Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,425)

Search Parameters:
Keywords = AP1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5369 KiB  
Article
Smart Postharvest Management of Strawberries: YOLOv8-Driven Detection of Defects, Diseases, and Maturity
by Luana dos Santos Cordeiro, Irenilza de Alencar Nääs and Marcelo Tsuguio Okano
AgriEngineering 2025, 7(8), 246; https://doi.org/10.3390/agriengineering7080246 (registering DOI) - 1 Aug 2025
Abstract
Strawberries are highly perishable fruits prone to postharvest losses due to defects, diseases, and uneven ripening. This study proposes a deep learning-based approach for automated quality assessment using the YOLOv8n object detection model. A custom dataset of 5663 annotated strawberry images was compiled, [...] Read more.
Strawberries are highly perishable fruits prone to postharvest losses due to defects, diseases, and uneven ripening. This study proposes a deep learning-based approach for automated quality assessment using the YOLOv8n object detection model. A custom dataset of 5663 annotated strawberry images was compiled, covering eight quality categories, including anthracnose, gray mold, powdery mildew, uneven ripening, and physical defects. Data augmentation techniques, such as rotation and Gaussian blur, were applied to enhance model generalization and robustness. The model was trained over 100 and 200 epochs, and its performance was evaluated using standard metrics: Precision, Recall, and mean Average Precision (mAP). The 200-epoch model achieved the best results, with a mAP50 of 0.79 and an inference time of 1 ms per image, demonstrating suitability for real-time applications. Classes with distinct visual features, such as anthracnose and gray mold, were accurately classified. In contrast, visually similar categories, such as ‘Good Quality’ and ‘Unripe’ strawberries, presented classification challenges. Full article
Show Figures

Figure 1

24 pages, 10190 KiB  
Article
MSMT-RTDETR: A Multi-Scale Model for Detecting Maize Tassels in UAV Images with Complex Field Backgrounds
by Zhenbin Zhu, Zhankai Gao, Jiajun Zhuang, Dongchen Huang, Guogang Huang, Hansheng Wang, Jiawei Pei, Jingjing Zheng and Changyu Liu
Agriculture 2025, 15(15), 1653; https://doi.org/10.3390/agriculture15151653 - 31 Jul 2025
Abstract
Accurate detection of maize tassels plays a crucial role in yield estimation of maize in precision agriculture. Recently, UAV and deep learning technologies have been widely introduced in various applications of field monitoring. However, complex field backgrounds pose multiple challenges against the precision [...] Read more.
Accurate detection of maize tassels plays a crucial role in yield estimation of maize in precision agriculture. Recently, UAV and deep learning technologies have been widely introduced in various applications of field monitoring. However, complex field backgrounds pose multiple challenges against the precision detection of maize tassels, including maize tassel multi-scale variations caused by varietal differences and growth stage variations, intra-class occlusion, and background interference. To achieve accurate maize tassel detection in UAV images under complex field backgrounds, this study proposes an MSMT-RTDETR detection model. The Faster-RPE Block is first designed to enhance multi-scale feature extraction while reducing model Params and FLOPs. To improve detection performance for multi-scale targets in complex field backgrounds, a Dynamic Cross-Scale Feature Fusion Module (Dy-CCFM) is constructed by upgrading the CCFM through dynamic sampling strategies and multi-branch architecture. Furthermore, the MPCC3 module is built via re-parameterization methods, and further strengthens cross-channel information extraction capability and model stability to deal with intra-class occlusion. Experimental results on the MTDC-UAV dataset demonstrate that the MSMT-RTDETR significantly outperforms the baseline in detecting maize tassels under complex field backgrounds, where a precision of 84.2% was achieved. Compared with Deformable DETR and YOLOv10m, improvements of 2.8% and 2.0% were achieved, respectively, in the mAP50 for UAV images. This study proposes an innovative solution for accurate maize tassel detection, establishing a reliable technical foundation for maize yield estimation. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

25 pages, 10331 KiB  
Article
Forest Fire Detection Method Based on Dual-Branch Multi-Scale Adaptive Feature Fusion Network
by Qinggan Wu, Chen Wei, Ning Sun, Xiong Xiong, Qingfeng Xia, Jianmeng Zhou and Xingyu Feng
Forests 2025, 16(8), 1248; https://doi.org/10.3390/f16081248 - 31 Jul 2025
Abstract
There are significant scale and morphological differences between fire and smoke features in forest fire detection. This paper proposes a detection method based on dual-branch multi-scale adaptive feature fusion network (DMAFNet). In this method, convolutional neural network (CNN) and transformer are used to [...] Read more.
There are significant scale and morphological differences between fire and smoke features in forest fire detection. This paper proposes a detection method based on dual-branch multi-scale adaptive feature fusion network (DMAFNet). In this method, convolutional neural network (CNN) and transformer are used to form a dual-branch backbone network to extract local texture and global context information, respectively. In order to overcome the difference in feature distribution and response scale between the two branches, a feature correction module (FCM) is designed. Through space and channel correction mechanisms, the adaptive alignment of two branch features is realized. The Fusion Feature Module (FFM) is further introduced to fully integrate dual-branch features based on the two-way cross-attention mechanism and effectively suppress redundant information. Finally, the Multi-Scale Fusion Attention Unit (MSFAU) is designed to enhance the multi-scale detection capability of fire targets. Experimental results show that the proposed DMAFNet has significantly improved in mAP (mean average precision) indicators compared with existing mainstream detection methods. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

22 pages, 15524 KiB  
Article
DCE-Net: An Improved Method for Sonar Small-Target Detection Based on YOLOv8
by Lijun Cao, Zhiyuan Ma, Qiuyue Hu, Zhongya Xia and Meng Zhao
J. Mar. Sci. Eng. 2025, 13(8), 1478; https://doi.org/10.3390/jmse13081478 - 31 Jul 2025
Abstract
Sonar is the primary tool used for detecting small targets at long distances underwater. Due to the influence of the underwater environment and imaging mechanisms, sonar images face challenges such as a small number of target pixels, insufficient data samples, and uneven category [...] Read more.
Sonar is the primary tool used for detecting small targets at long distances underwater. Due to the influence of the underwater environment and imaging mechanisms, sonar images face challenges such as a small number of target pixels, insufficient data samples, and uneven category distribution. Existing target detection methods are unable to effectively extract features from sonar images, leading to high false positive rates and affecting the accuracy of target detection models. To counter these challenges, this paper presents a novel sonar small-target detection framework named DCE-Net that refines the YOLOv8 architecture. The Detail Enhancement Attention Block (DEAB) utilizes multi-scale residual structures and channel attention mechanism (AM) to achieve image defogging and small-target structure completion. The lightweight spatial variation convolution module (CoordGate) reduces false detections in complex backgrounds through dynamic position-aware convolution kernels. The improved efficient multi-scale AM (MH-EMA) performs scale-adaptive feature reweighting and combines cross-dimensional interaction strategies to enhance pixel-level feature representation. Experiments on a self-built sonar small-target detection dataset show that DCE-Net achieves an mAP@0.5 of 87.3% and an mAP@0.5:0.95 of 41.6%, representing improvements of 5.5% and 7.7%, respectively, over the baseline YOLOv8. This demonstrates that DCE-Net provides an efficient solution for underwater detection tasks. Full article
(This article belongs to the Special Issue Artificial Intelligence Applications in Underwater Sonar Images)
25 pages, 32401 KiB  
Article
SSNFNet: An Enhanced Few-Shot Learning Model for Efficient Poultry Farming Detection
by Bingli Wang, Daixian Liu and Jinghua Wu
Animals 2025, 15(15), 2252; https://doi.org/10.3390/ani15152252 (registering DOI) - 31 Jul 2025
Abstract
Smart agriculture addresses inefficient resource utilization and disease control in poultry farming. Existing smart monitoring systems effectively detect birds. However, applying these models to new environments or for detecting new species requires a large amount of labeled data and manual work, which limits [...] Read more.
Smart agriculture addresses inefficient resource utilization and disease control in poultry farming. Existing smart monitoring systems effectively detect birds. However, applying these models to new environments or for detecting new species requires a large amount of labeled data and manual work, which limits their wide application. To address this limitation, this paper presents the SSNFNet method, leveraging an enhanced few-shot object detection framework tailored for poultry farming contexts. SSNFNet integrates Sharpness-Aware Minimization (SAM) to enhance model generalization by smoothing the loss landscape and improving training stability. To further improve detection in densely populated scenes, we incorporate the Soft Non-Maximum Suppression (Soft-NMS) algorithm to mitigate overlapping bounding box issues. Through quantitative analysis and comparison, exemplified by a five-shot scenario on the poultry farming dataset, our method demonstrates significantly better performance compared to traditional object detection models, Specifically, it achieves a mean Average Precision (mAP) improvement of 3.93% compared to the state-of-the-art HTRPN model, raising the mAP from 78.00% to 81.93% while maintaining 8 FPS inference speed on Jetson Nano-class hardware. These results confirm the effectiveness and adaptability of our approach in real-world smart farming environments. Full article
(This article belongs to the Section Poultry)
22 pages, 1203 KiB  
Article
Integrating Full-Length and Second-Generation Transcriptomes to Elucidate the ApNPV-Induced Transcriptional Reprogramming in Antheraea pernyi Midgut
by Xinlei Liu, Ying Li, Xinfeng Yang, Xuwei Zhu, Fangang Meng, Yaoting Zhang and Jianping Duan
Insects 2025, 16(8), 792; https://doi.org/10.3390/insects16080792 (registering DOI) - 31 Jul 2025
Abstract
The midgut of Antheraea pernyi plays a critical role in antiviral defense. However, its transcriptional complexity remains poorly understood. Here, a full-length (FL) transcriptome atlas of A. pernyi midgut was developed by integrating PacBio Iso-Seq and RNA-seq techniques. The transcriptome sequences included 1850 [...] Read more.
The midgut of Antheraea pernyi plays a critical role in antiviral defense. However, its transcriptional complexity remains poorly understood. Here, a full-length (FL) transcriptome atlas of A. pernyi midgut was developed by integrating PacBio Iso-Seq and RNA-seq techniques. The transcriptome sequences included 1850 novel protein-coding genes, 17,736 novel alternative isoforms, 1664 novel long non-coding RNAs (lncRNAs), and 858 transcription factors (TFs). In addition, 2471 alternative splicing (AS) events and 3070 alternative polyadenylation (APA) sites were identified. Moreover, 3426 and 4796 differentially expressed genes (DEGs) and isoforms were identified after ApNPV infection, respectively, besides the differentially expressed lncRNAs (164), TFs (171), and novel isoforms of ApRelish (1) and ApSOCS2 (4). Enrichment analyses showed that KEGG pathways related to metabolism were suppressed, whereas GO terms related to DNA synthesis and replication were induced. Furthermore, the autophagy and apoptosis pathways were significantly enriched among the upregulated genes. Protein–protein interaction network (PPI) analysis revealed the coordinated downregulation of genes involved in mitochondrial ribosomes, V-type and F-type ATPases, and oxidative phosphorylation, indicating the disruption of host energy metabolism and organelle acidification. Moreover, coordinated upregulation of genes associated with cytoplasmic ribosomes was observed, suggesting that the infection by ApNPV interferes with host translational machinery. These results show that ApNPV infection reprograms energy metabolism, biosynthetic processes, and immune response in A. pernyi midgut. Our study provides a foundation for elucidating the mechanisms of A. pernyi–virus interactions, particularly how the viruses affect host defense strategies. Full article
(This article belongs to the Special Issue Genomics and Molecular Biology in Silkworm)
20 pages, 11920 KiB  
Article
Enhancing Tip Detection by Pre-Training with Synthetic Data for Ultrasound-Guided Intervention
by Ruixin Wang, Jinghang Wang, Wei Zhao, Xiaohui Liu, Guoping Tan, Jun Liu and Zhiyuan Wang
Diagnostics 2025, 15(15), 1926; https://doi.org/10.3390/diagnostics15151926 (registering DOI) - 31 Jul 2025
Abstract
Objectives: Automatic tip localization is critical in ultrasound (US)-guided interventions. Although deep learning (DL) has been widely used for precise tip detection, existing methods are limited by the availability of real puncture data and expert annotations. Methods: To address these challenges, [...] Read more.
Objectives: Automatic tip localization is critical in ultrasound (US)-guided interventions. Although deep learning (DL) has been widely used for precise tip detection, existing methods are limited by the availability of real puncture data and expert annotations. Methods: To address these challenges, we propose a novel method that uses synthetic US puncture data to pre-train DL-based tip detectors, improving their generalization. Synthetic data are generated by fusing clinical US images of healthy controls with tips created using generative DL models. To ensure clinical diversity, we constructed a dataset from scans of 20 volunteers, covering 20 organs or anatomical regions, obtained with six different US machines and performed by three physicians with varying expertise levels. Tip diversity is introduced by generating a wide range of synthetic tips using a denoising probabilistic diffusion model (DDPM). This method synthesizes a large volume of diverse US puncture data, which are used to pre-train tip detectors, followed by subsequently training with real puncture data. Results: Our method outperforms MSCOCO pre-training on a clinical puncture dataset, achieving a 1.27–7.19% improvement in AP0.1:0.5 with varying numbers of real samples. State-of-the-art detectors also show performance gains of 1.14–1.76% when applying the proposed method. Conclusions: The experimental results demonstrate that our method enhances the generalization of tip detectors without relying on expert annotations or large amounts of real data, offering significant potential for more accurate visual guidance during US-guided interventions and broader clinical applications. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

19 pages, 15300 KiB  
Article
Proactive Scheduling and Routing of MRP-Based Production with Constrained Resources
by Jarosław Wikarek and Paweł Sitek
Appl. Sci. 2025, 15(15), 8522; https://doi.org/10.3390/app15158522 (registering DOI) - 31 Jul 2025
Abstract
This research addresses the challenges of proactive scheduling and routing in manufacturing systems governed by the Material Requirement Planning (MRP) method. Such systems often face capacity constraints, difficulties in resource balancing, and limited traceability of component requirements. The lack of seamless integration between [...] Read more.
This research addresses the challenges of proactive scheduling and routing in manufacturing systems governed by the Material Requirement Planning (MRP) method. Such systems often face capacity constraints, difficulties in resource balancing, and limited traceability of component requirements. The lack of seamless integration between customer orders and production tasks, combined with the manual and time-consuming nature of schedule adjustments, highlights the need for an automated and optimized scheduling method. We propose a novel optimization-based approach that leverages mixed-integer linear programming (MILP) combined with a proprietary procedure for reducing the size of the modeled problem to generate feasible and/or optimal production schedules. The model incorporates dynamic routing, partial resource utilization, limited additional resources (e.g., tools, workers), technological breaks, and time quantization. Key results include determining order feasibility, identifying unfulfilled order components, minimizing costs, shortening deadlines, and assessing feasibility in the absence of available resources. By automating the generation of data from MRP/ERP systems, constructing an optimization model, and exporting the results back to the MRP/ERP structure, this method improves decision-making and competes with expensive Advanced Planning and Scheduling (APS) systems. The proposed innovation solution—the integration of MILP-based optimization with the proprietary PT (data transformation) and PR (model-size reduction) procedures—not only increases operational efficiency but also enables demand source tracking and offers a scalable and economical alternative for modern production environments. Experimental results demonstrate significant reductions in production costs (up to 25%) and lead times (more than 50%). Full article
Show Figures

Figure 1

40 pages, 18911 KiB  
Article
Twin-AI: Intelligent Barrier Eddy Current Separator with Digital Twin and AI Integration
by Shohreh Kia, Johannes B. Mayer, Erik Westphal and Benjamin Leiding
Sensors 2025, 25(15), 4731; https://doi.org/10.3390/s25154731 (registering DOI) - 31 Jul 2025
Abstract
The current paper presents a comprehensive intelligent system designed to optimize the performance of a barrier eddy current separator (BECS), comprising a conveyor belt, a vibration feeder, and a magnetic drum. This system was trained and validated on real-world industrial data gathered directly [...] Read more.
The current paper presents a comprehensive intelligent system designed to optimize the performance of a barrier eddy current separator (BECS), comprising a conveyor belt, a vibration feeder, and a magnetic drum. This system was trained and validated on real-world industrial data gathered directly from the working separator under 81 different operational scenarios. The intelligent models were used to recommend optimal settings for drum speed, belt speed, vibration intensity, and drum angle, thereby maximizing separation quality and minimizing energy consumption. the smart separation module utilizes YOLOv11n-seg and achieves a mean average precision (mAP) of 0.838 across 7163 industrial instances from aluminum, copper, and plastic materials. For shape classification (sharp vs. smooth), the model reached 91.8% accuracy across 1105 annotated samples. Furthermore, the thermal monitoring unit can detect iron contamination by analyzing temperature anomalies. Scenarios with iron showed a maximum temperature increase of over 20 °C compared to clean materials, with a detection response time of under 2.5 s. The architecture integrates a Digital Twin using Azure Digital Twins to virtually mirror the system, enabling real-time tracking, behavior simulation, and remote updates. A full connection with the PLC has been implemented, allowing the AI-driven system to adjust physical parameters autonomously. This combination of AI, IoT, and digital twin technologies delivers a reliable and scalable solution for enhanced separation quality, improved operational safety, and predictive maintenance in industrial recycling environments. Full article
(This article belongs to the Special Issue Sensors and IoT Technologies for the Smart Industry)
19 pages, 3112 KiB  
Article
Study on the Distribution and Quantification Characteristics of Soil Nutrients in the Dryland Albic Soils of the Sanjiang Plain, China
by Jingyang Li, Huanhuan Li, Qiuju Wang, Yiang Wang, Xu Hong and Chunwei Zhou
Agronomy 2025, 15(8), 1857; https://doi.org/10.3390/agronomy15081857 - 31 Jul 2025
Abstract
The main soil type in the Sanjiang Plain of Northeast China, dryland albic soil is of great significance for studying nutrient distribution characteristics. This study focuses on 852 Farm in the typical dryland albic soil area of the Sanjiang Plain, using a combination [...] Read more.
The main soil type in the Sanjiang Plain of Northeast China, dryland albic soil is of great significance for studying nutrient distribution characteristics. This study focuses on 852 Farm in the typical dryland albic soil area of the Sanjiang Plain, using a combination of paired t-test, geostatistics, correlation analysis, and principal component analysis to systematically reveal the spatial differentiation of soil nutrients in the black soil layer and white clay layer of dryland albic soil, and to clarify the impact mechanism of plow layer nutrient characteristics on crop productivity. The results show that the nutrient content order in both the black and white clay layers is consistent: total potassium (TK) > organic matter (OM) > total nitrogen (TN) > total phosphorus (TP) > alkali-hydrolyzable nitrogen (HN) > available potassium (AK) > available phosphorus (AP). Both layers exhibit a spatial pattern of overall consistency and local differentiation, with spatial heterogeneity dominated by altitude gradients—nutrient content increases with decreasing altitude. Significant differences exist in nutrient content and distribution between the black and white clay layers, with the comprehensive fertility of the black layer being significantly higher than that of the white clay layer, particularly for TN, TP, TK, HN, and OM contents (effect size > 8). NDVI during the full maize growth period is significantly positively correlated with TP, TN, AK, AP, and HN, and the NDVI dynamics (first increasing. then decreasing) closely align with the peak periods of available nitrogen/phosphorus and crop growth cycles, indicating a strong coupling relationship between vegetation biomass accumulation and nutrient availability. These findings provide important references for guiding rational fertilization, agricultural production layout, and ecological environmental protection, contributing to the sustainable utilization of dryland albic soil resources and sustainable agricultural development. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

14 pages, 1885 KiB  
Article
Advancements in Hole Quality for AISI 1045 Steel Using Helical Milling
by Pedro Mendes Silva, António José da Fonseca Festas, Robson Bruno Dutra Pereira and João Paulo Davim
J. Manuf. Mater. Process. 2025, 9(8), 256; https://doi.org/10.3390/jmmp9080256 (registering DOI) - 31 Jul 2025
Abstract
Helical milling presents a promising alternative to conventional drilling for hole production, offering superior surface quality and improved production efficiency. While this technique has been extensively applied in the aerospace industry, its potential for machining common engineering materials, such as AISI 1045 steel, [...] Read more.
Helical milling presents a promising alternative to conventional drilling for hole production, offering superior surface quality and improved production efficiency. While this technique has been extensively applied in the aerospace industry, its potential for machining common engineering materials, such as AISI 1045 steel, remains underexplored in the literature. This study addresses this gap by systematically evaluating the influence of key process parameters—cutting speed (Vc), axial depth of cut (ap), and tool diameter (Dt)—on hole quality attributes, including surface roughness, burr formation, and nominal diameter accuracy. A full factorial experimental design (23) was employed, coupled with analysis of variance (ANOVA), to quantify the effects and interactions of these parameters. The results reveal that, with a higher Vc, it is possible to reduce surface roughness (Ra) by 30% to 40%, while an increased ap leads to a 50% increase in Ra. Additionally, Dt emerged as the most critical factor for nominal diameter accuracy, reducing geometrical errors by 1% with a larger Dt. Burr formation was predominantly observed at the lower end of the hole, highlighting challenges specific to this technique. These findings provide valuable insights into optimizing helical milling for low-carbon steels, offering a foundation for broader industrial adoption and further research. Full article
Show Figures

Figure 1

25 pages, 21958 KiB  
Article
ESL-YOLO: Edge-Aware Side-Scan Sonar Object Detection with Adaptive Quality Assessment
by Zhanshuo Zhang, Changgeng Shuai, Chengren Yuan, Buyun Li, Jianguo Ma and Xiaodong Shang
J. Mar. Sci. Eng. 2025, 13(8), 1477; https://doi.org/10.3390/jmse13081477 - 31 Jul 2025
Abstract
Focusing on the problem of insufficient detection accuracy caused by blurred target boundaries, variable scales, and severe noise interference in side-scan sonar images, this paper proposes a high-precision detection network named ESL-YOLO, which integrates edge perception and adaptive quality assessment. Firstly, an Edge [...] Read more.
Focusing on the problem of insufficient detection accuracy caused by blurred target boundaries, variable scales, and severe noise interference in side-scan sonar images, this paper proposes a high-precision detection network named ESL-YOLO, which integrates edge perception and adaptive quality assessment. Firstly, an Edge Fusion Module (EFM) is designed, which integrates the Sobel operator into depthwise separable convolution. Through a dual-branch structure, it realizes effective fusion of edge features and spatial features, significantly enhancing the ability to recognize targets with blurred boundaries. Secondly, a Self-Calibrated Dual Attention (SCDA) Module is constructed. By means of feature cross-calibration and multi-scale channel attention fusion mechanisms, it achieves adaptive fusion of shallow details and deep-rooted semantic content, improving the detection accuracy for small-sized targets and targets with elaborate shapes. Finally, a Location Quality Estimator (LQE) is introduced, which quantifies localization quality using the statistical characteristics of bounding box distribution, effectively reducing false detections and missed detections. Experiments on the SIMD dataset show that the mAP@0.5 of ESL-YOLO reaches 84.65%. The precision and recall rate reach 87.67% and 75.63%, respectively. Generalization experiments on additional sonar datasets further validate the effectiveness of the proposed method across different data distributions and target types, providing an effective technical solution for side-scan sonar image target detection. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 4572 KiB  
Article
Transfer Learning-Based Ensemble of CNNs and Vision Transformers for Accurate Melanoma Diagnosis and Image Retrieval
by Murat Sarıateş and Erdal Özbay
Diagnostics 2025, 15(15), 1928; https://doi.org/10.3390/diagnostics15151928 (registering DOI) - 31 Jul 2025
Abstract
Background/Objectives: Melanoma is an aggressive type of skin cancer that poses serious health risks if not detected in its early stages. Although early diagnosis enables effective treatment, delays can result in life-threatening consequences. Traditional diagnostic processes predominantly rely on the subjective expertise [...] Read more.
Background/Objectives: Melanoma is an aggressive type of skin cancer that poses serious health risks if not detected in its early stages. Although early diagnosis enables effective treatment, delays can result in life-threatening consequences. Traditional diagnostic processes predominantly rely on the subjective expertise of dermatologists, which can lead to variability and time inefficiencies. Consequently, there is an increasing demand for automated systems that can accurately classify melanoma lesions and retrieve visually similar cases to support clinical decision-making. Methods: This study proposes a transfer learning (TL)-based deep learning (DL) framework for the classification of melanoma images and the enhancement of content-based image retrieval (CBIR) systems. Pre-trained models including DenseNet121, InceptionV3, Vision Transformer (ViT), and Xception were employed to extract deep feature representations. These features were integrated using a weighted fusion strategy and classified through an Ensemble learning approach designed to capitalize on the complementary strengths of the individual models. The performance of the proposed system was evaluated using classification accuracy and mean Average Precision (mAP) metrics. Results: Experimental evaluations demonstrated that the proposed Ensemble model significantly outperformed each standalone model in both classification and retrieval tasks. The Ensemble approach achieved a classification accuracy of 95.25%. In the CBIR task, the system attained a mean Average Precision (mAP) score of 0.9538, indicating high retrieval effectiveness. The performance gains were attributed to the synergistic integration of features from diverse model architectures through the ensemble and fusion strategies. Conclusions: The findings underscore the effectiveness of TL-based DL models in automating melanoma image classification and enhancing CBIR systems. The integration of deep features from multiple pre-trained models using an Ensemble approach not only improved accuracy but also demonstrated robustness in feature generalization. This approach holds promise for integration into clinical workflows, offering improved diagnostic accuracy and efficiency in the early detection of melanoma. Full article
Show Figures

Figure 1

23 pages, 7166 KiB  
Article
Deriving Early Citrus Fruit Yield Estimation by Combining Multiple Growing Period Data and Improved YOLOv8 Modeling
by Menglin Zhai, Juanli Jing, Shiqing Dou, Jiancheng Du, Rongbin Wang, Jichi Yan, Yaqin Song and Zhengmin Mei
Sensors 2025, 25(15), 4718; https://doi.org/10.3390/s25154718 (registering DOI) - 31 Jul 2025
Abstract
Early crop yield prediction is a major challenge in precision agriculture, and efficient and rapid yield prediction is highly important for sustainable fruit production. The accurate detection of major fruit characteristics, including flowering, green fruiting, and ripening stages, is crucial for early yield [...] Read more.
Early crop yield prediction is a major challenge in precision agriculture, and efficient and rapid yield prediction is highly important for sustainable fruit production. The accurate detection of major fruit characteristics, including flowering, green fruiting, and ripening stages, is crucial for early yield estimation. Currently, most crop yield estimation studies based on the YOLO model are only conducted during a single stage of maturity. Combining multi-growth period data for crop analysis is of great significance for crop growth detection and early yield estimation. In this study, a new network model, YOLOv8-RL, was proposed using citrus multigrowth period characteristics as a data source. A citrus yield estimation model was constructed and validated by combining network identification counts with manual field counts. Compared with YOLOv8, the number of parameters of the improved network is reduced by 50.7%, the number of floating-point operations is decreased by 49.4%, and the size of the model is only 3.2 MB. In the test set, the average recognition rate of citrus flowers, green fruits, and orange fruits was 95.6%, the mAP@.5 was 94.6%, the FPS value was 123.1, and the inference time was only 2.3 milliseconds. This provides a reference for the design of lightweight networks and offers the possibility of deployment on embedded devices with limited computational resources. The two estimation models constructed on the basis of the new network had coefficients of determination R2 values of 0.91992 and 0.95639, respectively, with a prediction error rate of 6.96% for citrus green fruits and an average error rate of 3.71% for orange fruits. Compared with network counting, the yield estimation model had a low error rate and high accuracy, which provided a theoretical basis and technical support for the early prediction of fruit yield in complex environments. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

21 pages, 1928 KiB  
Article
A CNN-Transformer Hybrid Framework for Multi-Label Predator–Prey Detection in Agricultural Fields
by Yifan Lyu, Feiyu Lu, Xuaner Wang, Yakui Wang, Zihuan Wang, Yawen Zhu, Zhewei Wang and Min Dong
Sensors 2025, 25(15), 4719; https://doi.org/10.3390/s25154719 (registering DOI) - 31 Jul 2025
Abstract
Accurate identification of predator–pest relationships is essential for implementing effective and sustainable biological control in agriculture. However, existing image-based methods struggle to recognize insect co-occurrence under complex field conditions, limiting their ecological applicability. To address this challenge, we propose a hybrid deep learning [...] Read more.
Accurate identification of predator–pest relationships is essential for implementing effective and sustainable biological control in agriculture. However, existing image-based methods struggle to recognize insect co-occurrence under complex field conditions, limiting their ecological applicability. To address this challenge, we propose a hybrid deep learning framework that integrates convolutional neural networks (CNNs) and Transformer architectures for multi-label recognition of predator–pest combinations. The model leverages a novel co-occurrence attention mechanism to capture semantic relationships between insect categories and employs a pairwise label matching loss to enhance ecological pairing accuracy. Evaluated on a field-constructed dataset of 5,037 images across eight categories, the model achieved an F1-score of 86.5%, mAP50 of 85.1%, and demonstrated strong generalization to unseen predator–pest pairs with an average F1-score of 79.6%. These results outperform several strong baselines, including ResNet-50, YOLOv8, and Vision Transformer. This work contributes a robust, interpretable approach for multi-object ecological detection and offers practical potential for deployment in smart farming systems, UAV-based monitoring, and precision pest management. Full article
(This article belongs to the Special Issue Sensor and AI Technologies in Intelligent Agriculture: 2nd Edition)
Show Figures

Figure 1

Back to TopTop