Aeromonas Infections in Humans—Antibiotic Resistance and Treatment Options
Abstract
1. General Characteristics of Aeromonas
- Psychrophilic, non-motile Aeromonas: This group, designated Aeromonas salmonicida, has an optimal growth temperature of 22–25 °C and infects reptiles and fish.
- Methodology. We conducted a search of the last 10 years in PubMed and Embase using the following criteria: ((“Aeromonas”[MeSH Terms] OR Aeromonas[tiab] OR “A. hydrophila”[tiab] OR “A. caviae”[tiab] OR “A. veronii”[tiab])
- AND
- (humans[MeSH Terms] OR human*[tiab])
- AND
- (infection*[tiab]
2. Aeromonas as a Human Pathogen
3. Aeromonas: Antibiotic Resistance
4. Colistin Resistance
5. Treatment Alternatives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barger, P.C.; Liles, M.R.; Beck, B.H.; Newton, J.C. Differential production and secretion of potentially toxigenic extracellular proteins from hypervirulent Aeromonas hydrophila under biofilm and planktonic culture. BMC Microbiol. 2021, 21, 8. [Google Scholar] [CrossRef]
- Fernández-Bravo, A.; Figueras, M.J. An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity. Microorganisms 2020, 8, 129. [Google Scholar] [CrossRef]
- Gonçalves Pessoa, R.B.; de Oliveira, W.F.; Marques, D.S.C.; Dos Santos Correia, M.T.; de Carvalho, E.V.M.M.; Coelho, L.C.B.B. The genus Aeromonas: A general approach. Microb. Pathog. 2019, 130, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Conte, D.; Palmeiro, J.K.; Bavaroski, A.A.; Rodrigues, L.S.; Cardozo, D.; Tomaz, A.P.; Camargo, J.O.; Dalla-Costa, L.M. Antimicrobial resistance in Aeromonas species isolated from aquatic environments in Brazil. J. Appl. Microbiol. 2021, 131, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.L.; Shaw, J.G. Aeromonas spp. Clinical microbiology and disease. J. Infect. 2011, 62, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Tewari, R.; Dudeja, M.; Nandy, S.; Das, A.K. Isolation of Aeromonas salmonicida from Human Blood Sample: A Case Report. J Clin. Diagn. Res. 2014, 8, 139–140. [Google Scholar] [CrossRef]
- Chen, P.L.; Lamy, B.; Ko, W.C. Aeromonas dhakensis, an increasingly recognized human pathogen. Front. Microbiol. 2016, 27, 793. [Google Scholar] [CrossRef]
- Caselitz, F.H. How the Aeromonas story started in medical microbiology. Med. Microbiol. Lett. 1996, 5, 46–54. [Google Scholar]
- Pessoa, R.B.G.; de Oliveira, W.F.; Correia, M.T.S.; Fontes, A.; Coelho, L.C.B. Aeromonas and Human Health Disorders: Clinical Approaches. Front. Microbiol. 2022, 13, 868890. [Google Scholar] [CrossRef]
- Fleckenstein, J.M.; Matthew Kuhlmann, F.; Sheikh, A. Acute Bacterial Gastroenteritis. Gastroenterol. Clin. N. Am. 2021, 50, 283–304. [Google Scholar] [CrossRef]
- Clebak, K.T.; Malone, M.A. Skin Infections. Prim. Care 2018, 45, 433–454. [Google Scholar] [CrossRef]
- Lamy, B.; Laurent, F.; Verdier, I.; Decousser, J.W.; Lecaillon, E.; Marchandin, H.; Roger, F.; Tigaud, S.; de Montclos, H.; colBVH Study Group; et al. Accuracy of 6 commercial systems for identifying clinical Aeromonas isolates. Diagn. Microbiol. Infect. Dis. 2010, 67, 9–14. [Google Scholar] [CrossRef]
- Lamy, B.; Kodjo, A.; colBVH Study Group; Laurent, F. Prospective nationwide study of Aeromonas infections in France. J. Clin. Microbiol. 2009, 47, 1234–1237. [Google Scholar] [CrossRef]
- Soltan Dallal, M.M.; Mazaheri Nezhad Fard, R.; Kavan Talkhabi, M.; Aghaiyan, L.; Salehipour, Z. Prevalence, virulence and antimicrobial resistance patterns of Aeromonas spp. isolated from children with diarrhea. Germs 2016, 6, 91–96. [Google Scholar] [CrossRef]
- Mohan, B.; Sethuraman, N.; Verma, R.; Taneja, N. Speciation, clinical profile & antibiotic resistance in Aeromonas species isolated from cholera-like illnesses in a tertiary care hospital in north India. Indian J. Med. Res. 2017, 146 (Suppl. S1), S53–S58. [Google Scholar] [CrossRef] [PubMed]
- Mbuthia, O.W.; Mathenge, S.G.; Oyaro, M.O.; Ng’ayo, M.O. Etiology and pathogenicity of bacterial isolates: A cross sectional study among diarrheal children below five years in central regions of Kenya. Pan. Afr. Med. J. 2018, 31, 88. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wang, W.; Zhu, Z.; Chen, A.; Du, P.; Wang, R.; Chen, H.; Hu, Y.; Li, J.; Kan, B.; et al. Distribution, virulence-associated genes and antimicrobial resistance of Aeromonas isolates from diarrheal patients and water, China. J. Infect. 2015, 70, 600–608. [Google Scholar] [CrossRef]
- Zhou, Y.; Yu, L.; Nan, Z.; Zhang, P.; Kan, B.; Yan, D.; Su, J. Taxonomy, virulence genes and antimicrobial resistance of Aeromonas isolated from extra-intestinal and intestinal infections. BMC Infect. Dis. 2019, 19, 158. [Google Scholar] [CrossRef] [PubMed]
- Elorza, A.; Rodríguez-Lago, I.; Martínez, P.; Hidalgo, A.; Aguirre, U.; Cabriada, J.L. Gastrointestinal infection with Aeromonas: Incidence and relationship to inflammatory bowel disease. Gastroenterol. Hepatol. 2020, 43, 614–619. [Google Scholar] [CrossRef]
- Sinclair, H.A.; Heney, C.; Sidjabat, H.E.; George, N.M.; Bergh, H.; Anuj, S.N.; Nimmo, G.R.; Paterson, D.L. Genotypic and phenotypic identification of Aeromonas species and CphA-mediated carbapenem resistance in Queensland, Australia. Diagn. Microbiol. Infect. Dis. 2016, 85, 98–101. [Google Scholar] [CrossRef]
- Yuwono, C.; Wehrhahn, M.C.; Liu, F.; Riordan, S.M.; Zhang, L. The Isolation of Aeromonas Species and Other Common Enteric Bacterial Pathogens from Patients with Gastroenteritis in an Australian Population. Microorganisms 2021, 9, 1440. [Google Scholar] [CrossRef]
- Sakurai, A.; Suzuki, M.; Ohkushi, D.; Harada, S.; Hosokawa, N.; Ishikawa, K.; Sakurai, T.; Ishihara, T.; Sasazawa, H.; Yamamoto, T.; et al. Clinical Features, Genome Epidemiology, and Antimicrobial Resistance Profiles of Aeromonas spp. Causing Human Infections: A Multicenter Prospective Cohort Study. Open Forum Infect. Dis. 2023, 16, ofad587. [Google Scholar] [CrossRef]
- Mosser, T.; Talagrand-Reboul, E.; Colston, S.M.; Graf, J.; Figueras, M.J.; Jumas-Bilak, E.; Lamy, B. Exposure to pairs of Aeromonas strains enhances virulence in the Caenorhabditis elegans infection model. Front. Microbiol. 2015, 6, 1218. [Google Scholar] [CrossRef] [PubMed]
- Masuyer, G.; Taverner, A.; MacKay, J.; Lima Marques, A.R.; Wang, Y.; Hunter, T.; Liu, K.; Mrsny, R.J. Discovery of mono-ADP ribosylating toxins with high structural homology to Pseudomonas exotoxin A. Commun. Biol. 2025, 8, 413. [Google Scholar] [CrossRef] [PubMed]
- Pineda-Reyes, R.; Neil, B.H.; Orndorff, J.; Williams-Bouyer, N.; Netherland, M., Jr.; Hasan, N.A.; Tahashilder, M.I.; Sha, J.; Chopra, A.K.; Reynoso, D. Clinical presentation, antimicrobial resistance, and treatment outcomes of Aeromonas human infections: A 14-year retrospective study and comparative genomics of two isolates from fatal cases. Clin. Infect. Dis. 2024, 79, 1144–1152. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Yang, H.; Liu, Z.; Wang, Y.; Zhang, X.; Li, Y. Epidemiology and drug resistance of Salmonella and Aeromonas in the faecal samples from pediatric patients with infectious diarrhea at a children’s medical center in Suzhou, China from 2016 to 2023. Arab. J. Gastroenterol. 2025, 26, 254–261. [Google Scholar] [CrossRef]
- Montalvo, E.; Veiga, F.; Rodríguez, H.; Traglia, G.; Vay, C.; Almuzara, M. Identificación y sensibilidad antibiótica de aislamientos de Aeromonas spp. en un Hospital Universitario de la ciudad de Buenos Aires [Identification and antibiotic susceptibility of Aeromonas spp. in a University Hospital in the city of Buenos Aires]. Rev. Argent. Microbiol. 2025, 57, 105–113. [Google Scholar] [CrossRef]
- Chen, P.L.; Wu, C.J.; Chen, C.S.; Tsai, P.J.; Tang, H.J.; Ko, W.C. A comparative study of clinical Aeromonas dhakensis and Aeromonas hydrophila isolates in southern Taiwan: A. dhakensis is more predominant and virulent. Clin. Microbiol. Infect. 2014, 20, 428–434. [Google Scholar] [CrossRef]
- Chen, P.L.; Wu, C.J.; Tsai, P.J.; Tang, H.J.; Chuang, Y.C.; Lee, N.Y.; Lee, C.C.; Li, C.W.; Li, M.C.; Chen, C.C.; et al. Virulence diversity among bacteremic Aeromonas isolates: Ex vivo, animal, and clinical evidences. PLoS ONE 2014, 9, e111213. [Google Scholar] [CrossRef]
- Suarez, G.; Sierra, J.C.; Sha, J.; Wang, S.; Erova, T.E.; Fadl, A.A.; Foltz, S.M.; Horneman, A.J.; Chopra, A.K. Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila. Microb. Pathog. 2008, 44, 344–361. [Google Scholar] [CrossRef]
- Singh, A.; Liu, F.; Yuwono, C.; Wehrhahn, M.C.; Slavich, E.; Young, A.M.; Chong, S.K.T.; Tay, A.C.Y.; Riordan, S.M.; Zhang, L. Age-Dependent Variations in the Distribution of Aeromonas Species in Human Enteric Infections. Pathogens 2025, 14, 120. [Google Scholar] [CrossRef]
- Heydari, H.; Iranikhah, A.; Ghasemi, A.; Mohammadbeigi, A.; Sadat-Mirei, S.A.; Shams, S.; Kermani, S. Evaluation of the prevalence of Aeromonas spp., Campylobacter spp., and Clostridioides difficile in immunocompromised children with diarrhea. BMC Infect. Dis. 2024, 24, 512. [Google Scholar] [CrossRef]
- Majeed, S.; De Silva, L.A.D.S.; Kumarage, P.M.; Heo, G.J. Occurrence of potential virulence determinants in Aeromonas spp. isolated from different aquatic environments. J. Appl. Microbiol. 2023, 134, lxad031. [Google Scholar] [CrossRef] [PubMed]
- Ponnusamy, D.; Kozlova, E.V.; Sha, J.; Erova, T.E.; Azar, S.R.; Fitts, E.C.; Kirtley, M.L.; Tiner, B.L.; Andersson, J.A.; Grim, C.J.; et al. Cross-talk among flesh-eating Aeromonas hydrophila strains in mixed infection leading to necrotizing fasciitis. Proc. Natl. Acad. Sci. USA 2016, 113, 722–727. [Google Scholar] [CrossRef]
- Nolla-Salas, J.; Codina-Calero, J.; Vallés-Angulo, S.; Sitges-Serra, A.; Zapatero-Ferrándiz, A.; Climent, M.C.; Gómez, J.; Masclans, J.R. Clinical significance and outcome of Aeromonas spp. infections among 204 adult patients. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 1393–1403. [Google Scholar] [CrossRef]
- Silva, L.C.A.D.; Leal-Balbino, T.C.; Melo, B.S.T.; Mendes-Marques, C.L.; Rezende, A.M.; Almeida, A.M.P.; Leal, N.C. Genetic diversity and virulence potential of clinical and environmental Aeromonas spp. isolates from a diarrhea outbreak. BMC Microbiol. 2017, 17, 179. [Google Scholar] [CrossRef]
- Hoel, S.; Vadstein, O.; Jakobsen, A.N. Species Distribution and Prevalence of Putative Virulence Factors in Mesophilic Aeromonas spp. Isolated from Fresh Retail Sushi. Front. Microbiol. 2017, 8, 931. [Google Scholar] [CrossRef]
- Zhang, D.; Li, W.; Hu, X.; Huang, H.; Zhang, X. Requiring Reconsideration of Differences of Aeromonas Infections Between Extra-Intestinal and Intestinal in Hospitalized Patients. Infect. Drug. Resist. 2023, 16, 487–497. [Google Scholar] [CrossRef]
- Harnisz, M.; Korzeniewska, E. The prevalence of multidrug-resistant Aeromonas spp. in the municipal wastewater system and their dissemination in the environment. Sci. Total Environ. 2018, 626, 377–383. [Google Scholar] [CrossRef]
- Janda, J.M.; Abbott, S.L. The genus Aeromonas: Taxonomy, pathogenicity, and infection. Clin. Microbiol. Rev. 2010, 23, 35–73. [Google Scholar] [CrossRef]
- Pattanayak, S.; Priyadarsini, S.; Paul, A.; Kumar, P.R.; Sahoo, P.K. Diversity of virulence-associated genes in pathogenic Aeromonas hydrophila isolates and their in vivo modulation at varied water temperatures. Microb. Pathog. 2020, 147, 104424. [Google Scholar] [CrossRef]
- Agarwal, R.K.; Kapoor, K.N.; Kumar, A. Virulence factors of aeromonads--an emerging food borne pathogen problem. J. Commun. Dis. 1998, 30, 71–78. [Google Scholar]
- Cascón, A.; Yugueros, J.; Temprano, A.; Sánchez, M.; Hernanz, C.; Luengo, J.M.; Naharro, G. A major secreted elastase is essential for pathogenicity of Aeromonas hydrophila. Infect. Immun. 2000, 68, 3233–3241. [Google Scholar] [CrossRef]
- Rabaan, A.A.; Gryllos, I.; Tomás, J.M.; Shaw, J.G. Motility and the polar flagellum are required for Aeromonas caviae adherence to HEp-2 cells. Infect. Immun. 2001, 69, 4257–4267. [Google Scholar] [CrossRef]
- Libisch, B.; Giske, C.G.; Kovács, B.; Tóth, T.G.; Füzi, M. Identification of the first VIM metallo-beta-lactamase-producing multiresistant Aeromonas hydrophila strain. J. Clin. Microbiol. 2008, 46, 1878–1880. [Google Scholar] [CrossRef]
- Rossolini, G.M.; Walsh, T.; Amicosante, G. The Aeromonas metallo-beta-lactamases: Genetics, enzymology, and contribution to drug resistance. Microb. Drug. Resist. 1996, 2, 245–252. [Google Scholar] [CrossRef]
- Marchandin, H.; Godreuil, S.; Darbas, H.; Jean-Pierre, H.; Jumas-Bilak, E.; Chanal, C.; Bonnet, R. Extended-spectrum beta-lactamase TEM-24 in an Aeromonas clinical strain: Acquisition from the prevalent Enterobacter aerogenes clone in France. Antimicrob. Agents Chemother. 2003, 47, 3994–3995. [Google Scholar] [CrossRef]
- Nwaiwu, O.; Aduba, C.C. An in silico analysis of acquired antimicrobial resistance genes in Aeromonas plasmids. AIMS Microbiol. 2020, 6, 75–91. [Google Scholar] [CrossRef]
- Pourmohsen, M.; Shakib, P.; Zolfaghari, M.R. The Prevalence of bla VIM, bla KPC, bla NDM, bla IMP, bla SHV, bla TEM, bla CTX-M, and class I and II integrons Genes in Aeromonas hydrophila Isolated from Clinical Specimens of Qom, Iran. Clin. Lab. 2023, 69, 51–59. [Google Scholar] [CrossRef]
- Hilt, E.E.; Fitzwater, S.P.; Ward, K.; de St Maurice, A.; Chandrasekaran, S.; Garner, O.B.; Yang, S. Carbapenem Resistant Aeromonas hydrophila Carrying bla cphA7 Isolated From Two Solid Organ Transplant Patients. Front. Cell. Infect. Microbiol. 2020, 10, 563482. [Google Scholar] [CrossRef]
- Rossolini, G.M.; Zanchi, A.; Chiesurin, A.; Amicosante, G.; Satta, G.; Guglielmetti, P. Distribution of cphA or related carbapenemase-encoding genes and production of carbapenemase activity in members of the genus Aeromonas. Antimicrob. Agents Chemother. 1995, 39, 346–349. [Google Scholar] [CrossRef]
- Walsh, T.R.; Stunt, R.A.; Nabi, J.A.; MacGowan, A.P.; Bennett, P.M. Distribution and expression of beta-lactamase genes among Aeromonas spp. J. Antimicrob. Chemother. 1997, 40, 171–178. [Google Scholar] [CrossRef]
- Walsh, T.R.; Weeks, J.; Livermore, D.M.; Toleman, M.A. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: An environmental point prevalence study. Lancet Infect. Dis. 2011, 11, 355–362. [Google Scholar] [CrossRef]
- Bello-López, J.M.; Cabrero-Martínez, O.A.; Ibáñez-Cervantes, G.; Hernández-Cortez, C.; Pelcastre-Rodríguez, L.I.; Gonzalez-Avila, L.U.; Castro-Escarpulli, G. Horizontal Gene Transfer and Its Association with Antibiotic Resistance in the Genus Aeromonas spp. Microorganisms 2019, 7, 363. [Google Scholar] [CrossRef]
- Fluit, A.C.; Schmitz, F.J. Class 1 integrons, gene cassettes, mobility, and epidemiology. Eur. J. Clin. Microbiol. Infect. Dis. 1999, 18, 761–770. [Google Scholar] [CrossRef]
- Rhodes, G.; Huys, G.; Swings, J.; McGann, P.; Hiney, M.; Smith, P.; Pickup, R.W. Distribution of oxytetracycline resistance plasmids between aeromonads in hospital and aquaculture environments: Implication of Tn1721 in dissemination of the tetracycline resistance determinant tetA. Appl. Environ. Microbiol. 2000, 66, 3883–3890. [Google Scholar] [CrossRef]
- Dubey, S.; Ager-Wiick, E.; Peng, B.; DePaola, A.; Sørum, H.; Munang’andu, H.M. The mobile gene cassette carrying tetracycline resistance genes in Aeromonas veronii strain Ah5S-24 isolated from catfish pond sediments shows similarity with a cassette found in other environmental and foodborne bacteria. Front. Microbiol. 2023, 14, 1112941. [Google Scholar] [CrossRef]
- Drk, S.; Puljko, A.; Dželalija, M.; Udiković-Kolić, N. Characterization of Third Generation Cephalosporin- and Carbapenem-Resistant Aeromonas Isolates from Municipal and Hospital Wastewater. Antibiotics 2023, 12, 513. [Google Scholar] [CrossRef]
- Jones, D.C.; LaMartina, E.L.; Lewis, J.R.; Dahl, A.J.; Nadig, N.; Szabo, A.; Newton, R.J.; Skwor, T.A. One Health and Global Health View of Antimicrobial Susceptibility through the “Eye” of Aeromonas: Systematic Review and Meta-Analysis. Int. J. Antimicrob. Agents 2023, 62, 106848. [Google Scholar] [CrossRef]
- Esteve, C.; Alcaide, E.; Giménez, M.J. Multidrug-resistant (MDR) Aeromonas recovered from the metropolitan area of Valencia (Spain): Diseases spectrum and prevalence in the environment. Eur. J. Clin. Microbiol. 2015, 34, 137–145. [Google Scholar] [CrossRef]
- Xu, C.; Lin, Q.; Zhao, Y.; Zhu, G.; Jiang, E.; Li, S.; Mi, Y.; Zheng, Y.; Zhang, F.; Zhu, X.; et al. Clinical characteristics and risk factors of Aeromonas bloodstream infections in patients with hematological diseases. BMC Infect. Dis. 2022, 22, 303. [Google Scholar] [CrossRef] [PubMed]
- Puah, S.M.; Khor, W.C.; Aung, K.T.; Lau, T.T.V.; Puthucheary, S.D.; Chua, K.H. Aeromonas dhakensis: Clinical Isolates with High Carbapenem Resistance. Pathogens 2022, 11, 833. [Google Scholar] [CrossRef] [PubMed]
- Moreira, V.H.; Berbert, L.C.; Adesoji, A.T.; Bianco, K.; Cavalcante, J.J.V.; Pellegrino, F.L.P.C.; Albano, R.M.; Clementino, M.M.; Cardoso, A.M. Aeromonas caviae subsp. aquatica subsp. nov., a New Multidrug-Resistant Subspecies Isolated from a Drinking Water Storage Tank. Microorganisms 2025, 13, 897. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, S.; Xu, B.; Dong, L.; Zhao, Z.; Li, B. Molecular Epidemiological Characteristics of Carbapenem Resistant Aeromonas from Hospital Wastewater. Infect. Drug Resist. 2024, 17, 2439–2448. [Google Scholar] [CrossRef]
- Al-Ouqaili, M.T.S.; Hussein, R.A.; Kanaan, B.A.; Al-Neda, A.T.S. Investigation of carbapenemase-encoding genes in Burkholderia cepacia and Aeromonas sobria isolates from nosocomial infections in Iraqi patients. PLoS ONE 2025, 20, e0315490. [Google Scholar] [CrossRef]
- Fernandes Santos, F.; Barcelos Valiatti, T.; Valêncio, A.; Cardoso da Silva Ribeiro, Á.; Streling, A.P.; Tardelli Gomes, T.A.; Cayô, R.; Gales, A.C. Unveiling novel threats: Urban river isolation of Aeromonas veronii with unusual VEB-28 extended-spectrum β-lactamase and distinct mcr variants. Chemosphere 2024, 357, 141918. [Google Scholar] [CrossRef]
- Xu, T.; Song, J.; Liu, J.; Huang, L.; Li, Z.; Zhou, K. First report of multidrug-resistant carbapenemase-producing Aeromonas caviae co-harboring mcr-3.43 and mcr-7.2. Microbiol. Spectr. 2024, 12, e0368523. [Google Scholar] [CrossRef]
- Schwartz, K.; Borowiak, M.; Strauch, E.; Deneke, C.; Richter, M.H.; German Aeromonas Study Group. Emerging Aeromonas spp. infections in Europe: Characterization of human clinical isolates from German patients. Front. Microbiol. 2024, 18, 1498180. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, P.; Lin, F. Clinical characteristics and antibiotic sensitivity & resistance analysis of cases of orthopedic infections caused by Aeromonas hydrophila. BMC Musculoskelet. Disord. 2025, 26, 560. [Google Scholar] [CrossRef]
- Bialvaei, A.Z.; Samadi Kafil, H. Colistin, mechanisms and prevalence of resistance. Curr. Med. Res. Opin. 2015, 31, 707–721. [Google Scholar] [CrossRef]
- Falagas, M.E.; Rafailidis, P.I.; Ioannidou, E.; Alexiou, V.G.; Matthaiou, D.K.; Karageorgopoulos, D.E.; Kapaskelis, A.; Nikita, D.; Michalopoulos, A. Colistin therapy for microbiologically documented multidrug-resistant Gram-negative bacterial infections: A retrospective cohort study of 258 patients. Int. J. Antimicrob. Agents 2010, 35, 194–199. [Google Scholar] [CrossRef]
- Beceiro, A.; Moreno, A.; Fernández, N.; Vallejo, J.A.; Aranda, J.; Adler, B.; Harper, M.; Boyce, J.D.; Bou, G. Biological cost of different mechanisms of colistin resistance and their impact on virulence in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2014, 58, 518–526. [Google Scholar] [CrossRef]
- Baron, S.; Hadjadj, L.; Rolain, J.M.; Olaitan, A.O. Molecular mechanisms of polymyxin resistance: Knowns and unknowns. Int. J. Antimicrob. Agents 2016, 48, 583–591. [Google Scholar] [CrossRef]
- El-Sayed Ahmed, M.A.E.; Zhong, L.L.; Shen, C.; Yang, Y.; Doi, Y.; Tian, G.B. Colistin and its role in the era of antibiotic resistance: An extended review (2000–2019). Emerg. Microbes Infect. 2020, 9, 868–885. [Google Scholar] [CrossRef] [PubMed]
- Chew, K.L.; La, M.V.; Lin, R.T.P.; Teo, J.W.P. Colistin and Polymyxin B Susceptibility Testing for Carbapenem-Resistant and mcr-Positive Enterobacteriaceae: Comparison of Sensititre, MicroScan, Vitek 2, and Etest with Broth Microdilution. J. Clin. Microbiol. 2017, 55, 2609–2616. [Google Scholar] [CrossRef]
- Poirel, L.; Jayol, A.; Nordmann, P. Polymyxins: Antibacterial Activity, Susceptibility Testing, and Resistance Mechanisms Encoded by Plasmids or Chromosomes. Clin. Microbiol. Rev. 2017, 30, 557–596. [Google Scholar] [CrossRef] [PubMed]
- Mlynarcik, P.; Kolar, M. Molecular mechanisms of polymyxin resistance and detection of mcr genes. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2019, 163, 28–38. [Google Scholar] [CrossRef]
- Kempf, I.; Jouy, E.; Chauvin, C. Colistin use and colistin resistance in bacteria from animals. Int. J. Antimicrob. Agents 2016, 48, 598–606. [Google Scholar] [CrossRef]
- Kempf, I.; Fleury, M.A.; Drider, D.; Bruneau, M.; Sanders, P.; Chauvin, C.; Madec, J.Y.; Jouy, E. What do we know about resistance to colistin in Enterobacteriaceae in avian and pig production in Europe? Int. J. Antimicrob. Agents 2013, 42, 379–383. [Google Scholar] [CrossRef]
- Olaitan, A.O.; Morand, S.; Rolain, J.M. Mechanisms of polymyxin resistance: Acquired and intrinsic resistance in bacteria. Front. Microbiol. 2014, 5, 643. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.H.; Liu, Y.Y.; Shen, Y.B.; Yang, J.; Walsh, T.R.; Wang, Y.; Shen, J. Plasmid-mediated colistin-resistance genes: Mcr. Trends Microbiol. 2024, 32, 365–378. [Google Scholar] [CrossRef]
- Caniaux, I.; van Belkum, A.; Zambardi, G.; Poirel, L.; Gros, M.F. MCR: Modern colistin resistance. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 415–420. [Google Scholar] [CrossRef]
- Elbediwi, M.; Li, Y.; Paudyal, N.; Pan, H.; Li, X.; Xie, S.; Rajkovic, A.; Feng, Y.; Fang, W.; Rankin, S.C.; et al. Global Burden of Colistin-Resistant Bacteria: Mobilized Colistin Resistance Genes Study (1980–2018). Microorganisms 2019, 16, 461. [Google Scholar] [CrossRef]
- Gharaibeh, M.H.; Shatnawi, S.Q. An overview of colistin resistance, mobilized colistin resistance genes dissemination, global responses, and the alternatives to colistin: A review. Vet. World 2019, 12, 1735–1746. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Xavier, B.B.; Lammens, C.; Ruhal, R.; Kumar-Singh, S.; Butaye, P.; Goossens, H.; Malhotra-Kumar, S. Identification of a novel plasmid-mediated colistin-resistance gene, mcr2, in Escherichia coli, Belgium, June 2016. Euro Surveill. 2016, 21, 30280. [Google Scholar] [CrossRef] [PubMed]
- Abuoun, M.; Stubberfield, E.J.; Duggett, N.A.; Kirchner, M.; Dormer, L.; Nuñez-Garcia, J.; Randall, L.P.; Lemma, F.; Crook, D.W.; Teale, C.; et al. mcr-1 and mcr-2 variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015. J. Antimicrob. Chemother. 2017, 72, 2745–2749. [Google Scholar] [CrossRef]
- Borowiak, M.; Fischer, J.; Hammerl, J.A.; Hendriksen, R.S.; Szabo, I.; Malorny, B. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. J. Antimicrob. Chemother. 2017, 72, 3317–3324. [Google Scholar] [CrossRef]
- Kaki, R. A retrospective study of Aeromonas hydrophila infections at a university tertiary hospital in Saudi Arabia. BMC Infect. Dis. 2023, 23, 671. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Li, H.; Shen, Y.; Liu, Z.; Wang, S.; Shen, Z.; Zhang, R.; Walsh, T.R.; Shen, J.; Wang, Y. Novel Plasmid-Mediated Colistin Resistance Gene mcr-3 in Escherichia coli. mBio 2017, 8, e00543-17. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Li, Y.X.; Lei, C.W.; Zhang, A.Y.; Wang, H.N. Novel plasmid-mediated colistin resistance gene mcr-7.1 in Klebsiella pneumoniae. J. Antimicrob. Chemother. 2018, 73, 1791–1795. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Zhou, Y.; Li, J.; Yin, W.; Wang, S.; Zhang, S.; Shen, J.; Shen, Z.; Wan, Y. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg. Microbes. Infect. 2018, 7, 122. [Google Scholar] [CrossRef] [PubMed]
- Carroll, L.M.; Gaballa, A.; Guldimann, C.; Sullivan, G.; Henderson, L.O.; Wiedmann, M. Identification of Novel Mobilized Colistin Resistance Gene mcr-9 in a Multidrug-Resistant, Colistin-Susceptible Salmonella enterica Serotype Typhimurium Isolate. mBio 2019, 10, e00853-19. [Google Scholar] [CrossRef]
- Hussein, N.H.; Al-Kadmy, I.M.S.; Taha, B.M.; Hussein, J.D. Mobilized colistin resistance (mcr) genes from 1 to 10: A comprehensive review. Mol. Biol. Rep. 2021, 48, 2897–2907. [Google Scholar] [CrossRef] [PubMed]
- Bondad-Reantaso, M.G.; MacKinnon, B.; Karunasagar, I.; Fridman, S.; Alday-Sanz, V.; Brun, E.; Le Groumellec, M.; Li, A.; Surachetpong, W.; Karunasagar, I.; et al. Review of alternatives to antibiotic use in aquaculture. Rev. Aquac. 2023, 15, 1421–1451. [Google Scholar] [CrossRef]
- Gonzalez-Avila, L.U.; Loyola-Cruz, M.A.; Hernández-Cortez, C.; Bello-López, J.M.; Castro-Escarpulli, G. Colistin Resistance in Aeromonas spp. Int. J. Mol. Sci. 2021, 22, 5974. [Google Scholar] [CrossRef]
- Xu, Y.; Zhong, L.L.; Srinivas, S.; Sun, J.; Huang, M.; Paterson, D.L.; Lei, S.; Lin, J.; Li, X.; Tang, Z.; et al. Spread of MCR-3 Colistin Resistance in China: An Epidemiological, Genomic and Mechanistic Study. eBioMedicine 2018, 34, 139–157. [Google Scholar] [CrossRef]
- Garcias, B.; Flores, M.A.; Fernández, M.; Monteith, W.; Pascoe, B.; Sheppard, S.K.; Martín, M.; Cortey, M.; Darwich, L. Global Variation in Escherichia coli mcr-1 Genes and Plasmids from Animal and Human Genomes Following Colistin Usage Restrictions in Livestock. Antibiotics 2024, 13, 759. [Google Scholar] [CrossRef] [PubMed]
- Rhee, J.Y.; Jung, D.S.; Peck, K.R. Clinical and Therapeutic Implications of Aeromonas Bacteremia: 14 Years Nation-Wide Experiences in Korea. Infect. Chemother. 2016, 48, 274–284. [Google Scholar] [CrossRef]
- Hassan, I.Z.; Qekwana, D.N.; Naidoo, V. Prevalence of colistin resistance and antibacterial resistance in commensal Escherichia coli from chickens: An assessment of the impact of regulatory intervention in South Africa. Vet. Med. Sci. 2024, 10, e1315. [Google Scholar] [CrossRef]
- Jones, B.L.; Wilcox, M.H. Aeromonas infections and their treatment. J. Antimicrob. Chemother. 1995, 35, 453–461. [Google Scholar] [CrossRef]
- Carattoli, A.; Villa, L.; Feudi, C.; Curcio, L.; Orsini, S.; Luppi, A.; Pezzotti, G.; Magistrali, C.F. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill. 2017, 22, 30589. [Google Scholar] [CrossRef]
- Soriano, A. Ceftaroline. Rev. Esp. Quim. 2021, 34 (Suppl. S1), 29–31. [Google Scholar] [CrossRef]
- Liu, R.; Han, G.; Li, Z.; Cun, S.; Hao, B.; Zhang, J.; Liu, X. Bacteriophage therapy in aquaculture: Current status and future challenges. Folia Microbiol. 2022, 67, 573–590. [Google Scholar] [CrossRef]
- Pereira, C.; Duarte, J.; Costa, P.; Braz, M.; Almeida, A. Bacteriophages in the Control of Aeromonas sp. in Aquaculture Systems: An Integrative View. Antibiotics 2022, 11, 163. [Google Scholar] [CrossRef] [PubMed]
- Żaczek, M.; Weber-Dąbrowska, B.; Górski, A. Phages as a Cohesive Prophylactic and Therapeutic Approach in Aquaculture Systems. Antibiotics 2022, 9, 564. [Google Scholar] [CrossRef]
- Shirajum Monir, M.; Yusoff, S.M.; Mohamad, A.; Ina-Salwany, M.Y. Vaccination of Tilap ia against Motile Aeromonas Septicemia: A Review. J. Aquat. Anim. Health 2020, 32, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Toffan, A.; Marsella, A.; Menconi, V.; Bertola, M. Finfish infectious diseases in the Mediterranean basin: A systematic review with insights on vaccination possibilities. Fish Shellfish. Immunol. 2025, 160, 110189. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Wang, L.; Bai, H.; Huang, Q.; Liang, S.; Liang, R.; Yu, J.; Wang, S.; Guo, H.; Raza, S.H.A.; et al. The high efficiency protective effectiveness of a newly isolated myoviruses bacteriophage vB_AceP_PAc in protecting mice from Aeromonas caviae infection in mice. BMC Microbiol. 2025, 25, 112. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, L.; Feng, C.; Chi, T.; Qi, Y.; Abbas Raza, S.H.; Gao, N.; Jia, K.; Zhang, Y.; Fan, R.; et al. A phage cocktail in controlling phage resistance development in multidrug resistant Aeromonas hydrophila with great therapeutic potential. Microb. Pathog. 2022, 162, 105374. [Google Scholar] [CrossRef]
| Ref. | Prevalence | A. hydrophila | A. caviae | A. sobria | A. veronii | A. dhakensis | Origin of Isolates |
|---|---|---|---|---|---|---|---|
| [13] | 3.1 | 9 | 34 | 26 | 29 | # | Enteric |
| [14] | 4.25 | 2.7 | 1.6 | # | # | # | Enteric + extraintestinal |
| [15] | 4.3 | 5.7 | 25.3 | # | 42.5 | # | Enteric and environment |
| [16] | * | 5.2 | 41.7 | # | 31.3 | 13.9 | Enteric + extraintestinal |
| [17] | * | 1.0 | 86.7 | # | 12.2 | # | Enteric |
| [18] | * | 20 | 14 | # | 21 | 39 | Enteric + extraintestinal |
| [19] | * | 17.1 | 14.5 | # | 18.4 | 48.7 | Wound |
| [23] | * | 3.5 | 68.1 | # | 15.5 | # | Enteric and environment |
| [24] | * | 26.1 | 28.7 | # | 25 | 18.1 | Enteric + extraintestinal |
| [25] ** | * | 65.7 | 31.4 | 11.4 | 2.9 | # | Enteric + extraintestinal |
| [26] | 2.4 | 26.6 | 53.3 ## | 1.5 *** | # | # | Enteric |
| [27] | * | 37.8 | 29.7 | # | 32.4 | # | Extraintestinal |
| Reference | AMP/AMOX | A/C/A/S | CIP/LEV | SXT | CRO/CTX | CFP | GEN/AK | IMP/MER |
|---|---|---|---|---|---|---|---|---|
| [13] | 5.6 | 100 | 94.5 | 91.7 | 100 | * | 100 | 100 |
| [13] | 14 | * | 54 | 60 | 76 | 100 | 100 | 100 |
| [15] | 14 | * | 98 | 99.8 | * | * | * | * |
| [16] | 6.1 | 87 | 93.9 | 94.8 | 85.2 | 95.7 | 94.8 | 97.4 |
| [19] | * | * | 100 | * | 97.3 | 100 | 100 | 89.2 |
| [29] | 1.2 | 6.2 | 75.8 | 83.9 | 97.3 | 97.6 | 93.7 | 76 |
| [24] | * | * | 95.7 | * | 70.2 | 89.4 | * | 95.2 |
| [25] | * | 74 | 96.3 | 90.6 | 93.6 | 99 | 97.9 | 63 |
| [26] | 59 | 63.2 | 97.3 | 99.4 | * | 91.9 | * | 99.1 |
| [27] | 5.4 | 5.4 | 97.3 | 89.2 | 91.9 | 97.3 | 97.3 | 64.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calvo Sánchez, N.; Sancha Domínguez, L.; Cotos Suárez, A.; Muñoz Bellido, J.L. Aeromonas Infections in Humans—Antibiotic Resistance and Treatment Options. Pathogens 2025, 14, 1161. https://doi.org/10.3390/pathogens14111161
Calvo Sánchez N, Sancha Domínguez L, Cotos Suárez A, Muñoz Bellido JL. Aeromonas Infections in Humans—Antibiotic Resistance and Treatment Options. Pathogens. 2025; 14(11):1161. https://doi.org/10.3390/pathogens14111161
Chicago/Turabian StyleCalvo Sánchez, Noelia, Laura Sancha Domínguez, Ana Cotos Suárez, and Juan Luis Muñoz Bellido. 2025. "Aeromonas Infections in Humans—Antibiotic Resistance and Treatment Options" Pathogens 14, no. 11: 1161. https://doi.org/10.3390/pathogens14111161
APA StyleCalvo Sánchez, N., Sancha Domínguez, L., Cotos Suárez, A., & Muñoz Bellido, J. L. (2025). Aeromonas Infections in Humans—Antibiotic Resistance and Treatment Options. Pathogens, 14(11), 1161. https://doi.org/10.3390/pathogens14111161

