Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (124)

Search Parameters:
Keywords = ANSYS coupled analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 16120 KiB  
Article
Lateral Performance of Steel–Concrete Anchors Embedded in RC Columns Subjected to Fire Scenario
by Amer Alkloub, Mahmoud Dwaikat, Ahmed Ashteyat, Farouq Sammour and Asala Jaradat
Infrastructures 2025, 10(7), 173; https://doi.org/10.3390/infrastructures10070173 - 5 Jul 2025
Viewed by 309
Abstract
The use of both structural steel and reinforced concrete is common in civil and military infrastructure projects. Anchorage plays a crucial role in these systems, serving as the key element that connects structural components and secures attachments within complex composite structures. This research [...] Read more.
The use of both structural steel and reinforced concrete is common in civil and military infrastructure projects. Anchorage plays a crucial role in these systems, serving as the key element that connects structural components and secures attachments within complex composite structures. This research focuses on evaluating the performance of steel–concrete column connections under the combined effects of lateral loading and fire exposure. Additionally, the study investigates the use of carbon fiber-reinforced polymers (CFRP) for strengthening and repairing these connections. The research methodology combines experimental testing and finite-element modeling to achieve its objectives. First, experimental investigation was carried out to test two groups of steel-reinforced concrete column specimens, each group made of three specimens. The first group specimens were designed based on special moment frame (SMF) detailing, and the other group specimens were designed based on intermediate moment frame (IMF) detailing. These two types of design were selected based on seismic demands, with SMFs offering high ductility and resilience for severe earthquakes and IMFs providing a cost-effective solution for moderate seismic zones, both benefiting from ongoing innovations in connection detailing and design approaches. Then, finite-element analysis was conducted to model the test specimens. High-fidelity finite-element modeling was conducted using ANSYS program, which included three-dimensional coupled thermal-stress analyses for the six tested specimens and incorporated nonlinear temperature-dependent materials characteristics of each component and the interfaces. Both the experimental and numerical results of this study show that fire has a more noticeable effect on displacement compared to the peak capacities of both types of specimens. Fire exposure results in a larger reduction in the initial residual lateral stiffness of the SMF specimens when compared to IMF specimens. While the effect of CFRP wraps on initial residual lateral stiffness was consistent for all specimens, it caused more improvement for the IMF specimen in terms of post-fire ductility when compared to SMF specimens. This exploratory study confirms the need for further research on the effect of fire on the concrete–steel anchorage zones. Full article
Show Figures

Figure 1

24 pages, 2987 KiB  
Article
Optimization of Engine Piston Performance Based on Multi-Method Coupling: Sensitivity Analysis, Response Surface Model, and Application of Genetic Algorithm
by Bin Zheng, Qintao Shui, Zhecheng Luo, Peihao Hu, Yunjin Yang, Jilin Lei and Guofu Yin
Materials 2025, 18(13), 3043; https://doi.org/10.3390/ma18133043 - 26 Jun 2025
Viewed by 387
Abstract
This paper focuses on the use of advanced optimization design strategies to improve the performance and service life of engine pistons, with emphasis on enhancing their stiffness, strength, and dynamic characteristics. As a core component of the engine, the structural design and optimization [...] Read more.
This paper focuses on the use of advanced optimization design strategies to improve the performance and service life of engine pistons, with emphasis on enhancing their stiffness, strength, and dynamic characteristics. As a core component of the engine, the structural design and optimization of the piston are of great significance to its efficiency and reliability. First, a three-dimensional (3D) model of the piston was constructed and imported into ANSYS Workbench for finite element modeling and high-quality meshing. Based on the empirical formula, the actual working environment temperature and heat transfer coefficient of the piston were accurately determined and used as boundary conditions for thermomechanical coupling analysis to accurately simulate the thermal and deformation state under complex working conditions. Dynamic characteristic analysis was used to obtain the displacement–frequency curve, providing key data support for predicting resonance behavior, evaluating structural strength, and optimizing the design. In the optimization stage, five geometric dimensions are selected as design variables. The deformation, mass, temperature, and the first to third natural frequencies are considered as optimization goals. The response surface model is constructed by means of the design of the experiments method, and the fitted model is evaluated in detail. The results show that the models are all significant. The adequacy of the model fitting is verified by the “Residuals vs. Run” plot, and potential data problems are identified. The “Predicted vs. Actual” plot is used to evaluate the fitting accuracy and prediction ability of the model for the experimental data, avoiding over-fitting or under-fitting problems, and guiding the optimization direction. Subsequently, the sensitivity analysis was carried out to reveal the variables that have a significant impact on the objective function, and in-depth analysis was conducted in combination with the response surface. The multi-objective genetic algorithm (MOGA), screening, and response surface methodology (RSM) were, respectively, used to comprehensively optimize the objective function. Through experiments and analysis, the optimal solution of the MOGA algorithm was selected for implementation. After optimization, the piston mass and deformation remained relatively stable, and the working temperature dropped from 312.75 °C to 308.07 °C, which is conducive to extending the component life and improving the thermal efficiency. The first to third natural frequencies increased from 1651.60 Hz to 1671.80 Hz, 1656.70 Hz to 1665.70 Hz, and 1752.90 Hz to 1776.50 Hz, respectively, significantly enhancing the dynamic stability and vibration resistance. This study integrates sensitivity analysis, response surface models, and genetic algorithms to solve multi-objective optimization problems, successfully improving piston performance. Full article
Show Figures

Figure 1

20 pages, 3627 KiB  
Article
Biotribological Wear Prediction of Alumina–Polymer Hip Prostheses Using Finite Element Analysis
by Mhd Ayham Darwich, Hasan Mhd Nazha, Hiba Mohsen Ghadir and Ahmad Salamah
Appl. Mech. 2025, 6(3), 46; https://doi.org/10.3390/applmech6030046 - 24 Jun 2025
Viewed by 508
Abstract
This study investigates the biotribological performance of alumina–UHMWPE and alumina–PEEK hip implant couples through finite element simulation (ANSYS v24) and statistical inference (STATA v17). During gait cycle loading simulations, significant disparity in wear behaviour was observed. Alumina–UHMWPE demonstrated superior mechanical resistance, with a [...] Read more.
This study investigates the biotribological performance of alumina–UHMWPE and alumina–PEEK hip implant couples through finite element simulation (ANSYS v24) and statistical inference (STATA v17). During gait cycle loading simulations, significant disparity in wear behaviour was observed. Alumina–UHMWPE demonstrated superior mechanical resistance, with a wear volume of 0.18481 mm3 and a wear depth of 6.93 × 10−4 mm compared to alumina–PEEK, which registered higher wear (volume: 8.4006 mm3; depth: 3.15 × 10−2 mm). Wear distribution analysis indicated alumina–UHMWPE showed an even wear pattern in comparison to the poor, uneven alumina-PEEK high-wear patterns. Statistical comparison validated these findings, wherein alumina–UHMWPE achieved a 27.60 hip joint wear index (HCI) value, which is better than that of alumina–PEEK (35.85 HCI), particularly regarding key parameters like wear depth and volume. This computational–statistical model yields a baseline design for biomaterial choice, demonstrating the potential clinical superiority of alumina–UHMWPE in reducing implant failure risk. While this is a simulation study lacking experimental validation, the results pave the way for experimental and clinical studies for further verification and refinement. The approach enables hip arthroplasty design optimization with maximal efficiency and minimal resource-intensive testing. Full article
(This article belongs to the Collection Fracture, Fatigue, and Wear)
Show Figures

Figure 1

15 pages, 5186 KiB  
Article
Numerical Simulation and Parameter Optimization of Air Slide Based on CFD-DEM
by Chao Zhang, Ye Zhang, Yifan Liu and Xing Guo
Appl. Sci. 2025, 15(9), 5205; https://doi.org/10.3390/app15095205 - 7 May 2025
Viewed by 538
Abstract
The aim of this study was to investigate the influence of operational and design parameters on the conveying efficiency and material layer stability of air slides and to optimize the parameters of the XZ200 air slide. A gas–solid coupled simulation of the conveying [...] Read more.
The aim of this study was to investigate the influence of operational and design parameters on the conveying efficiency and material layer stability of air slides and to optimize the parameters of the XZ200 air slide. A gas–solid coupled simulation of the conveying process was conducted using ANSYS v2023 and Rocky v23R1 software. Three key variables—inclination angle, input air velocity, and permeable layer porosity—were analyzed to evaluate their effects on wheat flour conveying efficiency and layer stability. Orthogonal experiments and matrix analysis were applied to comprehensively assess the numerical simulation results. The findings reveal that the conveying ratio is positively correlated with input air velocity and inclination angle but negatively correlated with permeable layer porosity. Meanwhile, material layer fluctuation and stability increase with inclination angle but decrease with higher porosity. Through orthogonal testing and matrix analysis, the optimal parameter combination was determined as follows: input air velocity of 1.8 m/s, porosity of 37.84%, inclination angle of 6°, conveying ratio of 96.52%, and material layer fluctuation of 4.39 mm. This study provides a reference methodology for gas–solid coupled simulation in air slide design and offers practical guidance for parameter optimization in air slide systems. Full article
Show Figures

Figure 1

14 pages, 3037 KiB  
Article
Numerical Study on Particle Accumulation and Its Impact on Rotorcraft Airfoil Performance on Mars
by Enrico Giacomini and Lars-Göran Westerberg
Aerospace 2025, 12(5), 368; https://doi.org/10.3390/aerospace12050368 - 23 Apr 2025
Viewed by 346
Abstract
Unmanned aerial vehicles (UAVs) have emerged as practical and potentially advantageous tools for scientific investigation and reconnaissance of planetary surfaces, such as Mars. Their ability to traverse difficult terrain and provide high-resolution imagery has revolutionized the concept of exploration. However, operating drones in [...] Read more.
Unmanned aerial vehicles (UAVs) have emerged as practical and potentially advantageous tools for scientific investigation and reconnaissance of planetary surfaces, such as Mars. Their ability to traverse difficult terrain and provide high-resolution imagery has revolutionized the concept of exploration. However, operating drones in the Martian environment presents fundamental challenges due to the harsh conditions and the different atmosphere. Aerodynamic challenges include low chord-based Reynolds number flows and the presence of dust particles, which can accumulate on the airfoil surface. This paper investigates the accumulation of dust on cambered plates with 6% and 1% camber, suitable for the type of flow studied. The analysis is conducted for Reynolds numbers of around 20,000 as a result of dimension restrictions, assuming a wind speed ranging from 12 to 14 m/s. Computational simulations are performed using a 2D C-type mesh in ANSYS Fluent, employing the γ-Re SST turbulence model. Dust particle modeling is achieved through the Discrete Phase Model (DPM), with one-way coupling between phases. The accumulation of particles is monitored over a 6-month period with monthly intervals, and the airfoil is set at a 0° angle of attack. A deposition model, developed using user-defined functions in Fluent, considers particle–airfoil interaction and forces acting on particles. Results indicate a decrease in airfoil performance for negative angles of attack due to geometric changes, particularly due to accumulation on the bottom side near the tip. The discussion includes potential model enhancements and future research directions arising from the assumptions made in this study. Full article
(This article belongs to the Special Issue Planetary Exploration)
Show Figures

Figure 1

29 pages, 7521 KiB  
Article
Analysis of Vehicle–Bridge Coupled Vibration and Driving Comfort of a PC Beam–Steel Box Arch Composite System for Autonomous Vehicles
by Weiwen Lei, Lingbo Wang, Hao Shu, Xiaoguang Liu, Yixiang Liu and Kefan Chen
Buildings 2025, 15(8), 1385; https://doi.org/10.3390/buildings15081385 - 21 Apr 2025
Cited by 1 | Viewed by 402
Abstract
To investigate the dynamic characteristics of a PC beam–steel box arch composite bridge when the number of loading lanes for autonomous vehicles changes, the vehicle–bridge coupling motion equation was derived and solved iteratively via the Newmark-β method. Joint simulation software based on ANSYS [...] Read more.
To investigate the dynamic characteristics of a PC beam–steel box arch composite bridge when the number of loading lanes for autonomous vehicles changes, the vehicle–bridge coupling motion equation was derived and solved iteratively via the Newmark-β method. Joint simulation software based on ANSYS 17.0 and Easy Language was developed to analyze vehicle–bridge coupling and driving comfort. The results showed that the dynamic response is the largest under single-lane conditions, with suspected vehicle–bridge resonance. For multilane conditions, eccentricity is the main factor when the vehicle weight is low, whereas the vehicle weight dominates when it is large. The dynamic response is positively correlated with eccentricity and vehicle weight. With respect to the dynamic amplification factor (DAF), single-lane conditions yield high DAF values for the main beam, main arch, and boom, whereas the main pier has a greater DAF under multilane conditions. Driving comfort is best under single-lane conditions, followed by dual-lane conditions, and worst under three-lane conditions. Speed is the primary influencer of comfort under single-lane conditions, with comfort reduced at higher speeds. Under multilane conditions, both speed and eccentricity affect comfort, with speed being the dominant factor. The calculated impact coefficient significantly exceeds the standard values, suggesting that separate impact coefficients should be set for each load-bearing component. These findings, combined with driving comfort analysis, provide valuable references for the setting of speed limits and the design and maintenance of such bridges under autonomous vehicle loads. Full article
(This article belongs to the Special Issue Advanced Research on Cementitious Composites for Construction)
Show Figures

Figure 1

17 pages, 29455 KiB  
Article
Deformation Analysis of Nuclear Power Shield Tunnel by Longitudinal Response Displacement Method Considering Fluid–Solid Coupling
by Yijiang Fan, Jie Zhao, Xiaodong Yu, Cheng Fan and Bo Qian
Buildings 2025, 15(8), 1365; https://doi.org/10.3390/buildings15081365 - 19 Apr 2025
Viewed by 502
Abstract
The joint of a shield tunnel segment is the weak part of tunnel, and the opening amount of the joint seriously affects the watertightness of the internal structure of the tunnel. In this experiment, a model was created with ANSYS, the fluid–solid coupling [...] Read more.
The joint of a shield tunnel segment is the weak part of tunnel, and the opening amount of the joint seriously affects the watertightness of the internal structure of the tunnel. In this experiment, a model was created with ANSYS, the fluid–solid coupling effect of the seawater and seabed was considered using the SuperFLUSH/2D 6.0 software, and the local site effect was considered by free-field seismic response analysis. Considering the structure and stress characteristics of the shield tunnel in conjunction with the marine area, earthquake research on shield tunnel culverts was conducted using lateral and longitudinal beam–spring models. The main focus of this article is to study the earthquake resistance of shield tunnel joints under extreme seismic excitation (SL-2) in complex marine environments. The results indicated that in the lateral analysis, under varying soil layer conditions, the diameter deformation rates for sections 1 and 2 using high-strength bolts were 1.752% and 1.334%, respectively, while the joint-opening amounts were 0.515 mm and 0.387 mm, respectively. This suggests that locations with thicker silt layers exhibit larger joint-opening amounts and are more susceptible to deformation. In the longitudinal analysis, when bolt strength varied, the maximum joint-opening ranged from 4.706 mm to 6.507 mm, and the maximum dislocation ranged from 0.625 mm to 1.326 mm. The deformation rule of the joint bolts followed the pattern that higher stiffness led to smaller deformation, whereas poorer geological conditions resulted in larger deformation. Therefore, the interface between soft and hard strata is a weak point in the longitudinal seismic resistance of the shield tunnel structure. The conclusions of this study can supplement the seismic research on shield tunnels in the marine areas of nuclear power plants. Full article
Show Figures

Figure 1

17 pages, 12087 KiB  
Article
Experimental and Numerical Study on Dynamic Response of High-Pier Ballastless Continuous Beam Bridge in Mountainous Area
by Wenshuo Liu, Qiong Luo, Gonglian Dai and Xin Tang
Appl. Sci. 2025, 15(8), 4341; https://doi.org/10.3390/app15084341 - 15 Apr 2025
Cited by 1 | Viewed by 457
Abstract
The dynamic performance of a ballastless track on bridges affects the vibration performance of the vehicle–bridge coupling system, which, in turn, will affect safety, the smoothness of operating trains, and passenger comfort. However, in the existing literature, few studies focus on the coupled [...] Read more.
The dynamic performance of a ballastless track on bridges affects the vibration performance of the vehicle–bridge coupling system, which, in turn, will affect safety, the smoothness of operating trains, and passenger comfort. However, in the existing literature, few studies focus on the coupled vibration response analysis of large-span continuous beam bridges for high-speed railways, especially high-pier bridges. Dynamic response tests with multiple measurement points installed on the rail, concrete slab, and bridge deck are conducted. This study investigates the dynamic characteristics of bridges with high piers under train loads. A dynamic system is built by the co-simulation platform of SIMPACK v9 and ANSYS v2022, consisting of several models, a coupling mechanism, etc. The vibration response of a train passing through the bridge at 300 km/h is analyzed, and the influence of operating speed on the motivation performance of the coupled system is further studied. The results indicate that the simulation results are validated against experimental data, showing good agreement; the train–track–continuous beam bridge coupling system meets the specification limits and has some margins for further optimization with an operating speed of 300 km/h. The refined model of train–rail–bridge coupling vibration established in this paper provides theoretical guidance for the design and application of high-speed railways. Full article
Show Figures

Figure 1

18 pages, 6112 KiB  
Article
Improved Design of an Eddy-Current Speed Sensor Based on Harmonic Modeling Technique
by Duy-Tinh Hoang, Manh-Dung Nguyen, Yong-Joo Kim, Anh-Tuan Phung, Kyung-Hun Shin and Jang-Young Choi
Mathematics 2025, 13(5), 844; https://doi.org/10.3390/math13050844 - 3 Mar 2025
Cited by 1 | Viewed by 966
Abstract
This study proposes an improved design of an eddy-current speed sensor (ECSS) by adding a ferromagnetic core to the stator, resulting in a sensitivity enhancement ranging from three to sixty times compared to a reference model according to shaft materials. An improved analytical [...] Read more.
This study proposes an improved design of an eddy-current speed sensor (ECSS) by adding a ferromagnetic core to the stator, resulting in a sensitivity enhancement ranging from three to sixty times compared to a reference model according to shaft materials. An improved analytical model (AM) based on harmonic modeling (HM) is developed to account for the effects of core permeability, validated through finite element analysis (FEA), demonstrating excellent agreement between the two methods. Based on this model, the optimal dimensions of the proposed design are obtained, and comprehensive analyses of shaft materials and excitation source parameters are performed. The results show that the magnetic shaft offers the highest sensitivity, while a nonmagnetic shaft with low conductivity ensures optimal linearity. Meanwhile, a nonmagnetic shaft with high conductivity leads to low sensitivity and higher linearity errors. Furthermore, a high-frequency excitation source enhances output linearity but necessitates careful selection based on the shaft materials. The dynamic characteristics of the proposed design under different operating conditions are analyzed using a coupled Ansys Twin Builder and Maxwell 2D model. The proposed design and AM significantly improve ECSS performance and the analyzing tool, providing a robust and practical solution for precise speed measurement in various applications. Full article
Show Figures

Figure 1

24 pages, 9861 KiB  
Article
Study on Explosive Fracturing Mechanism of Qianjiang Shale Oil
by Jing Luo, Yingtao Xu, Ruidi Tian, Fei Sun, Haitao Yu, Dong Xiang and Weichu Yu
Appl. Sci. 2025, 15(5), 2612; https://doi.org/10.3390/app15052612 - 28 Feb 2025
Viewed by 760
Abstract
We employed the nonlinear finite element software ANSYS LS-DYNA 19.0 to develop a coupled dynamic-static load model for shale oil reservoirs in the Qianjiang Depression through theoretical analysis and numerical simulation and to investigate an oil extraction technology by improving oil yield while [...] Read more.
We employed the nonlinear finite element software ANSYS LS-DYNA 19.0 to develop a coupled dynamic-static load model for shale oil reservoirs in the Qianjiang Depression through theoretical analysis and numerical simulation and to investigate an oil extraction technology by improving oil yield while maintaining environmental sustainability of Qianjiang Depression. The effects of various loading conditions, including hole size and different oxygen balance of explosives, on oil recovery efficiency during reservoir rock blasting are extensively examined. Numerical simulations reveal that NTNMT explosions transfer more energy to the reservoir rock, compared to DEGDN and TNT. Specifically, when the charging radius is set to 6 cm, NTNMT yields optimal fracture expansion and coalescence, leading to improved economic benefits for shale oil extraction. Additionally, density functional theory (DFT) simulations were conducted to analyze the decomposition processes of different oxygen balance explosive molecules within the reservoir and assess their potential pollution. The results indicate that all the explosives can degrade reservoir rocks, but the explosion of positive oxygen balance, NTNMT, exhibits the highest degradability and lowest environmental impact. Full article
Show Figures

Figure 1

18 pages, 20102 KiB  
Article
Time-Domain Simulation of Coupled Motions for Five Fishing Vessels Moored Side-by-Side in a Harbor
by Xuran Men, Jinlong He, Bo Jiao, Guibing Zhu, Haihua Lin and Hongyuan Sun
J. Mar. Sci. Eng. 2025, 13(2), 307; https://doi.org/10.3390/jmse13020307 - 7 Feb 2025
Viewed by 932
Abstract
With the rapid development and accelerated utilization of marine resources, multi-body floating systems have become extensively used in practical applications. This study examines the coupled motions of a side-by-side anchoring system for five fishing vessels in a harbor using ANSYS-AQWA. The system is [...] Read more.
With the rapid development and accelerated utilization of marine resources, multi-body floating systems have become extensively used in practical applications. This study examines the coupled motions of a side-by-side anchoring system for five fishing vessels in a harbor using ANSYS-AQWA. The system is connected by hawsers and equipped with fenders to reduce collisions between the vessels. It is designed to operate in the sheltered wind-wave combined environment within Ningbo Zhoushan Port, China. Considering the diverse types and quantities of fishing vessels in the anchorage area, this paper proposes a mixed arrangement of three large-scale fishing vessels in the middle and two small-scale vessels on both sides. The time-domain analysis is performed on this system under the combined effects of wind and waves, calculating the motion responses of the five fishing vessels along with the mechanical loads at the hawsers, fenders, and moorings. The results indicate that the maximum loads on these mechanical components remain well within the safe working limits, ensuring reliable operation. In addition, the impact of varying wind-wave angles on the coupled motions of the fishing vessel system are studied. As the wind-wave angle increases, the surge motion of the fishing vessels gradually decreases, while the sway motion intensifies. The forces on the hawsers, fenders, and mooring system exhibit distinct characteristics at different angles. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

35 pages, 7555 KiB  
Article
Performance Analysis of a Wireless Power Transfer System Employing the Joint MHN-IRS Technology
by Romans Kusnins, Kristaps Gailis, Janis Eidaks, Deniss Kolosovs, Ruslans Babajans, Darja Cirjulina and Dmitrijs Pikulins
Electronics 2025, 14(3), 636; https://doi.org/10.3390/electronics14030636 - 6 Feb 2025
Viewed by 1026
Abstract
The present study is concerned with the power transfer efficiency enhancement using a combination of the multi-hop node (MHN) and the Intelligent Reflecting Surface (IRS)-based passive beamforming technologies. The primary objective is to ensure a high RF-DC converter power conversion efficiency (PCE) used [...] Read more.
The present study is concerned with the power transfer efficiency enhancement using a combination of the multi-hop node (MHN) and the Intelligent Reflecting Surface (IRS)-based passive beamforming technologies. The primary objective is to ensure a high RF-DC converter power conversion efficiency (PCE) used at the receiving end, which is difficult to achieve due to path loss and multi-path propagation. An electronically tunable reconfigurable reflectarray (RRA) designed to operate at the sub-GHz ISM band (865.5 MHz) is utilized to implement the IRS concept. Both the MHN and RRA were developed and studied in our earlier research. The RRA redirects the reflected power-carrying wave amplified by the MHN toward the intended receiver. It comprises two layers: the RF layer containing tunable phase shifters and the ground plane. Each phase shifter comprises two identical eight-shaped metal patches coupled by a pair of varactor diodes used to achieve the reflection phase tuning. The phase gradient method is used to synthesize the RRA phase profiles, ensuring different desired reflection angles. The RRA prototype, composed of 36 phase shifters, is employed in conjunction with the MHN equipped with two antennas and an amplifier. The RRA parameter optimization is accomplished by randomly varying the varactor diode voltages and measuring the corresponding received power levels until the power reflected in the desired direction is maximized. Two measurement scenarios are examined: power transmission without and with the MHN. In the first scenario, the received power is calculated and measured at several distinct beam steering angles for different distances between the Tx antenna and RRA. The same procedure is applied to different distances between the RRA and MHN in the second scenario. The effect of slight deviations in the operating frequency from the designed one (865.5 MHz) on the RRA performance is also examined. Additionally, the received power levels for both scenarios are estimated via full-wave analysis performed using the full-wave simulation software Ansys HFSS 2023 R1. A Huygens’ surface equivalence principle-based model decomposition method was developed and employed to reduce the CPU time. The calculated results are consistent with the measured ones. However, some discrepancies attributed to the adverse effect of RRA diode biasing lines, manufacturing tolerances, and imperfection of the indoor environment model are observed. Full article
Show Figures

Figure 1

18 pages, 3819 KiB  
Article
Numerical Study on the Dynamic Characteristics of a Coupled Wind–Wave Energy Device
by Xiaoming Su, Xiaochen Dong, Chuanli Xu, Zhen Liu, Heqiang Ni and Ziqian Han
Processes 2025, 13(2), 399; https://doi.org/10.3390/pr13020399 - 2 Feb 2025
Cited by 1 | Viewed by 871
Abstract
A wind–wave coupled device integrating an offshore fixed wind turbine and an OWC (oscillating water column) wave energy device is proposed in this study. Its dynamic characteristics under extreme environmental conditions are analyzed for practical design and development using a numerical model established [...] Read more.
A wind–wave coupled device integrating an offshore fixed wind turbine and an OWC (oscillating water column) wave energy device is proposed in this study. Its dynamic characteristics under extreme environmental conditions are analyzed for practical design and development using a numerical model established based on the commercial finite element method platform ANSYS-Workbench, which is then validated using experimental data for an offshore fixed wind turbine model. The modal analysis results indicate that installing the OWC system does not modify the basic dynamic characteristics of the original wind turbine. Under different extreme environmental conditions at different design water levels, stress concentration can be observed at different locations on the structures. Although the gap between the sub-chambers of the OWC system can be increased to reduce stress on the chamber and piles, an excessively large gap will enhance structural complexity and increase construction costs. An appropriate relative size for the gap between the sub-chambers is recommended for practical design. Full article
(This article belongs to the Special Issue Design and Utilization of Wind Turbines/Wave Energy Convertors)
Show Figures

Figure 1

26 pages, 8754 KiB  
Article
Weight Effects on Vertical Transverse Vibration of a Beam with a Nonlinear Energy Sink
by Xiang Fu, Sha Wei, Hu Ding and Li-Qun Chen
Appl. Sci. 2025, 15(3), 1380; https://doi.org/10.3390/app15031380 - 29 Jan 2025
Cited by 2 | Viewed by 750
Abstract
Reductions in the vibration of a continuum system via a nonlinear energy sink have been widely investigated. It is usually assumed that weight effects can be ignored if the vibration is measured from the static equilibrium configuration. The present investigation reveals the dynamic [...] Read more.
Reductions in the vibration of a continuum system via a nonlinear energy sink have been widely investigated. It is usually assumed that weight effects can be ignored if the vibration is measured from the static equilibrium configuration. The present investigation reveals the dynamic effects of weight on the vertical transverse vibrations of a Euler–Bernoulli beam coupled with a nonlinear energy sink. The governing equations considering and neglecting weights were derived. The equations were discretized with some numerical support. The discretized equations were analytically solved via the harmonic balance method. The harmonic balance solutions were compared with the numerical solution via the Runge–Kutta method. Finite element simulations were performed via ANSYS software (version number: 2.2.1). Free and forced vibrations, predicted by equations considering or neglecting the weights, were compared with the finite element solutions. For the forced vibrations, the amplitude–frequency responses determined by the harmonic balance method agree well with those calculated by the Runge–Kutta method. The free and forced vibration responses predicted by the equations considering the weights are closer to those computed by the finite element method than the responses predicted by the equation neglecting the weights. The assumption that weights can be balanced by static deflections leads to errors in the analysis of the vertical transverse vibrations of a Euler–Bernoulli beam with a nonlinear energy sink. Full article
(This article belongs to the Special Issue Advances in Architectural Acoustics and Vibration)
Show Figures

Figure 1

25 pages, 13138 KiB  
Article
Research on End-Effector Position Error Compensation of Industrial Robotic Arm Based on ECOA-BP
by Wenping Xiang, Junhua Chen, Hao Li, Zhiyuan Chai and Yinghou Lou
Sensors 2025, 25(2), 378; https://doi.org/10.3390/s25020378 - 10 Jan 2025
Viewed by 1544
Abstract
Industrial robotic arms are often subject to significant end-effector pose deviations from the target position due to the combined effects of nonlinear deformations such as link flexibility, joint compliance, and end-effector load. To address this issue, a study was conducted on the analysis [...] Read more.
Industrial robotic arms are often subject to significant end-effector pose deviations from the target position due to the combined effects of nonlinear deformations such as link flexibility, joint compliance, and end-effector load. To address this issue, a study was conducted on the analysis and compensation of end-position errors in a six-degree-of-freedom robotic arm. The kinematic model of the robotic arm was established using the Denavit–Hartenberg (DH) parameter method, and a rigid–flexible coupled virtual prototype model was developed using ANSYS and ADAMS. Kinematic simulations were performed on the virtual prototype to analyze the variation in end-effector position errors under rigid–flexible coupling conditions. To achieve error compensation, an approach based on an Enhanced Crayfish Optimization Algorithm (ECOA) optimizing a BP neural network was proposed to compensate for position errors. An experimental platform was constructed for error measurement and validation. The experimental results demonstrated that the positioning accuracy after compensation improves by 75.77%, fully validating the effectiveness and reliability of the proposed method for compensating flexible errors. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

Back to TopTop