Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (242)

Search Parameters:
Keywords = Active Galactic Nuclei

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 9331 KiB  
Article
Non-Ideal Hall MHD Rayleigh–Taylor Instability in Plasma Induced by Nanosecond and Intense Femtosecond Laser Pulses
by Roman S. Zemskov, Maxim V. Barkov, Evgeniy S. Blinov, Konstantin F. Burdonov, Vladislav N. Ginzburg, Anton A. Kochetkov, Aleksandr V. Kotov, Alexey A. Kuzmin, Sergey E. Perevalov, Il’ya A. Shaikin, Sergey E. Stukachev, Ivan V. Yakovlev, Alexander A. Soloviev, Andrey A. Shaykin, Efim A. Khazanov, Julien Fuchs and Mikhail V. Starodubtsev
Plasma 2025, 8(2), 23; https://doi.org/10.3390/plasma8020023 - 10 Jun 2025
Viewed by 1355
Abstract
A pioneering detailed comparative study of the dynamics of plasma flows generated by high-power nanosecond and high-intensity femtosecond laser pulses with similar fluences of up to 3×104 J/cm2 is presented. The experiments were conducted on the petawatt laser facility [...] Read more.
A pioneering detailed comparative study of the dynamics of plasma flows generated by high-power nanosecond and high-intensity femtosecond laser pulses with similar fluences of up to 3×104 J/cm2 is presented. The experiments were conducted on the petawatt laser facility PEARL using two types of high-power laser radiation: femtosecond pulses with energy exceeding 10 J and a duration less than 60 fs, and nanosecond pulses with energy exceeding 10 J and a duration on the order of 1 ns. In the experiments, high-velocity (>100 km/s) flows of «femtosecond» (created by femtosecond laser pulses) and «nanosecond» plasmas propagated in a vacuum across a uniform magnetic field with a strength over 14 T. A significant difference in the dynamics of «femtosecond» and «nanosecond» plasma flows was observed: (i) The «femtosecond» plasma initially propagated in a vacuum (no B-field) as a collimated flow, while the «nanosecond» flow diverged. (ii) The «nanosecond» plasma interacting with external magnetic field formed a quasi-spherical cavity with Rayleigh–Taylor instability flutes. In the case of «femtosecond» plasma, such flutes were not observed, and the flow was immediately redirected into a narrow plasma sheet (or «tongue») propagating across the magnetic field at an approximately constant velocity. (iii) Elongated «nanosecond» and «femtosecond» plasma slabs interacting with a transverse magnetic field broke up into Rayleigh–Taylor «tongues». (iv) The ends of these «tongues» in the femtosecond case twisted into vortex structures aligned with the ion motion in the external magnetic field, whereas the «tongues» in the nanosecond case were randomly oriented. It was suggested that the twisting of femtosecond «tongues» is related to Hall effects. The experimental results are complemented by and consistent with numerical 3D magnetohydrodynamic simulations. The potential applications of these findings for astrophysical objects, such as short bursts in active galactic nuclei, are discussed. Full article
(This article belongs to the Special Issue New Insights into Plasma Theory, Modeling and Predictive Simulations)
Show Figures

Figure 1

17 pages, 858 KiB  
Article
Optical Photometric Monitoring of the Blazar OT 355 and Local Standard Stars’ Calibration
by R. Bachev, Tushar Tripathi, Alok C. Gupta, A. Kurtenkov, Y. Nikolov, A. Strigachev, S. Boeva, G. Latev, B. Spassov, M. Minev, E. Ovcharov, W.-X. Yang, Yi Liu and J.-H. Fan
Universe 2025, 11(6), 171; https://doi.org/10.3390/universe11060171 - 27 May 2025
Viewed by 621
Abstract
OT 355 (4FGL J1734.3 + 3858) is a relatively rarely studied but highly variable, moderate-redshift (z = 0.975) flat-spectrum radio quasar (blazar). With this work, we aim to study its optical variability on different timescales, which can help us to better understand the [...] Read more.
OT 355 (4FGL J1734.3 + 3858) is a relatively rarely studied but highly variable, moderate-redshift (z = 0.975) flat-spectrum radio quasar (blazar). With this work, we aim to study its optical variability on different timescales, which can help us to better understand the physical processes in relativistic jets operating in blazar-type active galactic nuclei. OT 355 was observed in four colors (BVRI) during 41 nights between 2017 and 2023 using three 1 and 2 m class telescopes. The object was also monitored on intra-night timescales, for about 100 h in total. In addition, secondary standard stars in the field of OT 355 were calibrated in order to facilitate future photometric studies. We detected significant intra-night and night-to-night variations of up to 0.5 mag. Variability characteristics, color changes, and a possible “rms-flux” relation were studied and discussed. Using simple arguments, we show that a negative “rms-flux” relation should be expected if many independent processes/regions drive the short-term variability via Doppler factor changes, which is not observed in this and other cases. This finding raises arguments for the idea that more complex multiplicative processes are responsible for blazar variability. Studying blazar variability, especially on the shortest possible timescales, can help to estimate the strength and geometry of their magnetic fields, the linear sizes of the emitting regions, and other aspects, which may be of importance for constraining and modeling blazars’ emitting mechanisms. Full article
(This article belongs to the Special Issue Multi-wavelength Properties of Active Galactic Nuclei)
Show Figures

Figure 1

16 pages, 10616 KiB  
Article
Superluminal Motion and Jet Parameters in the High-Redshift Blazar J1429+5406
by Dávid Koller and Sándor Frey
Universe 2025, 11(5), 157; https://doi.org/10.3390/universe11050157 - 11 May 2025
Viewed by 1518
Abstract
We investigate the relativistic jet of the powerful radio-emitting blazar J1429+5406 at redshift z=3.015. Our understanding of jet kinematics in z3 quasars is still rather limited, based on a sample of less than about 50 objects. The blazar [...] Read more.
We investigate the relativistic jet of the powerful radio-emitting blazar J1429+5406 at redshift z=3.015. Our understanding of jet kinematics in z3 quasars is still rather limited, based on a sample of less than about 50 objects. The blazar J1429+5406 was observed at a high angular resolution using the method of very long baseline interferometry over more than two decades, between 1994 and 2018. These observations were conducted at five radio frequencies, covering a wide range from 1.7 to 15 GHz. The outer jet components at ∼20–40 milliarcsecond (mas) separations from the core do not show discernible apparent motion. On the other hand, three jet components within the central 10 mas region exhibit significant proper motion in the range of (0.045–0.16) mas year−1, including one that is among the fastest-moving jet components at z3 known to date. Based on the proper motion of the innermost jet component and the measured brightness temperature of the core, we estimated the Doppler factor, the bulk Lorentz factor, and the inclination angle of the jet with respect to the line of sight. The core brightness temperature is at least 3.6×1011 K, well exceeding the equipartition limit, indicating Doppler-boosted radio emission. The low jet inclination (≲5.4°) firmly places J1429+5406 into the blazar category. Full article
(This article belongs to the Special Issue Advances in Studies of Galaxies at High Redshift)
Show Figures

Figure 1

15 pages, 685 KiB  
Review
An Updated Repository of Sub-mJy Extragalactic Source-Count Measurements in the Radio Domain
by Vincenzo Galluzzi, Meriem Behiri, Marika Giulietti and Andrea Lapi
Galaxies 2025, 13(2), 34; https://doi.org/10.3390/galaxies13020034 - 2 Apr 2025
Viewed by 436
Abstract
We present an updated repository of sub-mJy extragalactic radio source counts between 150 MHz and 10 GHz, incorporating recent advances in radio surveys and observational techniques. By compiling and refining previous datasets, we provide a comprehensive catalog that enhances the understanding of faint [...] Read more.
We present an updated repository of sub-mJy extragalactic radio source counts between 150 MHz and 10 GHz, incorporating recent advances in radio surveys and observational techniques. By compiling and refining previous datasets, we provide a comprehensive catalog that enhances the understanding of faint radio-source populations, including Dusty Star-Forming Galaxies (DSFGs) and Radio-Quiet Active Galactic Nuclei (RQAGNs), from intermediate to high redshifts. Our analysis accounts for observational biases, such as resolution effects and Eddington bias, ensuring improved accuracy in flux-density estimations. We also discuss the implications of new-generation radio telescopes, such as the Square-Kilometer Array Observatory (SKAO) and its precursors and pathfinders, to further resolve these populations. Our collection contributes to constraining evolutionary models of radio sources, highlighting the increasing role of polarization studies in distinguishing different classes. This work serves as a key reference for future deep radio surveys targeting the faintest end of the extragalactic radio sky. Full article
(This article belongs to the Special Issue The Observation and Detection of Dusty Star-Forming Galaxies)
Show Figures

Figure 1

52 pages, 10192 KiB  
Review
Broad Observational Perspectives Achieved by the Accreting White Dwarf Sciences in the XMM-Newton and Chandra Eras
by Şölen Balman, Marina Orio and Gerardo J. M. Luna
Universe 2025, 11(4), 105; https://doi.org/10.3390/universe11040105 - 21 Mar 2025
Viewed by 1463
Abstract
Accreting white dwarf binaries (AWDs) comprise cataclysmic variables (CVs), symbiotics, AM CVns, and other related systems that host a primary white dwarf (WD) accreting from a main sequence or evolved companion star. AWDs are a product of close binary evolution; thus, they are [...] Read more.
Accreting white dwarf binaries (AWDs) comprise cataclysmic variables (CVs), symbiotics, AM CVns, and other related systems that host a primary white dwarf (WD) accreting from a main sequence or evolved companion star. AWDs are a product of close binary evolution; thus, they are important for understanding the evolution and population of X-ray binaries in the Milky Way and other galaxies. AWDs are essential for studying astrophysical plasmas under different conditions along with accretion physics and processes, transient events, matter ejection and outflows, compact binary evolution, mergers, angular momentum loss mechanisms, and nuclear processes leading to explosions. AWDs are also closely related to other objects in the late stages of stellar evolution, with other accreting objects in compact binaries, and even share common phenomena with young stellar objects, active galactic nuclei, quasars, and supernova remnants. As X-ray astronomy came to a climax with the start of the Chandra and XMM-Newton missions owing to their unprecedented instrumentation, new excellent imaging capabilities, good time resolution, and X-ray grating technologies allowed immense advancement in many aspects of astronomy and astrophysics. In this review, we lay out a panorama of developments on the study of AWDs that have been accomplished and have been made possible by these two observatories; we summarize the key observational achievements and the challenges ahead. Full article
Show Figures

Figure 1

23 pages, 1793 KiB  
Article
Restrictions on Regularized Fisher and Dilatonic Spacetimes Implied by High-Frequency Quasiperiodic Oscillations Observed in Microquasars and Active Galactic Nuclei
by Jaroslav Vrba and Zdeněk Stuchlík
Universe 2025, 11(3), 99; https://doi.org/10.3390/universe11030099 - 17 Mar 2025
Viewed by 360
Abstract
The Bronnikov generalization of the Fisher naked singularity and Dilatonic black hole spacetimes attracts high interest, as it combines two fundamental transitions of the solutions of Einstein equations. These are the black hole/wormhole “black bounce” transition of geometry, and the phantom/canonical transition of [...] Read more.
The Bronnikov generalization of the Fisher naked singularity and Dilatonic black hole spacetimes attracts high interest, as it combines two fundamental transitions of the solutions of Einstein equations. These are the black hole/wormhole “black bounce” transition of geometry, and the phantom/canonical transition of the scalar field, called trapped ghost scalar, combined with an electromagnetic field described by a non-linear electrodynamics. In the present paper, we put restrictions on the parameters of the Fisher (wormhole) and Dilatonic (black hole or wormhole) regularized spacetimes by using frequencies of the epicyclic orbital motion in the geodesic model for explanation of the high-frequency oscillations observed in microquasars or active galactic nuclei, where stellar mass or supermassive black holes are usually assumed. Full article
(This article belongs to the Special Issue Exotic Scenarios for Compact Astrophysical Objects)
Show Figures

Figure 1

28 pages, 13572 KiB  
Article
High-Redshift Quasars at z ≥ 3—III: Parsec-Scale Jet Properties from Very Long Baseline Interferometry Observations
by Shaoguang Guo, Tao An, Yuanqi Liu, Chuanzeng Liu, Zhijun Xu, Yulia Sotnikova, Timur Mufakharov and Ailing Wang
Universe 2025, 11(3), 91; https://doi.org/10.3390/universe11030091 - 8 Mar 2025
Cited by 1 | Viewed by 796
Abstract
High-redshift active galactic nuclei (AGN) provide key insights into early supermassive black hole growth and cosmic evolution. This study investigates the parsec-scale properties of 86 radio-loud quasars at z ≥ 3 using very long baseline interferometry (VLBI) observations. Our results show predominantly compact [...] Read more.
High-redshift active galactic nuclei (AGN) provide key insights into early supermassive black hole growth and cosmic evolution. This study investigates the parsec-scale properties of 86 radio-loud quasars at z ≥ 3 using very long baseline interferometry (VLBI) observations. Our results show predominantly compact core and core-jet morphologies, with 35% having unresolved cores, 59% with core–jet structures, and only 6% with core–double jet morphology. Brightness temperatures are generally lower than expected for highly radiative sources. The jets’ proper motions are surprisingly slow compared to those of lower-redshift samples. We observe a high fraction of young and/or confined peak-spectrum sources, providing insights into early AGN evolution in dense environments during early cosmic epochs. The observed trends may reflect genuine evolutionary changes in AGN structure over cosmic time, or selection effects favoring more compact sources at higher redshifts. These results stress the complexity of high-redshift radio-loud AGN populations and emphasize the need for multi-wavelength, high-resolution observations to fully characterize their properties and evolution through cosmic history. Full article
(This article belongs to the Special Issue Advances in Studies of Galaxies at High Redshift)
Show Figures

Figure 1

10 pages, 281 KiB  
Article
Solid Identification of Extragalactic Gamma-Ray Source Using High-Resolution Radio Interferometric Observation
by Krisztina Éva Gabányi, Sándor Frey, Krisztina Perger and Emma Kun
Universe 2025, 11(3), 83; https://doi.org/10.3390/universe11030083 - 1 Mar 2025
Cited by 1 | Viewed by 1311
Abstract
The dominant fraction of the extragalactic γ-ray sources are blazars, active galactic nuclei with jets inclined ata small angle to the line of sight. Apart from blazars, a few dozen narrow-line Seyfert 1 galaxies (NLS1) and a number of radio galaxies are [...] Read more.
The dominant fraction of the extragalactic γ-ray sources are blazars, active galactic nuclei with jets inclined ata small angle to the line of sight. Apart from blazars, a few dozen narrow-line Seyfert 1 galaxies (NLS1) and a number of radio galaxies are associated with γ-ray sources. The identification of γ-ray sources requires multiwavelength follow-up observations since several candidates could reside within the relatively large γ-ray localisation area. The γ-ray source 4FGL 0959.6+4606 was originally associated with a radio galaxy. However, follow-up multiwavelength work suggested a nearby NLS1 as the more probable origin of the γ-ray emission. We performed high-resolution very long baseline interferometry (VLBI) observation at 5 GHz of both proposed counterparts of 4FGL 0959.6+4606. We clearly detected the NLS1 source SDSS J095909.51+460014.3 with relativistically boosted jet emission. On the other hand, we did not detect milliarcsecond-scale compact emission in the radio galaxy 2MASX J09591976+4603515. Our VLBI imaging results suggest that the NLS1 object is the origin of the γ-ray emission in 4FGL 0959.6+4606. Full article
Show Figures

Figure 1

17 pages, 744 KiB  
Article
Ultra-High-Energy Cosmic Rays from Active Galactic Nuclei Jets: The Role of Supermassive Black Hole Growth and Accretion States
by Olmo Piana and Hung-Yi Pu
Universe 2025, 11(3), 78; https://doi.org/10.3390/universe11030078 - 24 Feb 2025
Viewed by 721
Abstract
Jets emanating from active galactic nuclei (AGNs) represent some of the most formidable particle accelerators in the universe, thereby emerging as viable candidates responsible for the detection of ultra-high-energy cosmic rays (UHECRs). If AGN jets indeed serve as origins of UHECRs, then the [...] Read more.
Jets emanating from active galactic nuclei (AGNs) represent some of the most formidable particle accelerators in the universe, thereby emerging as viable candidates responsible for the detection of ultra-high-energy cosmic rays (UHECRs). If AGN jets indeed serve as origins of UHECRs, then the diffuse flux of these cosmic rays would be dependent on the power and duty cycle of these jets, which are inherently connected to the nature of black hole accretion flows. In this article, we present our cosmological semi-analytic framework, JET (Jets from Early Times), designed to trace the evolution of jetted AGN populations. This framework serves as a valuable tool for predictive analyses of cosmic ray energy density and, potentially, neutrino energy density. By using JET, we model the formation and evolution of galaxies and supermassive black holes (SMBHs) from z=20 to z=1, incorporating jet formation and feedback mechanisms and distinguishing between various accretion states determined by the SMBH Eddington ratios. The implications of different SMBH growth models on predicting cosmic ray flux are investigated. We provide illustrative examples demonstrating how the associated diffuse UHECR fluxes at the source may vary in relation to the jet production efficiencies and the selected SMBH growth model, linking cosmological models of SMBH growth with astroparticle backgrounds. Full article
(This article belongs to the Special Issue Studying Astrophysics with High-Energy Cosmic Particles)
Show Figures

Figure 1

19 pages, 2832 KiB  
Review
Sixteen Years of Gamma-Ray Discoveries and AGN Observations with Fermi-LAT
by Fausto Casaburo, Stefano Ciprini, Dario Gasparrini and Federica Giacchino
Particles 2025, 8(1), 17; https://doi.org/10.3390/particles8010017 - 12 Feb 2025
Viewed by 1012
Abstract
In June 2024, the Fermi Gamma-Ray Space Telescope (FGST) celebrated its 16th year of operations. The Fermi Large Area Telescope (Fermi-LAT) is the main instrument onboard the FGST satellite and is designed to be sensitive to γ-rays in the energy range from [...] Read more.
In June 2024, the Fermi Gamma-Ray Space Telescope (FGST) celebrated its 16th year of operations. The Fermi Large Area Telescope (Fermi-LAT) is the main instrument onboard the FGST satellite and is designed to be sensitive to γ-rays in the energy range from about 20MeV up to the TeV regime. From its launch, the Fermi-LAT has collected more than 4.53billion photon events, providing crucial information to improve our understanding of particle acceleration and γ-ray production phenomena in astrophysical sources. The most abundant in the last 4FGL-data release 4 (4FGL-DR4), most powerful and persistent γ-ray emitters in the sky are the Active Galactic Nuclei (AGNs). These sources are extremely luminous galaxy cores powered by a super massive black hole (SMBH) with a mass ranging from millions to billions of times the mass of the Sun. The ASI-SSDC, a facility of the Agenzia Spaziale Italiana (ASI), plays a pivotal role in supporting Fermi-LAT by providing the essential infrastructure for the storage, processing, and analysis of the vast amounts of data generated by the mission. As a key asset to various space missions, ASI-SSDC contributes significantly to advancing research in high-energy astrophysics and γ-ray observations. Full article
Show Figures

Figure 1

15 pages, 532 KiB  
Article
What Is Inside the Double–Double Structure of the Radio Galaxy J0028+0035?
by Sándor Frey, Andrzej Marecki, Krisztina Éva Gabányi and Marek Jamrozy
Symmetry 2025, 17(2), 171; https://doi.org/10.3390/sym17020171 - 23 Jan 2025
Viewed by 840
Abstract
The radio source J0028+0035 is a recently discovered double–double radio galaxy at redshift z=0.398. Its relic outer lobes are separated by about 3 in the sky, corresponding to ∼1 Mpc projected linear size. Inside this large-scale structure, the inner [...] Read more.
The radio source J0028+0035 is a recently discovered double–double radio galaxy at redshift z=0.398. Its relic outer lobes are separated by about 3 in the sky, corresponding to ∼1 Mpc projected linear size. Inside this large-scale structure, the inner pair of collinear lobes span about 100 kpc. In the arcsec-resolution radio images of J0028+0035, there is a central radio feature that offers the intriguing possibility of being resolved into a pc-scale, third pair of innermost lobes. This would make this radio galaxy a rare triple–double source where traces of three distinct episodes of radio activity could be observed. To reveal the compact radio structure of the central component, we conducted observation with the European Very Long Baseline Interferometer Network and the enhanced Multi Element Remotely Linked Interferometer Network. Our 1.66 GHz image with high (∼5 milliarcsec) resolution shows a compact central radio core with no indication of a third, innermost double feature. The observation performed in multi-phase-centre mode also revealed that the physically unrelated but in projection closely separated background source 5BZU J0028+0035 has a single weak, somewhat resolved radio feature, at odds with its blazar classification. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

14 pages, 3516 KiB  
Article
Deep-Learning-Based Identification of Broad-Absorption Line Quasars
by Sen Pang, Hoiio Kong, Zijun Li, Weibo Kao and Yanxia Zhang
Appl. Sci. 2025, 15(3), 1024; https://doi.org/10.3390/app15031024 - 21 Jan 2025
Cited by 1 | Viewed by 860
Abstract
The accurate classification of broad-absorption line (BAL) quasars and non-broad-absorption line (non-BAL) quasars is key in understanding active galactic nuclei (AGN) and the evolution of the universe. With the rapid accumulation of data from large-scale spectroscopic survey projects (e.g., LAMOST, SDSS, and DESI), [...] Read more.
The accurate classification of broad-absorption line (BAL) quasars and non-broad-absorption line (non-BAL) quasars is key in understanding active galactic nuclei (AGN) and the evolution of the universe. With the rapid accumulation of data from large-scale spectroscopic survey projects (e.g., LAMOST, SDSS, and DESI), traditional manual classification methods face limitations. In this study, we propose a new method based on deep learning techniques to achieve an accurate distinction between BAL quasars and non-BAL quasars. We use a convolutional neural network (CNN) as the core model, in combination with various dimensionality reduction techniques, including principal component analysis (PCA), t-distributed stochastic neighborhood embedding (t-SNE), and isometric mapping (ISOMAP). These dimensionality reduction methods help extract meaningful features from high-dimensional spectral data while reducing model complexity. We employ quasar spectra from the 16th data release (DR16) of the Sloan Digital Sky Survey (SDSS) and obtain classification labels from the DR16Q quasar catalogues to train and evaluate our model. Through extensive experiments and comparisons, the combination of PCA and CNN achieve a test accuracy of 99.11%, demonstrating the effectiveness of deep learning for classifying the spectral data. Additionally, we explore other dimensionality reduction methods and machine learning models, providing valuable insights for future research in this field. Full article
Show Figures

Figure 1

12 pages, 673 KiB  
Article
The Effect of Outflow Launching Radial Efficiency of Accretion Disk on the Shape of Emission-Line Profiles
by Mohammad Hassan Naddaf
Universe 2025, 11(1), 8; https://doi.org/10.3390/universe11010008 - 29 Dec 2024
Viewed by 1161
Abstract
This paper presents a preliminary investigation into the influence of radial behavior of disk outflow on the structure and dynamics of the broad line region (BLR) in active galactic nuclei (AGNs), with an emphasis on how the mass ejection rate contributes to shaping [...] Read more.
This paper presents a preliminary investigation into the influence of radial behavior of disk outflow on the structure and dynamics of the broad line region (BLR) in active galactic nuclei (AGNs), with an emphasis on how the mass ejection rate contributes to shaping the broad emission-line profiles. Specifically, we analyze how varying the radial efficiency of mass loss from accretion disks, driven by radiative dust-based mechanisms, contributes to the distribution of material in the BLR. By exploring different radial scenarios of disk mass loss behavior, we uncover connections between outflow radial efficiency and emission line profiles, particularly for lowly ionized lines. Our findings reveal that while the observed shape of broad emission lines is partially influenced by the radial behavior of the disk outflow, it ultimately depends more critically on the physical conditions of the clouds and the specific approach adopted regarding the emissivity for their contribution to the line formation. Full article
(This article belongs to the Section Compact Objects)
Show Figures

Figure 1

17 pages, 8987 KiB  
Article
Effects of Thermodynamics on the Concurrent Accretion and Migration of Gas Giants in Protoplanetary Disks
by Hening Wu and Ya-Ping Li
Universe 2025, 11(1), 1; https://doi.org/10.3390/universe11010001 - 25 Dec 2024
Viewed by 870
Abstract
Accretion and migration usually proceed concurrently for giant planet formation in the natal protoplanetary disks. Recent works indicate that the concurrent accretion onto a giant planet imposes significant impact on the planetary migration dynamics in the isothermal regime. In this work, we carry [...] Read more.
Accretion and migration usually proceed concurrently for giant planet formation in the natal protoplanetary disks. Recent works indicate that the concurrent accretion onto a giant planet imposes significant impact on the planetary migration dynamics in the isothermal regime. In this work, we carry out a series of 2D global hydrodynamical simulations with Athena++ to explore the effect of thermodynamics on the concurrent accretion and migration processes of the planets in a self-consistent manner. The thermodynamics effect is modeled with a thermal relaxation timescale using a β-cooling prescription. Our results indicate that radiative cooling has a substantial effect on the accretion and migration processes of the planet. As cooling timescales increase, we observe a slight decrease in the planetary accretion rate, and a transition from the outward migrating into inward migration. This transition occurs approximately when the cooling timescale is comparable to the local dynamical timescale (β1), which is closely linked to the asymmetric structures from the circumplanetary disk (CPD) region. The asymmetric structures in the CPD region which appear with an efficient cooling provide a strong positive torque driving the planet migrate outward. However, such a positive torque is strongly suppressed, when the CPD structures tend to disappear with a relatively long cooling timescale (β10). Our findings may also be relevant to the dynamical evolution of accreting stellar-mass objects embedded in disks around active galactic nuclei. Full article
Show Figures

Figure 1

15 pages, 14842 KiB  
Article
The Property of the Gaia Celestial Reference Frame 3 (Gaia-CRF3)
by Guangyi Liu and Sufen Guo
Universe 2024, 10(12), 455; https://doi.org/10.3390/universe10120455 - 12 Dec 2024
Viewed by 969
Abstract
With the release of Gaia DR3, evaluating the performance and consistency of its reference frame (Gaia-CRF3) with the International Celestial Reference Frame (ICRF3) has become a critical task. Gaia-CRF3 serves as the second non-rotating inertial reference frame in the optical [...] Read more.
With the release of Gaia DR3, evaluating the performance and consistency of its reference frame (Gaia-CRF3) with the International Celestial Reference Frame (ICRF3) has become a critical task. Gaia-CRF3 serves as the second non-rotating inertial reference frame in the optical wavelength for the implementation of the International Celestial Reference System (ICRS). This study assesses the properties of Gaia-CRF3 by uniformly sampling Active Galactic Nuclei (AGN) sources from Gaia DR3 using two methods: Fibonacci grid sampling and HEALPix pixel sampling. Both techniques aim to create an all-sky uniformly distributed star catalog to minimize correlations between Vector Spherical Harmonic (VSH) expansion coefficients. Using the Fibonacci grid, approximately 430,000 uniformly distributed sources were selected from the 5-parameter solution of Gaia DR3. After VSH processing, the rotation vector and glide vector were determined as R=(10.7±3.1,2.2±2.7,2.5±4.0)μas · year−1 and G=(0.3±3.1,1.2±2.7,2.5±4.0)μas · year−1, respectively. Using HEALPix sampling, a catalog of approximately 190,000 sources was created by averaging source positions within each pixel. The VSH analysis yielded R=(11.7±2.1,2.7±1.8,3.7±2.7)μas · year−1 and G=(0.9±2.1,2.3±1.8,4.4±2.7)μas · year−1. Comparison with results derived from a non-uniformly sampled catalog showed that uniform sampling significantly reduced both the magnitudes of the R and G components and their associated errors. The derived values for Gaia-CRF3 are consistent with ICRF3, whose rotation and glide vectors are R=(3.44±0.30,+1.57±0.28,1.24±0.32)μas · year−1 and G=(+3.41±6.71,+8.99±6.50,1.47±6.04)μas · year−1. These findings confirm that Gaia-CRF3 is a reliable and accurate reference frame, comparable in precision to ICRF3, making it a robust implementation of the optical ICRS for astrometric applications. Full article
Show Figures

Figure 1

Back to TopTop