Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (566)

Search Parameters:
Keywords = AI landscape

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4219 KiB  
Article
Identification of Differentially Expressed Genes and Pathways in Non-Diabetic CKD and Diabetic CKD by Integrated Human Transcriptomic Bioinformatics Analysis
by Clara Barrios, Marta Riera, Eva Rodríguez, Eva Márquez, Jimena del Risco, Melissa Pilco, Jorge Huesca, Ariadna González, Claudia Martyn, Jordi Pujol, Anna Buxeda and Marta Crespo
Int. J. Mol. Sci. 2025, 26(15), 7421; https://doi.org/10.3390/ijms26157421 (registering DOI) - 1 Aug 2025
Abstract
Chronic kidney disease (CKD) is a heterogeneous condition with various etiologies, including type 2 diabetes mellitus (T2D), hypertension, and autoimmune disorders. Both diabetic CKD (CKD_T2D) and non-diabetic CKD (CKD_nonT2D) share overlapping clinical features, but understanding the molecular mechanisms underlying each subtype and distinguishing [...] Read more.
Chronic kidney disease (CKD) is a heterogeneous condition with various etiologies, including type 2 diabetes mellitus (T2D), hypertension, and autoimmune disorders. Both diabetic CKD (CKD_T2D) and non-diabetic CKD (CKD_nonT2D) share overlapping clinical features, but understanding the molecular mechanisms underlying each subtype and distinguishing diabetic from non-diabetic forms remain poorly defined. To identify differentially expressed genes (DEGs) and enriched biological pathways between CKD_T2D and CKD_nonT2D cohorts, including autoimmune (CKD_nonT2D_AI) and hypertensive (CKD_nonT2D_HT) subtypes, through integrative transcriptomic analysis. Publicly available gene expression datasets from human glomerular and tubulointerstitial kidney tissues were curated and analyzed from GEO and ArrayExpress. Differential expression analysis and Gene Set Enrichment Analysis (GSEA) were conducted to assess cohort-specific molecular signatures. A considerable overlap in DEGs was observed between CKD_T2D and CKD_nonT2D, with CKD_T2D exhibiting more extensive gene expression changes. Hypertensive-CKD shared greater transcriptomic similarity with CKD_T2D than autoimmune-CKD. Key DEGs involved in fibrosis, inflammation, and complement activation—including Tgfb1, Timp1, Cxcl6, and C1qa/B—were differentially regulated in diabetic samples, where GSEA revealed immune pathway enrichment in glomeruli and metabolic pathway enrichment in tubulointerstitium. The transcriptomic landscape of CKD_T2D reveals stronger immune and metabolic dysregulation compared to non-diabetic CKD. These findings suggest divergent pathological mechanisms and support the need for tailored therapeutic approaches. Full article
Show Figures

Figure 1

19 pages, 2528 KiB  
Systematic Review
The Nexus Between Green Finance and Artificial Intelligence: A Systemic Bibliometric Analysis Based on Web of Science Database
by Katerina Fotova Čiković, Violeta Cvetkoska and Dinko Primorac
J. Risk Financial Manag. 2025, 18(8), 420; https://doi.org/10.3390/jrfm18080420 (registering DOI) - 1 Aug 2025
Abstract
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, [...] Read more.
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, and highlighting methodological trends at this nexus. A dataset of 268 peer-reviewed publications (2014–June 2025) was retrieved from the Web of Science Core Collection, filtered by the Business Economics category. Analytical techniques employed include Bibliometrix in R, VOSviewer, and science mapping tools such as thematic mapping, trend topic analysis, co-citation networks, and co-occurrence clustering. Results indicate an annual growth rate of 53.31%, with China leading in both productivity and impact, followed by Vietnam and the United Kingdom. The most prolific affiliations and authors, primarily based in China, underscore a concentrated regional research output. The most relevant journals include Energy Economics and Finance Research Letters. Network visualizations identified 17 clusters, with focused analysis on the top three: (1) Emission, Health, and Environmental Risk, (2) Institutional and Technological Infrastructure, and (3) Green Innovation and Sustainable Urban Development. The methodological landscape is equally diverse, with top techniques including blockchain technology, large language models, convolutional neural networks, sentiment analysis, and structural equation modeling, demonstrating a blend of traditional econometrics and advanced AI. This study not only uncovers intellectual structures and thematic evolution but also identifies underdeveloped areas and proposes future research directions. These include dynamic topic modeling, regional case studies, and ethical frameworks for AI in sustainable finance. The findings provide a strategic foundation for advancing interdisciplinary collaboration and policy innovation in green AI–finance ecosystems. Full article
(This article belongs to the Special Issue Commercial Banking and FinTech in Emerging Economies)
Show Figures

Figure 1

26 pages, 2325 KiB  
Review
Personalization of AI-Based Digital Twins to Optimize Adaptation in Industrial Design and Manufacturing—Review
by Izabela Rojek, Dariusz Mikołajewski, Ewa Dostatni, Jan Cybulski and Mirosław Kozielski
Appl. Sci. 2025, 15(15), 8525; https://doi.org/10.3390/app15158525 (registering DOI) - 31 Jul 2025
Abstract
The growing scale of big data and artificial intelligence (AI)-based models has heightened the urgency of developing real-time digital twins (DTs), particularly those capable of simulating personalized behavior in dynamic environments. In this study, we examine the personalization of AI-based digital twins (DTs), [...] Read more.
The growing scale of big data and artificial intelligence (AI)-based models has heightened the urgency of developing real-time digital twins (DTs), particularly those capable of simulating personalized behavior in dynamic environments. In this study, we examine the personalization of AI-based digital twins (DTs), with a focus on overcoming computational latencies that hinder real-time responses—especially in complex, large-scale systems and networks. We use bibliometric analysis to map current trends, prevailing themes, and technical challenges in this field. The key findings highlight the growing emphasis on scalable model architectures, multimodal data integration, and the use of high-performance computing platforms. While existing research has focused on model decomposition, structural optimization, and algorithmic integration, there remains a need for fast DT platforms that support diverse user requirements. This review synthesizes these insights to outline new directions for accelerating adaptation and enhancing personalization. By providing a structured overview of the current research landscape, this study contributes to a better understanding of how AI and edge computing can drive the development of the next generation of real-time personalized DTs. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

26 pages, 1768 KiB  
Article
Generative AI in Education: Mapping the Research Landscape Through Bibliometric Analysis
by Sai-Leung Ng and Chih-Chung Ho
Information 2025, 16(8), 657; https://doi.org/10.3390/info16080657 (registering DOI) - 31 Jul 2025
Abstract
The rapid emergence of generative AI technologies has sparked significant transformation across educational landscapes worldwide. This study presents a comprehensive bibliometric analysis of GAI in education, mapping scholarly trends from 2022 to 2025. Drawing on 3808 peer-reviewed journal articles indexed in Scopus, the [...] Read more.
The rapid emergence of generative AI technologies has sparked significant transformation across educational landscapes worldwide. This study presents a comprehensive bibliometric analysis of GAI in education, mapping scholarly trends from 2022 to 2025. Drawing on 3808 peer-reviewed journal articles indexed in Scopus, the analysis reveals exponential growth in publications, with dominant contributions from the United States, China, and Hong Kong. Using VOSviewer, the study identifies six major thematic clusters, including GAI in higher education, ethics, technological foundations, writing support, and assessment. Prominent tools, especially ChatGPT, are shown to influence pedagogical design, academic integrity, and learner engagement. The study highlights interdisciplinary integration, regional research ecosystems, and evolving keyword patterns reflecting the field’s transition from tool-based inquiry to learner-centered concerns. This review offers strategic insights for educators, researchers, and policymakers navigating AI’s transformative role in education. Full article
(This article belongs to the Special Issue Generative AI Technologies: Shaping the Future of Higher Education)
Show Figures

Figure 1

29 pages, 1119 KiB  
Systematic Review
Phishing Attacks in the Age of Generative Artificial Intelligence: A Systematic Review of Human Factors
by Raja Jabir, John Le and Chau Nguyen
AI 2025, 6(8), 174; https://doi.org/10.3390/ai6080174 - 31 Jul 2025
Viewed by 175
Abstract
Despite the focus on improving cybersecurity awareness, the number of cyberattacks has increased significantly, leading to huge financial losses, with their risks spreading throughout the world. This is due to the techniques deployed in cyberattacks that mainly aim at exploiting humans, the weakest [...] Read more.
Despite the focus on improving cybersecurity awareness, the number of cyberattacks has increased significantly, leading to huge financial losses, with their risks spreading throughout the world. This is due to the techniques deployed in cyberattacks that mainly aim at exploiting humans, the weakest link in any defence system. The existing literature on human factors in phishing attacks is limited and does not live up to the witnessed advances in phishing attacks, which have become exponentially more dangerous with the introduction of generative artificial intelligence (GenAI). This paper studies the implications of AI advancement, specifically the exploitation of GenAI and human factors in phishing attacks. We conduct a systematic literature review to study different human factors exploited in phishing attacks, potential solutions and preventive measures, and the complexity introduced by GenAI-driven phishing attacks. This paper aims to address the gap in the research by providing a deeper understanding of the evolving landscape of phishing attacks with the application of GenAI and associated human implications, thereby contributing to the field of knowledge to defend against phishing attacks by creating secure digital interactions. Full article
Show Figures

Figure 1

23 pages, 481 KiB  
Review
Bug Wars: Artificial Intelligence Strikes Back in Sepsis Management
by Georgios I. Barkas, Ilias E. Dimeas and Ourania S. Kotsiou
Diagnostics 2025, 15(15), 1890; https://doi.org/10.3390/diagnostics15151890 - 28 Jul 2025
Viewed by 341
Abstract
Sepsis remains a leading global cause of mortality, with delayed recognition and empirical antibiotic overuse fueling poor outcomes and rising antimicrobial resistance. This systematic scoping review evaluates the current landscape of artificial intelligence (AI) and machine learning (ML) applications in sepsis care, focusing [...] Read more.
Sepsis remains a leading global cause of mortality, with delayed recognition and empirical antibiotic overuse fueling poor outcomes and rising antimicrobial resistance. This systematic scoping review evaluates the current landscape of artificial intelligence (AI) and machine learning (ML) applications in sepsis care, focusing on early detection, personalized antibiotic management, and resistance forecasting. Literature from 2019 to 2025 was systematically reviewed following PRISMA-ScR guidelines. A total of 129 full-text articles were analyzed, with study quality assessed via the JBI and QUADAS-2 tools. AI-based models demonstrated robust predictive performance for early sepsis detection (AUROC 0.68–0.99), antibiotic stewardship, and resistance prediction. Notable tools, such as InSight and KI.SEP, leveraged multimodal clinical and biomarker data to provide actionable, real-time support and facilitate timely interventions. AI-driven platforms showed potential to reduce inappropriate antibiotic use and nephrotoxicity while optimizing outcomes. However, most models are limited by single-center data, variable interpretability, and insufficient real-world validation. Key challenges remain regarding data integration, algorithmic bias, and ethical implementation. Future research should prioritize multicenter validation, seamless integration with clinical workflows, and robust ethical frameworks to ensure safe, equitable, and effective adoption. AI and ML hold significant promise to transform sepsis management, but their clinical impact depends on transparent, validated, and user-centered deployment. Full article
(This article belongs to the Special Issue Recent Advances in Sepsis)
Show Figures

Figure 1

37 pages, 1895 KiB  
Review
A Review of Artificial Intelligence and Deep Learning Approaches for Resource Management in Smart Buildings
by Bibars Amangeldy, Timur Imankulov, Nurdaulet Tasmurzayev, Gulmira Dikhanbayeva and Yedil Nurakhov
Buildings 2025, 15(15), 2631; https://doi.org/10.3390/buildings15152631 - 25 Jul 2025
Viewed by 455
Abstract
This comprehensive review maps the fast-evolving landscape in which artificial intelligence (AI) and deep-learning (DL) techniques converge with the Internet of Things (IoT) to manage energy, comfort, and sustainability across smart environments. A PRISMA-guided search of four databases retrieved 1358 records; after applying [...] Read more.
This comprehensive review maps the fast-evolving landscape in which artificial intelligence (AI) and deep-learning (DL) techniques converge with the Internet of Things (IoT) to manage energy, comfort, and sustainability across smart environments. A PRISMA-guided search of four databases retrieved 1358 records; after applying inclusion criteria, 143 peer-reviewed studies published between January 2019 and April 2025 were analyzed. This review shows that AI-driven controllers—especially deep-reinforcement-learning agents—deliver median energy savings of 18–35% for HVAC and other major loads, consistently outperforming rule-based and model-predictive baselines. The evidence further reveals a rapid diversification of methods: graph-neural-network models now capture spatial interdependencies in dense sensor grids, federated-learning pilots address data-privacy constraints, and early integrations of large language models hint at natural-language analytics and control interfaces for heterogeneous IoT devices. Yet large-scale deployment remains hindered by fragmented and proprietary datasets, unresolved privacy and cybersecurity risks associated with continuous IoT telemetry, the growing carbon and compute footprints of ever-larger models, and poor interoperability among legacy equipment and modern edge nodes. The authors of researches therefore converges on several priorities: open, high-fidelity benchmarks that marry multivariate IoT sensor data with standardized metadata and occupant feedback; energy-aware, edge-optimized architectures that lower latency and power draw; privacy-centric learning frameworks that satisfy tightening regulations; hybrid physics-informed and explainable models that shorten commissioning time; and digital-twin platforms enriched by language-model reasoning to translate raw telemetry into actionable insights for facility managers and end users. Addressing these gaps will be pivotal to transforming isolated pilots into ubiquitous, trustworthy, and human-centered IoT ecosystems capable of delivering measurable gains in efficiency, resilience, and occupant wellbeing at scale. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

23 pages, 2380 KiB  
Article
DEEPEIA: Conceptualizing a Generative Deep Learning Foreign Market Recommender for SMEs
by Nuno Calheiros-Lobo, Manuel Au-Yong-Oliveira and José Vasconcelos Ferreira
Information 2025, 16(8), 636; https://doi.org/10.3390/info16080636 - 25 Jul 2025
Viewed by 240
Abstract
This study introduces the concept of DEEPEIA, a novel deep learning (DL) platform designed to recommend the optimal export market, and its ideal foreign champion, for any product or service offered by a small and medium-sized enterprise (SME). Drawing on expertise in SME [...] Read more.
This study introduces the concept of DEEPEIA, a novel deep learning (DL) platform designed to recommend the optimal export market, and its ideal foreign champion, for any product or service offered by a small and medium-sized enterprise (SME). Drawing on expertise in SME internationalization and leveraging recent advances in generative artificial intelligence (AI), this research addresses key challenges faced by SMEs in global expansion. A systematic review of existing platforms was conducted to identify current gaps and inform the conceptualization of an advanced generative DL recommender system. The Discussion section proposes the conceptual framework for such a decision optimizer within the context of contemporary technological advancements and actionable insights. The conclusion outlines future research directions, practical implementation strategies, and expected obstacles. By mapping the current landscape and presenting an original forecasting tool, this work advances the field of AI-enabled SME internationalization while still acknowledging that more empirical validation remains a necessary next step. Full article
(This article belongs to the Special Issue Artificial Intelligence (AI) for Economics and Business Management)
Show Figures

Figure 1

13 pages, 442 KiB  
Review
Sensor Technologies and Rehabilitation Strategies in Total Knee Arthroplasty: Current Landscape and Future Directions
by Theodora Plavoukou, Spiridon Sotiropoulos, Eustathios Taraxidis, Dimitrios Stasinopoulos and George Georgoudis
Sensors 2025, 25(15), 4592; https://doi.org/10.3390/s25154592 - 24 Jul 2025
Viewed by 282
Abstract
Total Knee Arthroplasty (TKA) is a well-established surgical intervention for the management of end-stage knee osteoarthritis. While the procedure is generally successful, postoperative rehabilitation remains a key determinant of long-term functional outcomes. Traditional rehabilitation protocols, particularly those requiring in-person clinical visits, often encounter [...] Read more.
Total Knee Arthroplasty (TKA) is a well-established surgical intervention for the management of end-stage knee osteoarthritis. While the procedure is generally successful, postoperative rehabilitation remains a key determinant of long-term functional outcomes. Traditional rehabilitation protocols, particularly those requiring in-person clinical visits, often encounter limitations in accessibility, patient adherence, and personalization. In response, emerging sensor technologies have introduced innovative solutions to support and enhance recovery following TKA. This review provides a thematically organized synthesis of the current landscape and future directions of sensor-assisted rehabilitation in TKA. It examines four main categories of technologies: wearable sensors (e.g., IMUs, accelerometers, gyroscopes), smart implants, pressure-sensing systems, and mobile health (mHealth) platforms such as ReHub® and BPMpathway. Evidence from recent randomized controlled trials and systematic reviews demonstrates their effectiveness in tracking mobility, monitoring range of motion (ROM), detecting gait anomalies, and delivering real-time feedback to both patients and clinicians. Despite these advances, several challenges persist, including measurement accuracy in unsupervised environments, the complexity of clinical data integration, and digital literacy gaps among older adults. Nevertheless, the integration of artificial intelligence (AI), predictive analytics, and remote rehabilitation tools is driving a shift toward more adaptive and individualized care models. This paper concludes that sensor-enhanced rehabilitation is no longer a future aspiration but an active transition toward a smarter, more accessible, and patient-centered paradigm in recovery after TKA. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

20 pages, 954 KiB  
Review
Artificial Intelligence in Cosmetic Formulation: Predictive Modeling for Safety, Tolerability, and Regulatory Perspectives
by Antonio Di Guardo, Federica Trovato, Carmen Cantisani, Annunziata Dattola, Steven P. Nisticò, Giovanni Pellacani and Alessia Paganelli
Cosmetics 2025, 12(4), 157; https://doi.org/10.3390/cosmetics12040157 - 24 Jul 2025
Viewed by 558
Abstract
Artificial intelligence (AI) and machine learning (ML) are increasingly transforming the landscape of cosmetic formulation, enabling the development of safer, more effective, and personalized products. This article explores how AI-driven predictive modeling is applied across various components of cosmetic products, including surfactants, polymers, [...] Read more.
Artificial intelligence (AI) and machine learning (ML) are increasingly transforming the landscape of cosmetic formulation, enabling the development of safer, more effective, and personalized products. This article explores how AI-driven predictive modeling is applied across various components of cosmetic products, including surfactants, polymers, fragrances, preservatives, antioxidants, and prebiotics. These technologies are employed to forecast critical properties such as texture, stability, and shelf-life, optimizing both product performance and user experience. The integration of computational toxicology and ML algorithms also allows for early prediction of skin sensitization risks, including the likelihood of adverse events such as allergic contact dermatitis. Furthermore, AI models can support efficacy assessment, bridging formulation science with dermatological outcomes. The article also addresses the ethical, regulatory, and safety challenges associated with AI in cosmetic science, underlining the need for transparency, accountability, and harmonized standards. The potential of AI to reshape dermocosmetic innovation is vast, but it must be approached with robust oversight and a commitment to user well-being. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Graphical abstract

24 pages, 10199 KiB  
Article
How Does Eco-Migration Influence Habitat Fragmentation in Resettlement Areas? Evidence from the Shule River Resettlement Project
by Lucang Wang, Ting Liao and Jing Gao
Land 2025, 14(8), 1514; https://doi.org/10.3390/land14081514 - 23 Jul 2025
Viewed by 233
Abstract
Eco-migration (EM) constitutes a specialized form of migration aimed at enhancing living environments and alleviating ecological pressure. Nevertheless, large-scale external migration has intensified habitat fragmentation (HF) in resettlement areas. This paper takes the Shule River Resettlement Project (SRRP) as a case, based on [...] Read more.
Eco-migration (EM) constitutes a specialized form of migration aimed at enhancing living environments and alleviating ecological pressure. Nevertheless, large-scale external migration has intensified habitat fragmentation (HF) in resettlement areas. This paper takes the Shule River Resettlement Project (SRRP) as a case, based on the China Land Cover Dataset (CLCD) data of the resettlement area from 1996 to 2020, using the Landscape Pattern Index (LPI) and the land use transfer matrix (LTM) to clearly define the stages of migration and the types of resettlement areas and to quantitative explore how EM affects HF. The results show that (1) EM accelerates the transformation of natural habitats (NHs) to artificial habitats (AHs) and shows the characteristics of sudden changes in the initial stage (1996–2002), with stability in the middle stage (2002–2006) and late stage (2007–2010) and dramatic changes in the post-migration stage (2011–2020). In IS, MS, LS, and PS, AH increased by 26.145 km2, 21.573 km2, 22.656 km2, and 16.983 km2, respectively, while NH changed by 73.116 km2, −21.575 km2, −22.655 km2, −121.82 km2, and −213.454 km2, respectively. The more dispersed the resettlement areas are the more obvious the expansion of AH will be, indicating that the resettlement methods for migrants have a significant effect on habitat changes. (2) During the resettlement process, the total number of plaques (NP), edge density (ED), diversity (SHDI), and dominance index (SHEI) all continued to increase, while the contagion index (C) and aggregation index (AI) continued to decline, indicating that the habitat is transforming towards fragmentation, diversification, and complexity. Compared with large-scale migration bases (LMBs), both small-scale migration bases (SMBs), and scattered migration settlement points (SMSPs) exhibit a higher degree of HF, which reflects how the scale of migration influences the extent of habitat fragmentation. While NHs are experiencing increasing fragmentation, AHs tend to show a decreasing trend in fragmentation. Ecological migrants play a dual role: they contribute to the alteration and fragmentation of natural habitat patterns, while simultaneously promoting the formation and continuity of artificial habitat structures. This study offers valuable practical insights and cautionary lessons for the resettlement of ecological migrants. Full article
Show Figures

Figure 1

13 pages, 1157 KiB  
Review
Precision Care in Screening, Surveillance, and Overall Management of Barrett’s Esophagus
by Yeshaswini Reddy, Madhav Desai, Bernadette Tumaliuan and Nirav Thosani
J. Pers. Med. 2025, 15(8), 327; https://doi.org/10.3390/jpm15080327 - 22 Jul 2025
Viewed by 297
Abstract
Barrett’s esophagus (BE), a metaplastic transformation of an esophageal squamous epithelium into an intestinal-type columnar epithelium, is the primary precursor to esophageal adenocarcinoma (EAC). Traditional management strategies have relied heavily on selective screening, tailored surveillance intervals, and early dysplasia detection and treatment algorithms. [...] Read more.
Barrett’s esophagus (BE), a metaplastic transformation of an esophageal squamous epithelium into an intestinal-type columnar epithelium, is the primary precursor to esophageal adenocarcinoma (EAC). Traditional management strategies have relied heavily on selective screening, tailored surveillance intervals, and early dysplasia detection and treatment algorithms. However, the heterogeneity in progression risk among BE patients necessitates a more nuanced, personalized approach involving precision care, tailoring decisions to individual patient characteristics, promises to enhance outcomes in BE through more targeted screening, personalized surveillance intervals, and risk-based therapeutic strategies. This review explores the current landscape and emerging trends in precision medicine for Barrett’s esophagus, highlighting genomic markers, digital pathology, and AI-driven models as tools to transform how we approach this complex disease and prevent progression to EAC. Full article
(This article belongs to the Special Issue Clinical Updates on Personalized Upper Gastrointestinal Endoscopy)
Show Figures

Figure 1

18 pages, 627 KiB  
Review
Mapping the Impact of Generative AI on Disinformation: Insights from a Scoping Review
by Alexandre López-Borrull and Carlos Lopezosa
Publications 2025, 13(3), 33; https://doi.org/10.3390/publications13030033 - 21 Jul 2025
Viewed by 689
Abstract
This article presents a scoping review of the academic literature published between 2021 and 2024 on the intersection of generative artificial intelligence (AI) and disinformation. Drawing from 64 peer-reviewed studies, the review examines the current research landscape and identifies six key thematic areas: [...] Read more.
This article presents a scoping review of the academic literature published between 2021 and 2024 on the intersection of generative artificial intelligence (AI) and disinformation. Drawing from 64 peer-reviewed studies, the review examines the current research landscape and identifies six key thematic areas: political disinformation and propaganda; scientific disinformation; fact-checking; journalism and the media; media literacy and education; and deepfakes. The findings reveal that generative AI plays a dual role: it enables the rapid creation and targeted dissemination of synthetic content but also offers new opportunities for detection, verification, and public education. Beyond summarizing research trends, this review highlights the broader societal and practical implications of generative AI in the context of information disorder. It outlines how AI tools are already reshaping journalism, challenging scientific communication, and transforming strategies for media literacy and fact-checking. The analysis also identifies key policy and governance challenges, particularly the need for coordinated responses from governments, platforms, educators, and civil society actors. By offering a structured overview of the field, the article enhances our understanding of how generative AI can both exacerbate and help mitigate disinformation, and proposes directions for research, regulation, and public engagement. Full article
Show Figures

Figure 1

37 pages, 804 KiB  
Review
Precision Recovery After Spinal Cord Injury: Integrating CRISPR Technologies, AI-Driven Therapeutics, Single-Cell Omics, and System Neuroregeneration
by Răzvan-Adrian Covache-Busuioc, Corneliu Toader, Mugurel Petrinel Rădoi and Matei Șerban
Int. J. Mol. Sci. 2025, 26(14), 6966; https://doi.org/10.3390/ijms26146966 - 20 Jul 2025
Viewed by 779
Abstract
Spinal cord injury (SCI) remains one of the toughest obstacles in neuroscience and regenerative medicine due to both severe functional loss and limited healing ability. This article aims to provide a key integrative, mechanism-focused review of the molecular landscape of SCI and the [...] Read more.
Spinal cord injury (SCI) remains one of the toughest obstacles in neuroscience and regenerative medicine due to both severe functional loss and limited healing ability. This article aims to provide a key integrative, mechanism-focused review of the molecular landscape of SCI and the new disruptive therapy technologies that are now evolving in the SCI arena. Our goal is to unify a fundamental pathophysiology of neuroinflammation, ferroptosis, glial scarring, and oxidative stress with the translation of precision treatment approaches driven by artificial intelligence (AI), CRISPR-mediated gene editing, and regenerative bioengineering. Drawing upon advances in single-cell omics, systems biology, and smart biomaterials, we will discuss the potential for reprogramming the spinal cord at multiple levels, from transcriptional programming to biomechanical scaffolds, to change the course from an irreversible degeneration toward a directed regenerative pathway. We will place special emphasis on using AI to improve diagnostic/prognostic and inferred responses, gene and cell therapies enabled by genomic editing, and bioelectronics capable of rehabilitating functional connectivity. Although many of the technologies described below are still in development, they are becoming increasingly disruptive capabilities of what it may mean to recover from an SCI. Instead of prescribing a particular therapeutic fix, we provide a future-looking synthesis of interrelated biological, computational, and bioengineering approaches that conjointly chart a course toward adaptive, personalized neuroregeneration. Our intent is to inspire a paradigm shift to resolve paralysis through precision recovery and to be grounded in a spirit of humility, rigor, and an interdisciplinary approach. Full article
(This article belongs to the Special Issue Molecular Research in Spinal Cord Injury)
Show Figures

Figure 1

28 pages, 4805 KiB  
Article
Mapping the Global Research on Drug–Drug Interactions: A Multidecadal Evolution Through AI-Driven Terminology Standardization
by Andrei-Flavius Radu, Ada Radu, Delia Mirela Tit, Gabriela Bungau and Paul Andrei Negru
Bioengineering 2025, 12(7), 783; https://doi.org/10.3390/bioengineering12070783 - 19 Jul 2025
Viewed by 603
Abstract
The significant burden of polypharmacy in clinical settings contrasts sharply with the narrow research focus on drug–drug interactions (DDIs), revealing an important gap in understanding the complexity of real-world multi-drug regimens. The present study addresses this gap by conducting a high-resolution, multidimensional bibliometric [...] Read more.
The significant burden of polypharmacy in clinical settings contrasts sharply with the narrow research focus on drug–drug interactions (DDIs), revealing an important gap in understanding the complexity of real-world multi-drug regimens. The present study addresses this gap by conducting a high-resolution, multidimensional bibliometric and network analysis of 19,151 DDI publications indexed in the Web of Science Core Collection (1975–2025). Using advanced tools, including VOSviewer version 1.6.20, Bibliometrix 5.0.0, and AI-enhanced terminology normalization, global research trajectories, knowledge clusters, and collaborative dynamics were systematically mapped. The analysis revealed an exponential growth in publication volume (from 55 in 1990 to 1194 in 2024), with output led by the United States and a marked acceleration in Chinese contributions after 2015. Key pharmacological agents frequently implicated in DDI research included CYP450-dependent drugs such as statins, antiretrovirals, and central nervous system drugs. Thematic clusters evolved from mechanistic toxicity assessments to complex frameworks involving clinical risk management, oncology co-therapies, and pharmacokinetic modeling. The citation impact peaked at 3.93 per year in 2019, reflecting the increasing integration of DDI research into mainstream areas of pharmaceutical science. The findings highlight a shift toward addressing polypharmacy risks in aging populations, supported by novel computational methodologies. This comprehensive assessment offers insights for researchers and academics aiming to navigate the evolving scientific landscape of DDIs and underlines the need for more nuanced system-level approaches to interaction risk assessment. Future studies should aim to incorporate patient-level real-world data, expand bibliometric coverage to underrepresented regions and non-English literature, and integrate pharmacogenomic and time-dependent variables to enhance predictive models of interaction risk. Cross-validation of AI-based approaches against clinical outcomes and prospective cohort data are also needed to bridge the translational gap and support precision dosing in complex therapeutic regimens. Full article
Show Figures

Figure 1

Back to TopTop