bv. sobria, a fish pathogen associated with aquaculture disease outbreaks. The main objective was to evaluate whether blending of these EOs can lead to increased antimicrobial activity against the specific microorganism. A total of 127 combinations of EOs were prepared and their effect on A. veronii bv. sobria growth was tested in vitro. We examined both the inhibitory and bactericidal activities of the individual EOs and compared them to those of the blended EOs. The vast majority of the investigated combinations exhibited significant synergistic and additive effects, while antagonistic effects were evident only in a few cases, such as the mixtures containing EOs from rosemary, lemon balm and pennyroyal. The combination of EOs from Greek oregano and wild carrot, as well as the combinations of those two with Spanish oregano or savoury were the most promising ones. Overall, Greek oregano, savoury and Spanish oregano EOs were the most effective ones when applied either in pure form or blended with other EOs. Full article
(This article belongs to the Special Issue The Functional Applications of Medicinal Plants)
Show Figures

Figure 1

19 pages, 5410 KB  
Article
Immunological Responses and the Antioxidant Status in African Catfish (Clarias gariepinus) Following Replacement of Dietary Fish Meal with Plant Protein
by Rasha M. Reda, Mohammed A. F. Nasr, Tamer A. Ismail and Amira Moustafa
Animals 2021, 11(5), 1223; https://doi.org/10.3390/ani11051223 - 23 Apr 2021
Cited by 16 | Viewed by 4304
Abstract
African catfish (Clarias gariepinus) were subjected to a 30-day feeding trial to determine the appropriateness of using plant protein (PP) (soybean and sunflower meal) as a fishmeal (FM) replacement in the diet and its effects on immune status, antioxidant activity, pituitary [...] Read more.
African catfish (Clarias gariepinus) were subjected to a 30-day feeding trial to determine the appropriateness of using plant protein (PP) (soybean and sunflower meal) as a fishmeal (FM) replacement in the diet and its effects on immune status, antioxidant activity, pituitary adenylate cyclase-activating polypeptide (PACAP) gene expression, and disease resistance. A total of 150 C. gariepinus (51.01 ± 0.34 g) were randomly distributed among five groups in triplicate. Five experimental diets were formulated to replace 0 (control), 33.5, 50, 66.5, and 100% FM with soybean and sunflower meal to form the experimental diets (R0, R33.5, R50, R66.5, and R100, respectively). After 30 days, the diet containing PP for FM had no significant impact on total, and differential leukocyte counts determined at the end of the feeding period. The total globulin concentration showed significantly greater differences in the following order R0 > R33.5 > R50 > R66.5 > R100. The R0 group had the highest concentration of serum γ-globulin, while R100 had the lowest concentration. The antioxidant status complements 3 (C3), lysozyme activity (LYZ), and antiprotease activity were not significantly different between R0, R33.5, and R50 groups, while they were significantly lower in R100. The serum nitric oxide activity (NO) exhibited significantly greater differences in the following order R0 > R33.5 > R50 > R66.5 > R100. PACAP was significantly higher in the R33.5 group. The highest cumulative mortality caused by Aeromonas sobria was recorded in the R100 group (60%) and the lowest in the R0 group (30%). In conclusion, the results indicate that the immunological responses and antioxidant status of C. gariepinus were not affected when they consumed a diet with FM replaced by up to 50% with PP (SBM and SFM) with methionine and lysine supplementation, but total globulin, NO, and cumulative mortality were impaired with a diet containing a 100% FM replacement. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

20 pages, 5326 KB  
Article
Structural Studies of the Lipopolysaccharide of Aeromonas veronii bv. sobria Strain K133 Which Represents New Provisional Serogroup PGO1 Prevailing among Mesophilic Aeromonads on Polish Fish Farms
by Katarzyna Dworaczek, Maria Kurzylewska, Magdalena Laban, Dominika Drzewiecka, Agnieszka Pękala-Safińska and Anna Turska-Szewczuk
Int. J. Mol. Sci. 2021, 22(8), 4272; https://doi.org/10.3390/ijms22084272 - 20 Apr 2021
Cited by 9 | Viewed by 3174
Abstract
In the present work, we performed immunochemical studies of LPS, especially the O-specific polysaccharide (O-PS) of Aeromonas veronii bv. sobria strain K133, which was isolated from the kidney of carp (Cyprinus carpio L.) during an outbreak of motile aeromonad infection/motile aeromonad septicemia [...] Read more.
In the present work, we performed immunochemical studies of LPS, especially the O-specific polysaccharide (O-PS) of Aeromonas veronii bv. sobria strain K133, which was isolated from the kidney of carp (Cyprinus carpio L.) during an outbreak of motile aeromonad infection/motile aeromonad septicemia (MAI/MAS) on a Polish fish farm. The structural characterization of the O-PS, which was obtained by mild acid degradation of the LPS, was performed with chemical methods, MALDI-TOF mass spectrometry, and 1H and 13C NMR spectroscopy. It was revealed that the O-PS has a unique composition of a linear tetrasaccharide repeating unit and contains a rarely occurring sugar 2,4-diamino-2,4,6-trideoxy-D-glucose (bacillosamine), which may determine the specificity of the serogroup. Western blotting and ELISA confirmed that A. veronii bv. sobria strain K133 belongs to the new serogroup PGO1, which is one of the most commonly represented immunotypes among carp and trout isolates of Aeromonas sp. in Polish aquacultures. Considering the increase in the MAI/MAS incidences and their impact on freshwater species, also with economic importance, and in the absence of an effective immunoprophylaxis, studies of the Aeromonas O-antigens are relevant in the light of epidemiological data and monitoring emergent pathogens representing unknown antigenic variants and serotypes. Full article
Show Figures

Graphical abstract

13 pages, 916 KB  
Article
Taxonomic Identification of Different Species of the Genus Aeromonas by Whole-Genome Sequencing and Use of Their Species-Specific β-Lactamases as Phylogenetic Markers
by Xavier Bertran, Marc Rubio, Laura Gómez, Teresa Llovet, Carme Muñoz, Ferran Navarro and Elisenda Miro
Antibiotics 2021, 10(4), 354; https://doi.org/10.3390/antibiotics10040354 - 28 Mar 2021
Cited by 14 | Viewed by 4886
Abstract
Some Aeromonas species, potentially pathogenic for humans, are known to express up to three different classes of chromosomal β-lactamases, which may become hyperproduced and cause treatment failure. The aim of this study was to assess the utility of these species-specific β-lactamase genes as [...] Read more.
Some Aeromonas species, potentially pathogenic for humans, are known to express up to three different classes of chromosomal β-lactamases, which may become hyperproduced and cause treatment failure. The aim of this study was to assess the utility of these species-specific β-lactamase genes as phylogenetic markers using whole-genome sequencing data. Core-genome alignments were generated for 36 Aeromonas genomes from seven different species and scanned for antimicrobial resistance genes. Core-genome alignment confirmed the MALDI-TOF identification of most of the isolates and re-identified an A. hydrophila isolate as A. dhakensis. Three (B, C and D) of the four Ambler classes of β-lactamase genes were found in A. sobria, A. allosacharophila, A. hydrophila and A. dhakensis (blaCphA, blaAmpC and blaOXA). A. veronii only showed class-B- and class-D-like matches (blaCphA and blaOXA), whereas those for A. media, A. rivipollensis and A. caviae were class C and D (blaCMY, blaMOX and blaOXA427). The phylogenetic tree derived from concatenated sequences of β-lactamase genes successfully clustered each species. Some isolates also had resistance to sulfonamides, quinolones and aminoglycosides. Whole-genome sequencing proved to be a useful method to identify Aeromonas at the species level, which led to the unexpected identification of A. dhakensis and A.rivipollensis and revealed the resistome of each isolate. Full article
Show Figures

Figure 1

Back to TopTop