Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = ATH fillers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 18993 KiB  
Article
Study on the Mechanical and Thermal Properties of Waterborne Polyurethane-Modified Aluminum Hydroxide and Its Application in LDPE Plastics
by Xianrong Yang, Gaoxiang Du, Huan Shuai, Xi Xu and Jiao Wang
Polymers 2025, 17(5), 556; https://doi.org/10.3390/polym17050556 - 20 Feb 2025
Viewed by 756
Abstract
This study investigates the modification of aluminum hydroxide (ATH) powder using waterborne polyurethane (WPU) as a novel modifier, along with its subsequent effects on the dispersion, mechanical properties, and thermal performance of ATH-filled low-density polyethylene (LDPE) composites. ATH was modified through an optimized [...] Read more.
This study investigates the modification of aluminum hydroxide (ATH) powder using waterborne polyurethane (WPU) as a novel modifier, along with its subsequent effects on the dispersion, mechanical properties, and thermal performance of ATH-filled low-density polyethylene (LDPE) composites. ATH was modified through an optimized wet process, and the modification efficiency was evaluated using various characterization techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The results show that WPU, as a modifier, effectively improved the dispersion of ATH in the organic phase, as demonstrated by the reduced settling time and enhanced interfacial compatibility between ATH and LDPE. The modified ATH demonstrated enhanced mechanical properties in LDPE-based composites, with a tensile strength of 30.02 MPa, flexural strength of 13.20 MPa, impact strength of 65.75 kJ/m2, and elongation at break of 59.84%, all reaching their maximum at 3.0 wt.% WPU modification. Additionally, the flame retardancy of the composites was significantly improved due to the incorporation of ATH, with the ATH content in the composites reaching up to 60%, further enhancing their fire resistance. This study highlights the effectiveness of WPU-modified ATH as both a flame retardant and a reinforcing filler for LDPE composites, offering potential advantages in enhancing material properties while reducing manufacturing costs. Full article
Show Figures

Figure 1

11 pages, 2095 KiB  
Article
The Effect of Various Fillers on the Properties of Methyl Vinyl Silicone Rubber
by Yun Chen, Kun Wang, Chong Zhang, Wei Yang, Bo Qiao and Li Yin
Polymers 2023, 15(6), 1584; https://doi.org/10.3390/polym15061584 - 22 Mar 2023
Cited by 8 | Viewed by 3504
Abstract
Silicone rubber (SIR) has been widely used in electrical insulation fields, and the introduction of new materials is very important for the performance improvement of SIR composites. In this work, four different fillers, including aluminium hydroxide (ATH), yimonite (YMT), boron nitride (BN) and [...] Read more.
Silicone rubber (SIR) has been widely used in electrical insulation fields, and the introduction of new materials is very important for the performance improvement of SIR composites. In this work, four different fillers, including aluminium hydroxide (ATH), yimonite (YMT), boron nitride (BN) and mica-filled SIR composites were prepared, and the vulcanization behavior, mechanical properties, insulation performance and hydrophobicity of the SIR composites were investigated and compared. Both BN- and mica-filled SIR composites showed excellent insulation performance, while the ATH-filled SIR composite exhibited the best mechanical properties with an elongation at break of 230% and a tensile strength of 2.9 MPa. The SIR/BN composite showed a breakdown strength of 29.2 kV/mm with a 5% failure rate. The addition of YMT deteriorated the insulation performance of SIR but improved the elongation at break and hydrophobicity, with an elongation at break increasing from 115% to 410% and the static contact angle improving from 109.8° to 115.6°. Full article
(This article belongs to the Collection Polymers and Polymer Composites: Structure-Property Relationship)
Show Figures

Figure 1

14 pages, 6515 KiB  
Article
On the Influence of Flame-Retardant Additives on UV-Curable Thermosetting Glass Fiber-Reinforced Composites
by Natalia Gutiérrez Pérez-de-Eulate, Patricia Ares Elejoste, Garazi Goenaga, Maitane Urrutxua, Francisco Javier Vallejo, Jesús Ballestero, Alexandra Allue and José Luis Gómez-Alonso
Polymers 2023, 15(1), 240; https://doi.org/10.3390/polym15010240 - 3 Jan 2023
Cited by 5 | Viewed by 4352
Abstract
One of the main advantages of fiber-reinforced polymer (FRP) composites is the ability to reduce their weight while they exhibit exceptional properties such as high strength, stiffness, and resistance to corrosion, and reduction in their lifetime maintenance when they are compared to the [...] Read more.
One of the main advantages of fiber-reinforced polymer (FRP) composites is the ability to reduce their weight while they exhibit exceptional properties such as high strength, stiffness, and resistance to corrosion, and reduction in their lifetime maintenance when they are compared to the metallic components. These features led fiber-reinforced polymer composites to have applications in the mechanical, construction, aerospace, automotive, medical, marine, and other manufacturing industries. However, the use of this type of material is not possible in all of these applications since, in certain sectors, the fire resistance property that the material must present is one of the key factors. For this reason, a thermosetting resin composed of ultraviolet (UV)-curable acrylic monomers has been used as a matrix, where transparent aluminum trihydrate (ATH) flame-retardant fillers were incorporated for manufacturing flame-retarded UV-curable composites. The composite parts were produced by using glass fiber-reinforced UV-curable prepregs. An exhaustive study of different types of ATH-based flame-retardant additives and the possible cooperation between them to improve the fire properties of the UV-curable composite was carried out. Additionally, the most suitable additive percentage to meet the railway sector requirements was also evaluated, as well as the evolution in the viscosity of the matrix and its processing capacity during the manufacture of the prepregs at 60 °C. The compatibility between the fillers and the matrix was assessed using a dielectric analysis (DEA). The fire properties of both the matrix and the final composite were established. Full article
(This article belongs to the Special Issue Polymeric Fibers in Textiles)
Show Figures

Graphical abstract

14 pages, 3990 KiB  
Article
Improvement of Fire Resistance and Mechanical Properties of Glass Fiber Reinforced Plastic (GFRP) Composite Prepared from Combination of Active Nano Filler of Modified Pumice and Commercial Active Fillers
by Andry Rakhman, Kuncoro Diharjo, Wijang Wisnu Raharjo, Venty Suryanti and Sunarto Kaleg
Polymers 2023, 15(1), 51; https://doi.org/10.3390/polym15010051 - 23 Dec 2022
Cited by 17 | Viewed by 5187
Abstract
Glass fiber reinforced plastic (GFRP) composites have great potential to replace metal components in vehicles by maintaining their mechanical properties and improving fire resistance. Ease of form, anti-corrosion, lightweight, fast production cycle, durability and high strength-to-weight ratio are the advantages of GFRP compared [...] Read more.
Glass fiber reinforced plastic (GFRP) composites have great potential to replace metal components in vehicles by maintaining their mechanical properties and improving fire resistance. Ease of form, anti-corrosion, lightweight, fast production cycle, durability and high strength-to-weight ratio are the advantages of GFRP compared to conventional materials. The transition to the use of plastic materials can be performed by increasing their mechanical, thermal and fire resistance properties. This research aims to improve the fire resistance of GFRP composite and maintain its strength by a combination of pumice-based active nano filler and commercial active filler. The nano active filler of pumice particle (nAFPP) was obtained by the sol–gel method. Aluminum trihydroxide (ATH), sodium silicate (SS) and boric acid (BA) were commercial active fillers that were used in this study. The GFRP composite was prepared by a combination of woven roving (WR) and chopped strand mat (CSM) glass fibers with an unsaturated polyester matrix. The composite specimens were produced using a press mold method for controlling the thickness of specimens. Composites were tested with a burning test apparatus, flexural bending machine and Izod impact tester. Composites were also analyzed by SEM, TGA, DSC, FT-IR spectroscopy and macro photographs. The addition of nAFPP and reducing the amount of ATH increased ignition time significantly and decreased the burning rate of specimens. The higher content of nAFPP significantly increased the flexural and impact strength. TGA analysis shows that higher ATH content had a good contribution to reducing specimen weight loss. It is also strengthened by the lower exothermic of the specimen with higher ATH content. The use of SS and BA inhibited combustion by forming charcoal or protective film; however, excessive use of them produced porosity and lowered mechanical properties. Full article
(This article belongs to the Special Issue Advances in Reinforced Polymer Composites II)
Show Figures

Figure 1

13 pages, 3351 KiB  
Article
Understanding the Flame Retardant Mechanism of Intumescent Flame Retardant on Improving the Fire Safety of Rigid Polyurethane Foam
by Seung Hun Lee, Seul Gi Lee, Jun Seo Lee and Byung Chol Ma
Polymers 2022, 14(22), 4904; https://doi.org/10.3390/polym14224904 - 14 Nov 2022
Cited by 32 | Viewed by 5337
Abstract
Combinations of multiple inorganic fillers have emerged as viable synergistic agents for boosting the flame retardancy of intumescent flame retardant (IFR) polymer materials. However, few studies on the effect of multiple inorganic fillers on the flame retardant behavior of rigid polyurethane (RPU) foam [...] Read more.
Combinations of multiple inorganic fillers have emerged as viable synergistic agents for boosting the flame retardancy of intumescent flame retardant (IFR) polymer materials. However, few studies on the effect of multiple inorganic fillers on the flame retardant behavior of rigid polyurethane (RPU) foam have been carried out. In this paper, a flame retardant combination of aluminum hydroxide (ATH) and traditional flame retardants ammonium polyphosphate (APP), pentaerythritol (PER), melamine cyanurate (MC), calcium carbonate (CC), and expandable graphite (EG) was incorporated into RPU foam to investigate the synergistic effects of the combination of multiple IFR materials on the thermal stability and fire resistance of RPU foam. Scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) revealed that 8 parts per hundred polyols by weight (php) filler concentrations were compatible with RPU foam and yielded an increased amount of char residue compared to the rest of the RPU samples. The flame retardancy of multiple fillers on intumescent flame retardant RPU foam was also investigated using cone calorimeter (CCTs) and limiting oxygen index (LOI) tests, which showed that RPU/IFR1 (APP/PER/MC/EG/CC/ATH) had the best flame retardant performance, with a low peak heat release rate (PHRR) of 82.12 kW/m2, total heat release rate (THR) of 15.15 MJ/m2, and high LOI value of 36%. Furthermore, char residue analysis revealed that the use of multiple fillers contributed to the generation of more intact and homogeneous char after combustion, which led to reduced decomposition of the RPU foam and hindered heat transfer between the gas and condensed phases. Full article
(This article belongs to the Special Issue Heat-Resistant and Flame-Retardant Polymer Materials)
Show Figures

Figure 1

16 pages, 7683 KiB  
Article
The Effect of Flame Retardant—Aluminum Trihydroxide on Mixed Mode I/II Fracture Toughness of Epoxy Resin
by Paweł Zielonka, Szymon Duda, Grzegorz Lesiuk, Wojciech Błażejewski, Magdalena Wiśniewska, Joanna Warycha, Paweł Stabla, Michał Smolnicki and Bartosz Babiarczuk
Polymers 2022, 14(20), 4386; https://doi.org/10.3390/polym14204386 - 17 Oct 2022
Cited by 7 | Viewed by 3118
Abstract
Fire resistance is a major issue concerning composite materials for safe operation in many industrial sectors. The design process needs to meet safety requirements for buildings and vehicles, where the use of composites has increased. There are several solutions to increasing the flame [...] Read more.
Fire resistance is a major issue concerning composite materials for safe operation in many industrial sectors. The design process needs to meet safety requirements for buildings and vehicles, where the use of composites has increased. There are several solutions to increasing the flame resistance of polymeric materials, based on either chemical modification or physical additions to the material’s composition. Generally, the used flame retardants affect mechanical properties either in a positive or negative way. The presented research shows the influence of the mixed-mode behavior of epoxy resin. Fracture toughness tests on epoxy resin samples were carried out, to investigate the changes resulting from different inorganic filler contents of aluminum trihydroxide (ATH). Three-point bending and asymmetric four-point bending tests, with different loading modes, were performed, to check the fracture behavior in a complex state of loading. The results showed that the fracture toughness of mode I and mode II was reduced by over 50%, compared to neat resin. The experimental outcomes were compared with theoretical predictions, demonstrating that the crack initiation angle for higher values of KI/KII factor had a reasonable correlation with the MTS prediction. On the other hand, for small values of the factor KI/KII, the results of the crack initiation angle had significant divergences. Additionally, based on scanning electron microscopy images, the fracturing of the samples was presented. Full article
(This article belongs to the Special Issue Advanced Epoxy-Based Materials III)
Show Figures

Figure 1

16 pages, 3839 KiB  
Article
Physical Properties of Glass-Fibre-Reinforced Polymer Filled with Alumina Trihydrate and Calcium Carbonate
by Djoko Setyanto, Yohanes Agus Jayatun, Prita Dewi Basoeki and Anthon De Fretes
Polymers 2022, 14(12), 2464; https://doi.org/10.3390/polym14122464 - 17 Jun 2022
Cited by 10 | Viewed by 3455
Abstract
Gutters made of glass-fibre-reinforced polymer (GFRP) are usually produced with a three-millimetre thickness. The fillers are mixed into unsaturated polyester (UP) resin, which is intended to make the composite material more affordable. This study aims to examine the effects of the addition of [...] Read more.
Gutters made of glass-fibre-reinforced polymer (GFRP) are usually produced with a three-millimetre thickness. The fillers are mixed into unsaturated polyester (UP) resin, which is intended to make the composite material more affordable. This study aims to examine the effects of the addition of alumina trihydrate (ATH), calcium carbonate (CC), and a mixture of ATH and CC of 15 and 30 parts per hundredweight of resins (PHR) on the material properties of the three-millimetre-thick three-layered GFRP composites. The properties observed included physical properties, namely, specific gravity and water absorption, chemical properties such as burning rate, and mechanical properties such as hardness, flexural strength, and toughness. The effects of the fillers on the voids and interfacial bond between the reinforcing fibre and matrix were analysed using the flexural fracture observation through scanning electron microscopy (SEM). The results showed that the addition of fillers into the UP resin led to an increase in the density, hardness, flexural strength, modulus of elasticity, and toughness but a decrease in water absorption and burning rate in a horizontal position. This information can be helpful for manufacturers of gutters made of GFRP in selecting the appropriate constituent materials while considering the technical and economic properties. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

15 pages, 1914 KiB  
Article
Novel Micronized Mica Modified Casein–Aluminum Hydroxide as Fire Retardant Coatings for Wood Products
by Mezbah Uddin, Maitham Alabbad, Ling Li, Olli Orell, Essi Sarlin and Antti Haapala
Coatings 2022, 12(5), 673; https://doi.org/10.3390/coatings12050673 - 14 May 2022
Cited by 7 | Viewed by 4522
Abstract
Sustainable coating solutions that function as a fire retardant for wood are still a challenging topic for the academic and industrial sectors. In this study, composite coatings of casein protein mixed with mica and aluminum trihydroxide (ATH) were tested as fire retardants for [...] Read more.
Sustainable coating solutions that function as a fire retardant for wood are still a challenging topic for the academic and industrial sectors. In this study, composite coatings of casein protein mixed with mica and aluminum trihydroxide (ATH) were tested as fire retardants for wood and plywood; coating degradation and fire retardancy performance were assessed with a cone calorimeter, and a thermogravimeter was used for the thermal stability measurement. The results indicated that casein–mica composites were beneficial as coatings. The heat release rate (HRR) and the total heat released (THR) of the sample coated with casein–mica composite were reduced by 55% and 37%, respectively; the time to ignition was increased by 27% compared to the untreated sample. However, the TTI of the sample coated with the casein–mica–ATH composite was increased by 156%; the PHR and THR were reduced by 31% and 28%, respectively. This is attributed to the yielded insulating surface layer, active catalytic sites, and the crosslink from mica and endothermic decomposition of ATH and casein producing different fragments which create multiple modes of action, leading to significant roles in suppressing fire spread. The multiple modes of action involved in the prepared composites are presented in detail. Coating wear resistance was investigated using a Taber Abrader, and adhesion interaction between wood and a coated composite were investigated by applying a pull-off test. While the addition of the three filler types to casein caused a decrease in the pull-off adhesion strength by up to 38%, their abrasion resistance was greatly increased by as much as 80%. Full article
(This article belongs to the Special Issue New Challenges in Wood Adhesives and Coatings)
Show Figures

Figure 1

29 pages, 6024 KiB  
Article
A New Kinetic Modeling Approach for Predicting the Lifetime of ATH-Filled Silane Cross-Linked Polyethylene in a Nuclear Environment
by Sarah Hettal, Sébastien Roland, Konsta Sipila, Harri Joki and Xavier Colin
Polymers 2022, 14(7), 1492; https://doi.org/10.3390/polym14071492 - 6 Apr 2022
Cited by 7 | Viewed by 2458
Abstract
This study focuses on the degradation of a silane cross-linked polyethylene (Si-XLPE) matrix filled with three different contents of aluminum tri-hydrate (ATH): 0, 25, and 50 phr. These three materials were subjected to radiochemical ageing at three different dose rates (8.5, 77.8, and [...] Read more.
This study focuses on the degradation of a silane cross-linked polyethylene (Si-XLPE) matrix filled with three different contents of aluminum tri-hydrate (ATH): 0, 25, and 50 phr. These three materials were subjected to radiochemical ageing at three different dose rates (8.5, 77.8, and 400 Gy·h−1) in air at low temperatures close to ambient (47, 47, and 21 °C, respectively). Changes due to radio-thermal ageing were investigated according to both a multi-scale and a multi-technique approach. In particular, the changes in the chemical composition, the macromolecular network structure, and the crystallinity of the Si-XLPE matrix were monitored by FTIR spectroscopy, swelling measurements in xylene, differential scanning calorimetry, and density measurements. A more pronounced degradation of the Si-XLPE matrix located in the immediate vicinity of the ATH fillers was clearly highlighted by the swelling measurements. A very fast radiolytic decomposition of the covalent bonds initially formed at the ATH/Si-XLPE interface was proposed to explain the higher concentration of chain scissions. If, as expected, the changes in the elastic properties of the three materials under study are mainly driven by the crystallinity of the Si-XLPE matrix, in contrast, the changes in their fracture properties are also significantly impacted by the degradation of the interfacial region. As an example, the lifetime was found to be approximately halved for the two composite materials compared to the unfilled Si-XLPE matrix under the harshest ageing conditions (i.e., under 400 Gy·h−1 at 21 °C). The radio-thermal oxidation kinetic model previously developed for the unfilled Si-XLPE matrix was extended to the two composite materials by taking into account both the diluting effect of the ATH fillers (i.e., the ATH content) and the interfacial degradation. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

13 pages, 3323 KiB  
Article
Investigation of Ramped Compression Effect on the Dielectric Properties of Silicone Rubber Composites for the Coating of High-Voltage Insulation
by M. Hassan Raza, Safi Ullah Butt, Abraiz Khattak and Ahmad Aziz Alahmadi
Materials 2022, 15(7), 2343; https://doi.org/10.3390/ma15072343 - 22 Mar 2022
Cited by 5 | Viewed by 2436
Abstract
The incorporation of inorganic oxide fillers imparts superior dielectric properties in silicone rubber for high-voltage insulation. However, the dielectric characteristics are influenced by the mechanical stress. The effects of ramped compression on the dielectric properties of neat silicone rubber (NSiR), 15% SiO2 [...] Read more.
The incorporation of inorganic oxide fillers imparts superior dielectric properties in silicone rubber for high-voltage insulation. However, the dielectric characteristics are influenced by the mechanical stress. The effects of ramped compression on the dielectric properties of neat silicone rubber (NSiR), 15% SiO2 microcomposite (SSMC), 15% alumina trihydrate (ATH) microcomposite (SAMC) and 10% ATH + 2% SiO2 hybrid composite (SMNC) are presented in this study. The dielectric constant and dissipation factor were measured before and after each compression especially in the frequency range of 50 kHz to 2MHz. Before the compression, SSMC expressed the highest dielectric constant of 4.44 followed by SMNC and SAMC. After the compression cycle, SAMC expressed a better dielectric behavior exhibiting dielectric constant of 7.19 and a dissipation factor of 0.01164. Overall, SAMC expressed better dielectric response before and after compression cycle with dielectric constant and dissipation factor in admissible ranges. Full article
Show Figures

Figure 1

13 pages, 2858 KiB  
Communication
Industrial Implementation of Aluminum Trihydrate-Fiber Composition for Fire Resistance and Mechanical Properties in Glass-Fiber-Reinforced Polymer Roofs
by Mohammad Zainudin, Kuncoro Diharjo, Mujtahid Kaavessina, Djoko Setyanto and Ubaidillah Ubaidillah
Polymers 2022, 14(7), 1273; https://doi.org/10.3390/polym14071273 - 22 Mar 2022
Cited by 7 | Viewed by 3557
Abstract
It is difficult to obtain suitable fire resistance and mechanical properties for glass-fiber-reinforced polymer (GFRP) roof material in industrial applications. Although some efforts to improve the fire resistance properties of GFRP have been carried out, in practice this sometimes degrades the mechanical properties. [...] Read more.
It is difficult to obtain suitable fire resistance and mechanical properties for glass-fiber-reinforced polymer (GFRP) roof material in industrial applications. Although some efforts to improve the fire resistance properties of GFRP have been carried out, in practice this sometimes degrades the mechanical properties. Therefore, the base materials, such as filler and reinforcing fiber, must be appropriately combined to simultaneously improve both fire resistance and mechanical properties. The present study examines improvements in GFRP roof material by investigating the effect of aluminium trihydrate (ATH) as a filler and the combination of a chopped strand mat (CSM) with woven roving (WR) and stitched mat (STM) fibers as the reinforcement in a composite GFRP roof structure. The roof samples were prepared following industrial machine standards using the specified materials. The mechanical properties of GFRP were evaluated using tensile, flexural and impact tests, following ASTM D638, ASTM D790 and ASTM D256 standards, respectively. The fire properties were examined through fire tests following the ASTM D635 standard. The results show that the GFRP roof composed of CSM/WR fibers had a 40% higher tensile strength (103.5 MPa) compared with the GFRP roof without CSM fibers (73.8 MPa). The flexural strength of the GFRP roof with CSM/WR fibers was also 57% higher than the roof without fibers, with a ratio of 315.61 MPa to 201 MPa. With the use of CSM/WR fibers, the fire resistance also increased by 23%, resulting in a ratio of 4.31 mm/min to 5.32 mm/min. These results demonstrate that the combination of CSM/WR fibers as a reinforcement would be an excellent option for producing an improved GFRP roof with better industrial properties, especially when producing improved GFRP roofs using a continuous lamination machine. Full article
(This article belongs to the Special Issue Fibre-Reinforced Polymer Composite)
Show Figures

Figure 1

14 pages, 8495 KiB  
Article
Understanding Variations in the Tracking and Erosion Performance of HTV-SR-Based Composites due to AC-Stressed Aging
by Rahmat Ullah, Muhammad Akbar, Nasim Ullah, Sattam Al Otaibi and Ahmed Althobaiti
Polymers 2021, 13(21), 3634; https://doi.org/10.3390/polym13213634 - 21 Oct 2021
Cited by 15 | Viewed by 3935
Abstract
Among the polymeric family, high-temperature-vulcanized silicone rubber (HTV-SR) is the most deployed material for high voltage insulation applications. However, in an outdoor environment, due to contamination and wetting-induced dry band arcing, consequently SR experiences surface tracking and erosion. From a practical standpoint, the [...] Read more.
Among the polymeric family, high-temperature-vulcanized silicone rubber (HTV-SR) is the most deployed material for high voltage insulation applications. However, in an outdoor environment, due to contamination and wetting-induced dry band arcing, consequently SR experiences surface tracking and erosion. From a practical standpoint, the tracking and erosion performance under multi-stress aging is required to be known. It is in that context that the present study was undertaken to measure and analyze the effect of multi-stress aging on tracking and erosion performance. Composite samples of SR having different filler concentrations of silica and alumina trihydroxide (ATH) were aged in a multi-stress chamber for a period of 5000 h, and after that their electrical tracking performance was studied. Simultaneously, unaged samples were also exposed to tracking test for comparison. To conduct this test, the inclined plane testing technique was used in accordance with IEC-60587. All samples exposed to tracking test were analyzed using different diagnostic and measuring techniques involving surface leakage current measurement, Fourier transform infrared spectroscopy (FTIR), thermal stability and hydrophobicity classification. Experimental results shown that the tracking lifetime increased through incorporation of silica and ATH fillers in the SR. Amongst all test samples, two samples designated as filled with 2% nano silica and 20% micro silica/ATH exhibited greater resistance to tracking. This was attributed to the optimum loading as well as better dispersion of the fillers in the polymer matrix. The presence of nano-silica enhanced time-to-tracking failure, owing to both improved thermal stability and enhanced shielding effect on the surface of nanocomposite insulators. Full article
(This article belongs to the Special Issue Advanced Polymer Composites for Electrical Insulation)
Show Figures

Figure 1

21 pages, 2055 KiB  
Article
A Proposal for the Evaluation of HTV Silicone Rubber Composite Insulators
by Christos-Christodoulos A. Kokalis, Vassiliki T. Kontargyri and Ioannis F. Gonos
Polymers 2021, 13(21), 3610; https://doi.org/10.3390/polym13213610 - 20 Oct 2021
Cited by 7 | Viewed by 2740
Abstract
This paper describes in detail a step-by-step methodology for obtaining specimens from the housing material (high temperature vulcanized (HTV) silicone rubber with aluminum trihydrate (ATH) filler) of composite insulators (finished products), for five well known and commonly used tests. The aim of the [...] Read more.
This paper describes in detail a step-by-step methodology for obtaining specimens from the housing material (high temperature vulcanized (HTV) silicone rubber with aluminum trihydrate (ATH) filler) of composite insulators (finished products), for five well known and commonly used tests. The aim of the paper is to render practical clarifications and additions to the instructions for five tests on composite insulators provided by international standards. Additionally, the ranges of the results of these tests are presented. More specifically, shore A hardness measurement, tensile strength and elongation at break test, tear strength test, density measurement and inclined plane test were conducted on the housing material of ten, new, unaged medium voltage composite insulators made by six different manufacturers. The results of these tests are presented as a contribution to the existing knowledge and a comparative study of corresponding results of previous investigations is performed. The presented procedures for specimens’ preparation, as well as the results (arithmetical ranges), could be used as guidelines for future testing on the housing material (HTV silicone rubber with ATH filler) of composite insulators, either by researchers and manufacturers, during laboratory testing and material development processes, or by customers (distribution and transmission networks owners), during batch acceptance tests. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

18 pages, 8357 KiB  
Article
Surface Recovery Investigation of Silicone Rubber Composites for Outdoor Electrical Insulation under Accelerated Temperature and Humidity
by M. Hassan Raza, Abraiz Khattak, Asghar Ali, Safi Ullah Butt, Bilal Iqbal, Abasin Ulasyar, Ahmad Aziz Alahmadi, Nasim Ullah and Adam Khan
Polymers 2021, 13(18), 3024; https://doi.org/10.3390/polym13183024 - 7 Sep 2021
Cited by 9 | Viewed by 3730
Abstract
Degradation of silicon rubber due to heat and humidity affect its performance in outdoor applications. To analyze the effects of high temperature and humidity on room temperature vulcanized (RTV) silicone rubber (SiR) and its composites, this study was performed. Five different sample compositions [...] Read more.
Degradation of silicon rubber due to heat and humidity affect its performance in outdoor applications. To analyze the effects of high temperature and humidity on room temperature vulcanized (RTV) silicone rubber (SiR) and its composites, this study was performed. Five different sample compositions including neat silicone rubber (nSiR), microcomposites (15 wt% silica(SMC 15% SiO2) and 15 wt% ATH(SMC 15% ATH), nanocomposite (2.5 wt% silica(SNC 2.5% SiO2) and hybrid composite (10 wt% micro alumina trihydrate with 2 wt% nano silica(SMNC 10% ATH 2% SiO2) were prepared and subjected to 70 ˚C temperature and 80% relative humidity in an environmental chamber for 120 h. Contact angle, optical microscopy and Fourier transform infrared (FTIR) spectroscopy were employed to analyze the recovery properties before and after applying stresses. Different trends of degradation and recovery were observed for different concentrations of composites. Addition of fillers improved the overall performance of composites and SMC 15% ATH composite performed better than other composites. For high temperature and humidity, the ATH-based microcomposite was recommended over silica due to its superior thermal retardation properties of ATH. It has been proved that ATH filler is able to withstand high temperature and humidity. Full article
(This article belongs to the Special Issue Silicon-Based Polymers and Materials)
Show Figures

Graphical abstract

10 pages, 4383 KiB  
Article
Performance of Silicone Rubber Composites Filled with Aluminum Nitride and Alumina Tri-Hydrate
by Jianjun Zheng, Shaojian He, Jiaqi Wang, Wenxuan Fang, Yang Xue, Liming Xie and Jun Lin
Materials 2020, 13(11), 2489; https://doi.org/10.3390/ma13112489 - 29 May 2020
Cited by 21 | Viewed by 3409
Abstract
In this study, silicone rubber (SR) composites were prepared with various amounts of aluminum nitride (AlN) and alumina tri-hydrate (ATH), and vinyl tri-methoxysilane (VTMS) was also introduced to prepare SR/ATH/AlN–VTMS composites for comparison. Compared to the SR/ATH composites, the SR/ATH/AlN composites with higher [...] Read more.
In this study, silicone rubber (SR) composites were prepared with various amounts of aluminum nitride (AlN) and alumina tri-hydrate (ATH), and vinyl tri-methoxysilane (VTMS) was also introduced to prepare SR/ATH/AlN–VTMS composites for comparison. Compared to the SR/ATH composites, the SR/ATH/AlN composites with higher AlN loading exhibited higher breakdown strength and thermal conductivity, which were further improved by the addition of VTMS. Such results were related to the enhanced rubber–filler interfacial interactions from VTMS coupling, as demonstrated by scanning electron microscopy (SEM) analysis and the curing behaviors of the SR composites. Moreover, by replacing ATH with VTMS-coupled AlN, the SR/ATH/AlN–VTMS composites also exhibited lower dielectric loss along with an increased dielectric constant, suggesting the promising application of VTMS-coupled AlN as a filler for the preparation of the SR composites as high-voltage insulators. Full article
Show Figures

Figure 1

Back to TopTop