Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,437)

Search Parameters:
Keywords = AP2A1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2077 KiB  
Article
Benchmarking YOLO Models for Marine Search and Rescue in Variable Weather Conditions
by Aysha Alshibli and Qurban Memon
Automation 2025, 6(3), 35; https://doi.org/10.3390/automation6030035 (registering DOI) - 2 Aug 2025
Abstract
Deep learning with unmanned aerial vehicles (UAVs) is transforming maritime search and rescue (SAR) by enabling rapid object identification in challenging marine environments. This study benchmarks the performance of YOLO models for maritime SAR under diverse weather conditions using the SeaDronesSee and AFO [...] Read more.
Deep learning with unmanned aerial vehicles (UAVs) is transforming maritime search and rescue (SAR) by enabling rapid object identification in challenging marine environments. This study benchmarks the performance of YOLO models for maritime SAR under diverse weather conditions using the SeaDronesSee and AFO datasets. The results show that while YOLOv7 achieved the highest mAP@50, it struggled with detecting small objects. In contrast, YOLOv10 and YOLOv11 deliver faster inference speeds but compromise slightly on precision. The key challenges discussed include environmental variability, sensor limitations, and scarce annotated data, which can be addressed by such techniques as attention modules and multimodal data fusion. Overall, the research results provide practical guidance for deploying efficient deep learning models in SAR, emphasizing specialized datasets and lightweight architectures for edge devices. Full article
(This article belongs to the Section Intelligent Control and Machine Learning)
16 pages, 624 KiB  
Article
Biodiversity Patterns and Community Construction in Subtropical Forests Driven by Species Phylogenetic Environments
by Pengcheng Liu, Jiejie Jiao, Chuping Wu, Weizhong Shao, Xuesong Liu and Liangjin Yao
Plants 2025, 14(15), 2397; https://doi.org/10.3390/plants14152397 (registering DOI) - 2 Aug 2025
Abstract
To explore the characteristics of species diversity and phylogenetic diversity, as well as the dominant processes of community construction, in different forest types (deciduous broad-leaved forest, mixed coniferous and broad-leaved forest, and Chinese fir plantation) in subtropical regions, analyze the specific driving patterns [...] Read more.
To explore the characteristics of species diversity and phylogenetic diversity, as well as the dominant processes of community construction, in different forest types (deciduous broad-leaved forest, mixed coniferous and broad-leaved forest, and Chinese fir plantation) in subtropical regions, analyze the specific driving patterns of soil nutrients and other environmental factors on the formation of forest diversity in different forest types, and clarify the differences in response to environmental heterogeneity between natural forests and plantation forests. Based on 48 fixed monitoring plots of 50 m × 50 m in Shouchang Forest Farm, Jiande City, Zhejiang Province, woody plants with a diameter at breast height ≥5 cm were investigated. Species diversity indices (Margalef index, Shannon–Wiener index, Simpson index, and Pielou index), phylogenetic structure index (PD), and environmental factors were used to analyze the relationship between diversity characteristics and environmental factors through variance analysis, correlation analysis, and generalized linear models. Phylogenetic structural indices (NRI and NTI) were used, combined with a random zero model, to explore the mechanisms of community construction in different forest types. Research has found that (1) the deciduous broad-leaved forest had the highest species diversity (Margalef index of 4.121 ± 1.425) and phylogenetic diversity (PD index of 21.265 ± 7.796), significantly higher than the mixed coniferous and broad-leaved forest and the Chinese fir plantation (p < 0.05); (2) there is a significant positive correlation between species richness and phylogenetic diversity, with the best fit being AIC = 70.5636 and R2 = 0.9419 in broad-leaved forests; however, the contribution of evenness is limited; (3) the specific effects of soil factors on different forest types: available phosphorus (AP) is negatively correlated with the diversity of deciduous broad-leaved forests (p < 0.05), total phosphorus (TP) promotes the diversity of coniferous and broad-leaved mixed forests, while the diversity of Chinese fir plantations is significantly negatively correlated with total nitrogen (TN); (4) the phylogenetic structure of three different forest types shows a divergent pattern in deciduous broad-leaved forests, indicating that competition and exclusion dominate the construction of deciduous broad-leaved forests; the aggregation mode of Chinese fir plantation indicates that environmental filtering dominates the construction of Chinese fir plantation; the mixed coniferous and broad-leaved forest is a transitional model, indicating that the mixed coniferous and broad-leaved forest is influenced by both stochastic processes and ecological niche processes. In different forest types in subtropical regions, the species and phylogenetic diversity of broad-leaved forests is significantly higher than in other forest types. The impact of soil nutrients on the diversity of different forest types varies, and the characteristics of community construction in different forest types are also different. This indicates the importance of protecting the original vegetation and provides a scientific basis for improving the ecological function of artificial forest ecosystems through structural adjustment. The research results have important practical guidance value for sustainable forest management and biodiversity conservation in the region. Full article
15 pages, 611 KiB  
Review
Role of Dyadic Proteins in Proper Heart Function and Disease
by Carter Liou and Michael T. Chin
Int. J. Mol. Sci. 2025, 26(15), 7478; https://doi.org/10.3390/ijms26157478 (registering DOI) - 2 Aug 2025
Abstract
Cardiovascular disease encompasses a wide group of conditions that affect the heart and blood vessels. Of these diseases, cardiomyopathies and arrhythmias specifically have been well-studied in their relationship to cardiac dyads, nanoscopic structures that connect electrical signals to muscle contraction. The proper development [...] Read more.
Cardiovascular disease encompasses a wide group of conditions that affect the heart and blood vessels. Of these diseases, cardiomyopathies and arrhythmias specifically have been well-studied in their relationship to cardiac dyads, nanoscopic structures that connect electrical signals to muscle contraction. The proper development and positioning of dyads is essential in excitation–contraction (EC) coupling and, thus, beating of the heart. Three proteins, namely CMYA5, JPH2, and BIN1, are responsible for maintaining the dyadic cleft between the T-tubule and junctional sarcoplasmic reticulum (jSR). Various other dyadic proteins play integral roles in the primary function of the dyad—translating a propagating action potential (AP) into a myocardial contraction. Ca2+, a secondary messenger in this process, acts as an allosteric activator of the sarcomere, and its cytoplasmic concentration is regulated by the dyad. Loss-of-function mutations have been shown to result in cardiomyopathies and arrhythmias. Adeno-associated virus (AAV) gene therapy with dyad components can rescue dyadic dysfunction, which results in cardiomyopathies and arrhythmias. Overall, the dyad and its components serve as essential mediators of calcium homeostasis and excitation–contraction coupling in the mammalian heart and, when dysfunctional, result in significant cardiac dysfunction, arrhythmias, morbidity, and mortality. Full article
(This article belongs to the Special Issue Cardiovascular Diseases: Histopathological and Molecular Diagnostics)
Show Figures

Figure 1

41 pages, 86958 KiB  
Article
An Efficient Aerial Image Detection with Variable Receptive Fields
by Wenbin Liu, Liangren Shi and Guocheng An
Remote Sens. 2025, 17(15), 2672; https://doi.org/10.3390/rs17152672 (registering DOI) - 2 Aug 2025
Abstract
This article presents VRF-DETR, a lightweight real-time object detection framework for aerial remote sensing images, aimed at addressing the challenge of insufficient receptive fields for easily confused categories due to differences in height and perspective. Based on the RT-DETR architecture, our approach introduces [...] Read more.
This article presents VRF-DETR, a lightweight real-time object detection framework for aerial remote sensing images, aimed at addressing the challenge of insufficient receptive fields for easily confused categories due to differences in height and perspective. Based on the RT-DETR architecture, our approach introduces three key innovations: the multi-scale receptive field adaptive fusion (MSRF2) module replaces the Transformer encoder with parallel dilated convolutions and spatial-channel attention to adjust receptive fields for confusing objects dynamically; the gated multi-scale context (GMSC) block reconstructs the backbone using Gated Multi-Scale Context units with attention-gated convolution (AGConv), reducing parameters while enhancing multi-scale feature extraction; and the context-guided fusion (CGF) module optimizes feature fusion via context-guided weighting to resolve multi-scale semantic conflicts. Evaluations were conducted on both the VisDrone2019 and UAVDT datasets, where VRF-DETR achieved the mAP50 of 52.1% and the mAP50-95 of 32.2% on the VisDrone2019 validation set, surpassing RT-DETR by 4.9% and 3.5%, respectively, while reducing parameters by 32% and FLOPs by 22%. It maintains real-time performance (62.1 FPS) and generalizes effectively, outperforming state-of-the-art methods in accuracy-efficiency trade-offs for aerial object detection. Full article
(This article belongs to the Special Issue Deep Learning Innovations in Remote Sensing)
Show Figures

Figure 1

17 pages, 3564 KiB  
Article
Comparative Analysis of Conventional and Focused Data Augmentation Methods in Rib Fracture Detection in CT Images
by Mehmet Çağrı Göktekin, Evrim Gül, Feyza Aksu, Yeliz Gül, Metehan Özen, Yusuf Salik, Merve Kesim Önal and Engin Avci
Diagnostics 2025, 15(15), 1938; https://doi.org/10.3390/diagnostics15151938 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Rib fracture detection holds critical importance in the field of medical image processing. Methods: In this study, two different data augmentation methods, traditional data augmentation (Albumentations) and focused data augmentation (focused augmentation), were compared using computed tomography (CT) images for [...] Read more.
Background/Objectives: Rib fracture detection holds critical importance in the field of medical image processing. Methods: In this study, two different data augmentation methods, traditional data augmentation (Albumentations) and focused data augmentation (focused augmentation), were compared using computed tomography (CT) images for the detection of rib fractures on YOLOv8n, YOLOv8s, and YOLOv8m models. While the traditional data augmentation method applies general transformations to the entire image, the focused data augmentation method performs specific transformations by targeting only the fracture regions. Results: The model performance was evaluated using the Precision, Recall, mAP@50, and mAP@50–95 metrics. The findings revealed that the focused data augmentation method achieved superior performance in certain metrics. Specifically, analysis on the YOLOv8s model showed that the focused data augmentation method increased the mAP@50 value by 2.18%, reaching 0.9412, and improved the recall value for fracture detection by 5.70%, reaching 0.8766. On the other hand, the traditional data augmentation method achieved better results in overall precision metrics with the YOLOv8m model and provided a slight advantage in the mAP@50 value. Conclusions: The study indicates that focused data augmentation can contribute to achieving more reliable and accurate results in medical imaging applications. Full article
Show Figures

Figure 1

18 pages, 10604 KiB  
Article
Fast Detection of Plants in Soybean Fields Using UAVs, YOLOv8x Framework, and Image Segmentation
by Ravil I. Mukhamediev, Valentin Smurygin, Adilkhan Symagulov, Yan Kuchin, Yelena Popova, Farida Abdoldina, Laila Tabynbayeva, Viktors Gopejenko and Alexey Oxenenko
Drones 2025, 9(8), 547; https://doi.org/10.3390/drones9080547 (registering DOI) - 1 Aug 2025
Abstract
The accuracy of classification and localization of plants on images obtained from the board of an unmanned aerial vehicle (UAV) is of great importance when implementing precision farming technologies. It allows for the effective application of variable rate technologies, which not only saves [...] Read more.
The accuracy of classification and localization of plants on images obtained from the board of an unmanned aerial vehicle (UAV) is of great importance when implementing precision farming technologies. It allows for the effective application of variable rate technologies, which not only saves chemicals but also reduces the environmental load on cultivated fields. Machine learning algorithms are widely used for plant classification. Research on the application of the YOLO algorithm is conducted for simultaneous identification, localization, and classification of plants. However, the quality of the algorithm significantly depends on the training set. The aim of this study is not only the detection of a cultivated plant (soybean) but also weeds growing in the field. The dataset developed in the course of the research allows for solving this issue by detecting not only soybean but also seven weed species common in the fields of Kazakhstan. The article describes an approach to the preparation of a training set of images for soybean fields using preliminary thresholding and bound box (Bbox) segmentation of marked images, which allows for improving the quality of plant classification and localization. The conducted research and computational experiments determined that Bbox segmentation shows the best results. The quality of classification and localization with the application of Bbox segmentation significantly increased (f1 score increased from 0.64 to 0.959, mAP50 from 0.72 to 0.979); for a cultivated plant (soybean), the best classification results known to date were achieved with the application of YOLOv8x on images obtained from the UAV, with an f1 score = 0.984. At the same time, the plant detection rate increased by 13 times compared to the model proposed earlier in the literature. Full article
Show Figures

Figure 1

11 pages, 2391 KiB  
Article
A Major Facilitator Superfamily Transporter Is Critical for the Metabolism and Biogenesis of the Apicoplast
by Yumeng Liang, Wei Qi, Jiawen Fu and Honglin Jia
Pathogens 2025, 14(8), 763; https://doi.org/10.3390/pathogens14080763 (registering DOI) - 1 Aug 2025
Abstract
The apicoplast is a highly specialized organelle in the biosynthesis of essential metabolites in most of the apicomplexan protozoa. This organelle is surrounded by four layers of membranes. However, the molecular mechanisms mediating transmembrane transport are not yet fully understood. In this study, [...] Read more.
The apicoplast is a highly specialized organelle in the biosynthesis of essential metabolites in most of the apicomplexan protozoa. This organelle is surrounded by four layers of membranes. However, the molecular mechanisms mediating transmembrane transport are not yet fully understood. In this study, we conducted a phenotypic analysis to investigate the role of a major facilitator superfamily transporter (TgApMFS1) in the survival of the parasite. The results indicated that TgApMFS1 is critical for the survival of Toxoplasma gondii in cell culture conditions. Further analysis indicated that these transporters are crucial for the biogenesis of organelles and the metabolic processes of parasite. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

21 pages, 33884 KiB  
Article
Rapid Detection and Segmentation of Landslide Hazards in Loess Tableland Areas Using Deep Learning: A Case Study of the 2023 Jishishan Ms 6.2 Earthquake in Gansu, China
by Zhuoli Bai, Lingyun Ji, Hongtao Tang, Jiangtao Qiu, Shuai Kang, Chuanjin Liu and Zongpan Bian
Remote Sens. 2025, 17(15), 2667; https://doi.org/10.3390/rs17152667 (registering DOI) - 1 Aug 2025
Abstract
Addressing the technical demands for the rapid, precise detection of earthquake-triggered landslides in loess tablelands, this study proposes and validates an innovative methodology integrating enhanced deep learning architectures with large-tile processing strategies, featuring two core advances: (1) a critical enhancement of YOLOv8’s shallow [...] Read more.
Addressing the technical demands for the rapid, precise detection of earthquake-triggered landslides in loess tablelands, this study proposes and validates an innovative methodology integrating enhanced deep learning architectures with large-tile processing strategies, featuring two core advances: (1) a critical enhancement of YOLOv8’s shallow layers via a higher-resolution P2 detection head to boost small-target capture capabilities, and (2) the development of a large-tile segmentation–tile mosaicking workflow to overcome the technical bottlenecks in large-scale high-resolution image processing, ensuring both timeliness and accuracy in loess landslide detection. This study utilized 20 km2 of high-precision UAV imagery acquired after the 2023 Gansu Jishishan Ms 6.2 earthquake as foundational data, applying our methodology to achieve the rapid detection and precise segmentation of landslides in the study area. Validation was conducted through a comparative analysis of high-accuracy 3D models and field investigations. (1) The model achieved simultaneous convergence of all four loss functions within a 500-epoch progressive training strategy, with mAP50(M) = 0.747 and mAP50-95(M) = 0.46, thus validating the superior detection and segmentation capabilities for the Jishishan earthquake-triggered loess landslides. (2) The enhanced algorithm detected 417 landslides with 94.1% recognition accuracy. Landslide areas ranged from 7 × 10−4 km2 to 0.217 km2 (aggregate area: 1.3 km2), indicating small-scale landslide dominance. (3) Morphological characterization and the spatial distribution analysis revealed near-vertical scarps, diverse morphological configurations, and high spatial density clustering in loess tableland landslides. Full article
Show Figures

Figure 1

21 pages, 547 KiB  
Review
Targeting Psychotic and Cognitive Dimensions in Clinical High Risk for Psychosis (CHR-P): A Narrative Review
by Michele Ribolsi, Federico Fiori Nastro, Martina Pelle, Eleonora Esposto, Tommaso B. Jannini and Giorgio Di Lorenzo
J. Clin. Med. 2025, 14(15), 5432; https://doi.org/10.3390/jcm14155432 (registering DOI) - 1 Aug 2025
Abstract
Schizophrenia (SCZ) is a debilitating disorder with substantial societal and economic impacts. The clinical high risk of psychosis (CHR-P) state generally precedes the onset of SCZ, offering a window for early intervention. However, treatment guidelines for CHR-P individuals remain contentious, particularly regarding antipsychotic [...] Read more.
Schizophrenia (SCZ) is a debilitating disorder with substantial societal and economic impacts. The clinical high risk of psychosis (CHR-P) state generally precedes the onset of SCZ, offering a window for early intervention. However, treatment guidelines for CHR-P individuals remain contentious, particularly regarding antipsychotic (AP) medications. Although several studies have examined the effects of APs on reducing the risk of conversion to psychosis, the novelty of this narrative review lies in its focus on differentiating APs’ effects on positive and negative symptoms, as well as cognitive functioning, in CHR-P individuals. Evidence suggests that APs may be cautiously recommended for attenuated positive symptoms to stabilize individuals for psychological interventions, but their use in treating negative symptoms is generally discouraged due to limited efficacy and potential side effects. Similarly, the effects of APs on cognitive abilities remain underexplored, with results indicating a lack of significant neurocognitive outcomes. In conclusion, APs’ use in CHR-P patients requires careful consideration due to limited evidence and potential adverse effects. Future research should focus on individual symptom domains and treatment modalities to optimize outcomes in this critical population. Until then, a cautious approach emphasizing non-pharmacological interventions is advisable. Full article
(This article belongs to the Section Mental Health)
19 pages, 2667 KiB  
Article
VdSOX1 Negatively Regulates Verticillium dahliae Virulence via Enhancing Effector Expression and Suppressing Host Immune Responses
by Di Xu, Xiaoqiang Zhao, Can Xu, Chongbo Zhang and Jiafeng Huang
J. Fungi 2025, 11(8), 576; https://doi.org/10.3390/jof11080576 (registering DOI) - 1 Aug 2025
Abstract
The soil-borne fungal pathogen Verticillium dahliae causes devastating vascular wilt disease in numerous crops, including cotton. In this study, we reveal that VdSOX1, a highly conserved sarcosine oxidase gene, is significantly upregulated during host infection and plays a multifaceted role in fungal [...] Read more.
The soil-borne fungal pathogen Verticillium dahliae causes devastating vascular wilt disease in numerous crops, including cotton. In this study, we reveal that VdSOX1, a highly conserved sarcosine oxidase gene, is significantly upregulated during host infection and plays a multifaceted role in fungal physiology and pathogenicity. Functional deletion of VdSOX1 leads to increased fungal virulence, accompanied by enhanced microsclerotia formation, elevated carbon source utilization, and pronounced upregulation of effector genes, including over 50 predicted secreted proteins genes. Moreover, the VdSOX1 knockout strains suppress the expression of key defense-related transcription factors in cotton, such as WRKY, MYB, AP2/ERF, and GRAS families, thereby impairing host immune responses. Transcriptomic analyses confirm that VdSOX1 orchestrates a broad metabolic reprogramming that links nutrient acquisition to immune evasion. Our findings identify VdSOX1 as a central regulator that promotes V. dahliae virulence by upregulating effector gene expression and suppressing host immune responses, offering novel insights into the molecular basis of host–pathogen interactions and highlighting potential targets for disease management. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

15 pages, 4258 KiB  
Article
Complex-Scene SAR Aircraft Recognition Combining Attention Mechanism and Inner Convolution Operator
by Wansi Liu, Huan Wang, Jiapeng Duan, Lixiang Cao, Teng Feng and Xiaomin Tian
Sensors 2025, 25(15), 4749; https://doi.org/10.3390/s25154749 (registering DOI) - 1 Aug 2025
Abstract
Synthetic aperture radar (SAR), as an active microwave imaging system, has the capability of all-weather and all-time observation. In response to the challenges of aircraft detection in SAR images due to the complex background interference caused by the continuous scattering of airport buildings [...] Read more.
Synthetic aperture radar (SAR), as an active microwave imaging system, has the capability of all-weather and all-time observation. In response to the challenges of aircraft detection in SAR images due to the complex background interference caused by the continuous scattering of airport buildings and the demand for real-time processing, this paper proposes a YOLOv7-MTI recognition model that combines the attention mechanism and involution. By integrating the MTCN module and involution, performance is enhanced. The Multi-TASP-Conv network (MTCN) module aims to effectively extract low-level semantic and spatial information using a shared lightweight attention gate structure to achieve cross-dimensional interaction between “channels and space” with very few parameters, capturing the dependencies among multiple dimensions and improving feature representation ability. Involution helps the model adaptively adjust the weights of spatial positions through dynamic parameterized convolution kernels, strengthening the discrete strong scattering points specific to aircraft and suppressing the continuous scattering of the background, thereby alleviating the interference of complex backgrounds. Experiments on the SAR-AIRcraft-1.0 dataset, which includes seven categories such as A220, A320/321, A330, ARJ21, Boeing737, Boeing787, and others, show that the mAP and mRecall of YOLOv7-MTI reach 93.51% and 96.45%, respectively, outperforming Faster R-CNN, SSD, YOLOv5, YOLOv7, and YOLOv8. Compared with the basic YOLOv7, mAP is improved by 1.47%, mRecall by 1.64%, and FPS by 8.27%, achieving an effective balance between accuracy and speed, providing research ideas for SAR aircraft recognition. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

26 pages, 1033 KiB  
Article
Internet of Things Platform for Assessment and Research on Cybersecurity of Smart Rural Environments
by Daniel Sernández-Iglesias, Llanos Tobarra, Rafael Pastor-Vargas, Antonio Robles-Gómez, Pedro Vidal-Balboa and João Sarraipa
Future Internet 2025, 17(8), 351; https://doi.org/10.3390/fi17080351 (registering DOI) - 1 Aug 2025
Abstract
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and [...] Read more.
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and autonomous IoT solutions. To help overcome this gap, this paper presents the Smart Rural IoT Lab, a modular and reproducible testbed designed to replicate the deployment conditions in rural areas using open-source tools and affordable hardware. The laboratory integrates long-range and short-range communication technologies in six experimental scenarios, implementing protocols such as MQTT, HTTP, UDP, and CoAP. These scenarios simulate realistic rural use cases, including environmental monitoring, livestock tracking, infrastructure access control, and heritage site protection. Local data processing is achieved through containerized services like Node-RED, InfluxDB, MongoDB, and Grafana, ensuring complete autonomy, without dependence on cloud services. A key contribution of the laboratory is the generation of structured datasets from real network traffic captured with Tcpdump and preprocessed using Zeek. Unlike simulated datasets, the collected data reflect communication patterns generated from real devices. Although the current dataset only includes benign traffic, the platform is prepared for future incorporation of adversarial scenarios (spoofing, DoS) to support AI-based cybersecurity research. While experiments were conducted in an indoor controlled environment, the testbed architecture is portable and suitable for future outdoor deployment. The Smart Rural IoT Lab addresses a critical gap in current research infrastructure, providing a realistic and flexible foundation for developing secure, cloud-independent IoT solutions, contributing to the digital transformation of rural regions. Full article
Show Figures

Figure 1

21 pages, 670 KiB  
Article
I-fp Convergence in Fuzzy Paranormed Spaces and Its Application to Robust Base-Stock Policies with Triangular Fuzzy Demand
by Muhammed Recai Türkmen and Hasan Öğünmez
Mathematics 2025, 13(15), 2478; https://doi.org/10.3390/math13152478 - 1 Aug 2025
Abstract
We introduce I-fp convergence (ideal convergence in fuzzy paranormed spaces) and develop its core theory, including stability results and an equivalence to I*-fp convergence under the AP Property. Building on this foundation, we design an adaptive base-stock policy for a single-echelon [...] Read more.
We introduce I-fp convergence (ideal convergence in fuzzy paranormed spaces) and develop its core theory, including stability results and an equivalence to I*-fp convergence under the AP Property. Building on this foundation, we design an adaptive base-stock policy for a single-echelon inventory system in which weekly demand is expressed as triangular fuzzy numbers while holiday or promotion weeks are treated as ideal-small anomalies. The policy is updated by a simple learning rule that can be implemented in any spreadsheet, requires no optimisation software, and remains insensitive to tuning choices. Extensive simulation confirms that the method simultaneously lowers cost, reduces average inventory and raises service level relative to a crisp benchmark, all while filtering sparse demand spikes in a principled way. These findings position I-fp convergence as a lightweight yet rigorous tool for blending linguistic uncertainty with anomaly-aware decision making in supply-chain analytics. Full article
Show Figures

Figure 1

20 pages, 5369 KiB  
Article
Smart Postharvest Management of Strawberries: YOLOv8-Driven Detection of Defects, Diseases, and Maturity
by Luana dos Santos Cordeiro, Irenilza de Alencar Nääs and Marcelo Tsuguio Okano
AgriEngineering 2025, 7(8), 246; https://doi.org/10.3390/agriengineering7080246 - 1 Aug 2025
Abstract
Strawberries are highly perishable fruits prone to postharvest losses due to defects, diseases, and uneven ripening. This study proposes a deep learning-based approach for automated quality assessment using the YOLOv8n object detection model. A custom dataset of 5663 annotated strawberry images was compiled, [...] Read more.
Strawberries are highly perishable fruits prone to postharvest losses due to defects, diseases, and uneven ripening. This study proposes a deep learning-based approach for automated quality assessment using the YOLOv8n object detection model. A custom dataset of 5663 annotated strawberry images was compiled, covering eight quality categories, including anthracnose, gray mold, powdery mildew, uneven ripening, and physical defects. Data augmentation techniques, such as rotation and Gaussian blur, were applied to enhance model generalization and robustness. The model was trained over 100 and 200 epochs, and its performance was evaluated using standard metrics: Precision, Recall, and mean Average Precision (mAP). The 200-epoch model achieved the best results, with a mAP50 of 0.79 and an inference time of 1 ms per image, demonstrating suitability for real-time applications. Classes with distinct visual features, such as anthracnose and gray mold, were accurately classified. In contrast, visually similar categories, such as ‘Good Quality’ and ‘Unripe’ strawberries, presented classification challenges. Full article
Show Figures

Figure 1

24 pages, 10190 KiB  
Article
MSMT-RTDETR: A Multi-Scale Model for Detecting Maize Tassels in UAV Images with Complex Field Backgrounds
by Zhenbin Zhu, Zhankai Gao, Jiajun Zhuang, Dongchen Huang, Guogang Huang, Hansheng Wang, Jiawei Pei, Jingjing Zheng and Changyu Liu
Agriculture 2025, 15(15), 1653; https://doi.org/10.3390/agriculture15151653 - 31 Jul 2025
Abstract
Accurate detection of maize tassels plays a crucial role in yield estimation of maize in precision agriculture. Recently, UAV and deep learning technologies have been widely introduced in various applications of field monitoring. However, complex field backgrounds pose multiple challenges against the precision [...] Read more.
Accurate detection of maize tassels plays a crucial role in yield estimation of maize in precision agriculture. Recently, UAV and deep learning technologies have been widely introduced in various applications of field monitoring. However, complex field backgrounds pose multiple challenges against the precision detection of maize tassels, including maize tassel multi-scale variations caused by varietal differences and growth stage variations, intra-class occlusion, and background interference. To achieve accurate maize tassel detection in UAV images under complex field backgrounds, this study proposes an MSMT-RTDETR detection model. The Faster-RPE Block is first designed to enhance multi-scale feature extraction while reducing model Params and FLOPs. To improve detection performance for multi-scale targets in complex field backgrounds, a Dynamic Cross-Scale Feature Fusion Module (Dy-CCFM) is constructed by upgrading the CCFM through dynamic sampling strategies and multi-branch architecture. Furthermore, the MPCC3 module is built via re-parameterization methods, and further strengthens cross-channel information extraction capability and model stability to deal with intra-class occlusion. Experimental results on the MTDC-UAV dataset demonstrate that the MSMT-RTDETR significantly outperforms the baseline in detecting maize tassels under complex field backgrounds, where a precision of 84.2% was achieved. Compared with Deformable DETR and YOLOv10m, improvements of 2.8% and 2.0% were achieved, respectively, in the mAP50 for UAV images. This study proposes an innovative solution for accurate maize tassel detection, establishing a reliable technical foundation for maize yield estimation. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop