Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (327)

Search Parameters:
Keywords = ADAMTS19

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1953 KiB  
Review
Limited Proteolysis as a Regulator of Lymphatic Vessel Function and Architecture
by Takuro Miyazaki
Int. J. Mol. Sci. 2025, 26(15), 7144; https://doi.org/10.3390/ijms26157144 - 24 Jul 2025
Viewed by 106
Abstract
Recent advances have highlighted the multifaceted roles of the lymphatic vasculature in immune cell trafficking, immunomodulation, nutrient transport, and fluid homeostasis. Beyond these physiological functions, lymphatic vessels are critically involved in pathologies such as cancer metastasis and lymphedema, rendering their structural and functional [...] Read more.
Recent advances have highlighted the multifaceted roles of the lymphatic vasculature in immune cell trafficking, immunomodulation, nutrient transport, and fluid homeostasis. Beyond these physiological functions, lymphatic vessels are critically involved in pathologies such as cancer metastasis and lymphedema, rendering their structural and functional regulation of major interest. Emerging evidence suggests that limited proteolysis is a key regulatory mechanism for lymphatic vascular function. In dyslipidemic conditions, dysregulated calpain activity impairs lymphatic trafficking and destabilizes regulatory T cells, partly via the limited proteolysis of mitogen-activated kinase kinase kinase 1 and inhibitor of κBα. In addition, a disintegrin and metalloprotease with thrombospondin motifs-3-mediated proteolytic activation of vascular endothelial growth factor-C has been implicated in both developmental and tumor-associated lymphangiogenesis. Proteolytic shedding of lymphatic vessel endothelial hyaluronan receptor-1 by a disintegrin and metalloprotease 17 promotes lymphangiogenesis, whereas cleavage by membrane-type 1 matrix metalloproteinase inhibits it. This review is structured around two core aspects—lymphatic inflammation and lymphangiogenesis—and highlights recent findings on how limited proteolysis regulates each of these processes. It also discusses the therapeutic potential of targeting these proteolytic machineries and currently unexplored research questions, such as how intercellular junctions of lymphatic endothelial cells are controlled. Full article
Show Figures

Figure 1

16 pages, 269 KiB  
Article
Genetic Susceptibility in Sinusoidal Obstruction Syndrome/Veno-Occlusive Disease: A Case–Control Study
by Ioulia Mavrikou, Marta Castelli, Tasoula Touloumenidou, Zoi Bousiou, Evangelia-Evdoxia Koravou, Anna Vardi, Apostolia Papalexandri, Christos Demosthenous, Maria Koutra, Paschalis Evangelidis, Alkistis-Kyra Panteliadou, Ioannis Batsis, Dimitrios Chatzidimitriou, Emmanouil Nikolousis, Alessandro Rambaldi, Ioanna Sakellari and Eleni Gavriilaki
Int. J. Mol. Sci. 2025, 26(14), 6712; https://doi.org/10.3390/ijms26146712 - 12 Jul 2025
Viewed by 294
Abstract
Sinusoidal Obstruction Syndrome/Veno-Occlusive Disease (SOS/VOD) is a severe complication of hematopoietic cell transplantation (HCT). Furthermore, emerging evidence suggests the potential role of complement activation and endothelial injury in SOS/VOD pathogenesis. In this study, we aimed to identify potential distinct pathogenic genetic variants between [...] Read more.
Sinusoidal Obstruction Syndrome/Veno-Occlusive Disease (SOS/VOD) is a severe complication of hematopoietic cell transplantation (HCT). Furthermore, emerging evidence suggests the potential role of complement activation and endothelial injury in SOS/VOD pathogenesis. In this study, we aimed to identify potential distinct pathogenic genetic variants between SOS/VOD and other endothelial injury syndromes following HCT, such as transplant-associated thrombotic microangiopathy (TA-TMA). For this aim, genomic DNA from 30 SOS/VOD patients and 30 controls with TA-TMA was analyzed. Using Next-Generation Sequencing (NGS), variants in complement-related genes (CFH, CFI, CFB, CFD, C3, CD55, C5, CD46, and thrombomodulin/THBD) and ADAMTS13 were examined. Out of 426 detected variants, 20 were classified as pathogenic. In SOS/VOD patients, variants were identified in ADAMTS13 (4), CFH (3), C3 (2), and CFB (1) genes. One of the variants has been recognized as the strongest genetic predictor of ADAMTS13 activity. Controls exhibited more variants in complement-related genes, particularly CFH, CFI, and C3. The genetic differences between SOS/VOD and TA-TMA highlight different pathogenic mechanisms, offering the potential for targeted risk assessment and therapy in HCT recipients. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
12 pages, 869 KiB  
Article
Perioperative Profiling of a Disintegrin and Metalloprotease with Thrombospondin Type 1 Motif, Member 13 (ADAMTS13) Activity in Cardiac Surgery: Kinetics and Mechanistic Insights
by Bernhard Strasser, Johann Knotzer, Selina Sartori, Bernhard Poidinger, Oskar Kotzinger, Christian Irsara, Gerald Lirk, Carolin Gunz and Alexander Haushofer
J. Clin. Med. 2025, 14(14), 4936; https://doi.org/10.3390/jcm14144936 - 11 Jul 2025
Viewed by 265
Abstract
Background: The enzyme A Disintegrin and metalloprotease with thrombospondin type 1 motif, member 13 (ADAMTS13) regulates hemostasis by cleaving von Willebrand factor (VWF) multimers. ADAMTS13–VWF axis dysregulation leads to different thrombotic conditions. This study investigated changes in ADAMTS13 activity during major cardiac procedures [...] Read more.
Background: The enzyme A Disintegrin and metalloprotease with thrombospondin type 1 motif, member 13 (ADAMTS13) regulates hemostasis by cleaving von Willebrand factor (VWF) multimers. ADAMTS13–VWF axis dysregulation leads to different thrombotic conditions. This study investigated changes in ADAMTS13 activity during major cardiac procedures and their relationship to VWF changes and clinical complications. Methods: A total of 628 ADAMTS13 activity and inhibitor measurements were carried out in 168 patients who underwent cardiac surgery. ADAMTS13 activity was measured after the initiation of anesthesia and daily for up to 6 days postoperatively via Technozym chromogenic ELISA. The von Willebrand factor antigen (VWF:Ag) and collagen binding (VWF:CB) were also measured. Clinical complications and correlations with liver function biomarkers were also assessed. Results: ADAMTS13 activity significantly decreased during surgery, with mean values markedly decreasing from preoperative to postoperative measurements (p = 0.01). A clear inverse relationship between ADAMTS13 activity and the VWF:CB/VWF:AG ratio was observed, indicating that increased high-molecular-weight VWF multimers are associated with decreased ADAMTS13 activity. Correlation analyses (CHE, Spearman’s rho = 0.39) indicated that the reduction in ADAMTS13 activity was not attributable to impaired liver synthesis but likely resulted from peripheral consumption, potentially influenced by surgical stress. Conclusions: Perioperative reductions in ADAMTS13 activity are associated with an accumulation of high-molecular-weight VWF multimers and a higher incidence of postoperative complications. These results demonstrate that ADAMTS13 could be a useful perioperative risk biomarker for cardiac surgery patients. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

10 pages, 206 KiB  
Article
Genetic Factors Associated with Intraocular Inflammation After Brolucizumab Administration in Patients with Exudative Age-Related Macular Degeneration
by Seigo Yoneyama, Yoichi Sakurada, Taiyo Shijo, Yoshiko Fukuda, Yumi Kotoda, Wataru Kikushima, Fumihiko Mabuchi and Kenji Kashiwagi
Genes 2025, 16(7), 797; https://doi.org/10.3390/genes16070797 - 1 Jul 2025
Viewed by 321
Abstract
Purpose: We aimed to investigate whether genetic variants susceptible to age-related macular degeneration (AMD) are associated with intraocular inflammation after brolucizumab administration in eyes that have exudative AMD. Methods: A total of 206 eyes from 206 patients (156 men/50 women, 74.0 ± 8.4 [...] Read more.
Purpose: We aimed to investigate whether genetic variants susceptible to age-related macular degeneration (AMD) are associated with intraocular inflammation after brolucizumab administration in eyes that have exudative AMD. Methods: A total of 206 eyes from 206 patients (156 men/50 women, 74.0 ± 8.4 years; treatment-naïve, 128 [62.1%]; switching, 78 [37.9%]) were included in this study. All patients were treated with intravitreal brolucizumab at least once. The genotyping of ARMS2 A69S (rs10490924), CFH I62V (rs800292), CFH (rs1329428), SKIV2L (rs429608), C3 (rs2241394), cholesteryl ester transfer protein (CETP) (rs3764261), and ADAMTS9 (rs6795375) was performed using TaqMan technology. Results: Out of the 206 patients who were included, 21 eyes from 21 patients (10.2%) exhibited intraocular inflammation (IOI). Four (19.0%) exhibited severe IOI, including retinal vasculitis and/or retinal vascular occlusion, and 17 (81.0%) showed mild IOI. The frequency of the T allele of the CETP gene was significantly lower in patients who developed IOI compared to patients who did not develop IOI (T allele frequency: 9.5% vs. 23.5%, p = 0.036). After adjusting for confounding factors, the T allele remained significantly associated with protection against IOI (p = 0.028, 95% confidence interval: 0.098–0.88). Conclusions: The T allele of the CETP gene, a risk allele for AMD and the protective allele for atherosclerosis, may be associated with protection against IOI after brolucizumab administration in eyes that have exudative AMD. Full article
21 pages, 2099 KiB  
Article
Identifying Molecular Modulators of the Vascular Invasion in Rectal Carcinoma: Role of ADAMTS8 and Its Co-Dependent Genes
by Bojana Kožik, Tarik Čorbo, Naris Pojskić, Ana Božović, Lidija Todorović, Ana Kolaković, Vesna Mandušić and Lejla Pojskić
Int. J. Mol. Sci. 2025, 26(13), 6261; https://doi.org/10.3390/ijms26136261 - 28 Jun 2025
Viewed by 889
Abstract
Rectal carcinoma (RC) represents approximately 30% of all colorectal carcinomas (CRC) and is considered a distinct clinical entity. Vascular invasion (VI) is recognized as an independent predictor of poor outcomes in RC. In this study, we applied bioinformatics methods to identify gene pathways [...] Read more.
Rectal carcinoma (RC) represents approximately 30% of all colorectal carcinomas (CRC) and is considered a distinct clinical entity. Vascular invasion (VI) is recognized as an independent predictor of poor outcomes in RC. In this study, we applied bioinformatics methods to identify gene pathways most likely associated with VI in rectal carcinoma. As ADAMTS8 showed statistically significant negative relations with the VI in RC patients, we further analyzed its top co-dependent genes—DNAL4, EVI2B, PPP1R35, PTGR3, RPL21, SOX4, and ZNF3—for the experimentally proven molecular modulators. We identified a total of 23 compounds from the Comparative Toxicogenomics Database based on previously reported data for all eight target genes. The search was expanded to include additional chemical agents by structure similarity using the PubChem database, which revealed 9661 additional compounds. These were subsequently used for molecular interaction analysis against target proteins co-expressed with, or associated with, ADAMTS8 in RC with VI. Ultimately, we identified four high-affinity compounds—cyanoginosin LR, doxorubicin, benzo[a]pyrene, and dibenzo(a,e)pyrene—that interacted with all target proteins. These compounds show potential for further assessment of their role in modulating processes related to vascular invasion, which is a strong negative predictor of RC outcomes. Full article
(This article belongs to the Special Issue Genomics and Proteomics of Cancer)
Show Figures

Figure 1

18 pages, 721 KiB  
Article
Identification of Monogenic Causes of Arterial Ischemic Stroke in Children with Arteriopathies by Next-Generation Sequencing
by Anna Balcerzyk-Matić, Ilona Kopyta, Celina Kruszniewska-Rajs, Paweł Niemiec and Joanna Gola
Int. J. Mol. Sci. 2025, 26(13), 6228; https://doi.org/10.3390/ijms26136228 - 27 Jun 2025
Viewed by 294
Abstract
The leading causes of pediatric arterial ischemic stroke (PAIS) are arteriopathies, which refer to pathologies of the arterial walls in the brain. Since traditional risk factors for cardiovascular diseases in children play a smaller role than in adults, it can be supposed that [...] Read more.
The leading causes of pediatric arterial ischemic stroke (PAIS) are arteriopathies, which refer to pathologies of the arterial walls in the brain. Since traditional risk factors for cardiovascular diseases in children play a smaller role than in adults, it can be supposed that genetic factors may be of particular importance in this age group. Therefore, this study aimed to identify mutations affecting the formation of vascular wall pathologies, which can subsequently lead to ischemic stroke. The study used a database of 92 Caucasian children diagnosed with ischemic stroke. From this group, 25 children with arteriopathies were selected. The study had an exploratory and descriptive design, with the aim of characterizing rare genetic variants in a selected cohort, without attempting formal statistical association testing. The sequencing was performed using the Illumina NextSeq 550 platform. A panel of 161 genes known to be associated with stroke or arteriopathies was selected for further analysis. We identified 10 pathogenic or likely pathogenic mutations in 15 patients. Among these, three are likely monogenic causes of stroke (ELN, SCN5A, and VHL genes), two are considered risk factors (FV and ADAMTS13), two have conflicting interpretations (ACAD9 and ENG), and three are most likely benign (CBS, PMM2, and PKD1). The frequency of genetic variants underlying ischemic stroke or acting as risk factors for the disease in the studied group is significantly higher than the estimated frequency of monogenic forms of stroke in young adults and higher than in the general population. NGS testing is worth considering, especially in patients who exhibit certain symptoms that may suggest the presence of mutations. Full article
(This article belongs to the Special Issue Genetic Variations in Human Diseases: 2nd Edition)
Show Figures

Graphical abstract

26 pages, 3510 KiB  
Article
Comparative Transcriptomics Study of Curcumin and Conventional Therapies in Translocation, Clear Cell, and Papillary Renal Cell Carcinoma Subtypes
by Moses Owoicho Abah, Deborah Oganya Ogenyi, Angelina V. Zhilenkova, Freddy Elad Essogmo, Ikenna Kingsley Uchendu, Yvan Sinclair Ngaha Tchawe, Akaye Madu Pascal, Natalia M. Nikitina, Onoja Solomon Oloche, Maria Pavliv, Alexander S. Rusanov, Varvara D. Sanikovich, Yuliya N. Pirogova, Leonid N. Bagmet, Aleksandra V. Moiseeva and Marina I. Sekacheva
Int. J. Mol. Sci. 2025, 26(13), 6161; https://doi.org/10.3390/ijms26136161 - 26 Jun 2025
Viewed by 1019
Abstract
Currently, there is no standard treatment for renal cell carcinoma (RCC) that is free of side effects and resistance. Additionally, limited information exists on how curcumin affects the gene expression profiles of patients with translocation renal cell carcinoma (tRCC) and papillary renal cell [...] Read more.
Currently, there is no standard treatment for renal cell carcinoma (RCC) that is free of side effects and resistance. Additionally, limited information exists on how curcumin affects the gene expression profiles of patients with translocation renal cell carcinoma (tRCC) and papillary renal cell carcinoma (pRCC). The pathways responsible for metastasis in tRCC are still not well understood, and there is no established treatment or reliable biomarker to predict outcomes for metastatic tRCC. Primary clinical data from patients were retrieved from the TCGA database and analyzed using cBioPortal, stitch, string, R and Python. Various analyses were performed, including differential gene expression, protein-protein interaction (PPI) network analysis, drug-targeted gene analysis, gene ontology (GO), enrichment analyses, and systematic searches to assess the impact of curcumin on the transcriptomic profiles of tRCC, pRCC, and clear cell renal cell carcinoma (ccRCC). No significant impact of sensitive genes on survival in KIRC and KIRP was found, though a trend suggested they may delay disease progression. The combination of curcumin with sunitinib showed promise in overcoming drug resistance in ccRCC by inducing ferroptosis, reducing iron, and increasing ADAMTS18 expression. This study, leveraging data from the TCGA database and other databases explored the impact of curcumin on transcriptomic profiles in tRCC, pRCC, and clear cell RCC (ccRCC). Gene analysis revealed immune and metabolic differences, with KIRC showing a stronger immune response. This study is the first to propose that future research into the miR-148/ADAMTS18 genes and the ferroptosis pathway in tRCC and pRCC could lead to the development of new therapies and the identification of novel therapeutic targets, potentially overcoming drug resistance and metastasis. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

13 pages, 265 KiB  
Article
Detection of Genetic Variants Associated with Behavioural Response During Milking in Simmental Dual-Purpose Cows
by Madalina Mincu-Iorga, Alexandru Eugeniu Mizeranschi, Dinu Gavojdian, Ioana Nicolae, Szilvia Kusza and Daniela Elena Ilie
Animals 2025, 15(12), 1766; https://doi.org/10.3390/ani15121766 - 15 Jun 2025
Viewed by 412
Abstract
Cattle breeding has traditionally focused on improving production traits; however, recent interest in positive animal welfare has shifted attention toward selecting for more robust animals that balance productivity with health and well-being. The aim of the current study was to assess whether behavioural [...] Read more.
Cattle breeding has traditionally focused on improving production traits; however, recent interest in positive animal welfare has shifted attention toward selecting for more robust animals that balance productivity with health and well-being. The aim of the current study was to assess whether behavioural responses during milking in dual-purpose cattle are associated with genetic markers, previously linked to temperament traits in dairy and beef breeds. We focused on 185 lactating cows belonging to the Simmental strain (Romanian Spotted, national name), which were evaluated for their milking behaviour. Genotyping was performed using an 88-SNP panel selected based on prior associations with dairy and beef cattle temperament. We identified five SNPs that were significantly associated with milking reactivity in the Romanian Spotted breed, located in genes previously linked to neural development, stress response and behavioural regulation (USH2A, ADAMTS7, TBC1D2B and ZMAT4). Our findings suggest that milking behaviour in dual-purpose Simmental cattle is influenced by genetics, supporting the potential for including behavioural traits in future selection strategies. This study contributes to a better understanding of the genetic mechanisms underlying stress-related behaviours in dual-purpose cattle breeds. Full article
(This article belongs to the Section Cattle)
28 pages, 4269 KiB  
Article
XGB-BIF: An XGBoost-Driven Biomarker Identification Framework for Detecting Cancer Using Human Genomic Data
by Veena Ghuriani, Jyotsna Talreja Wassan, Priyal Tripathi and Anshika Chauhan
Int. J. Mol. Sci. 2025, 26(12), 5590; https://doi.org/10.3390/ijms26125590 - 11 Jun 2025
Viewed by 727
Abstract
The human genome has a profound impact on human health and disease detection. Carcinoma (cancer) is one of the prominent diseases that majorly affect human health and requires the development of different treatment strategies and targeted therapies based on effective disease detection. Therefore, [...] Read more.
The human genome has a profound impact on human health and disease detection. Carcinoma (cancer) is one of the prominent diseases that majorly affect human health and requires the development of different treatment strategies and targeted therapies based on effective disease detection. Therefore, our research aims to identify biomarkers associated with distinct cancer types (gastric, lung, and breast) using machine learning. In the current study, we have analyzed the human genomic data of gastric cancer, breast cancer, and lung cancer patients using XGB-BIF (i.e., XGBoost-Driven Biomarker Identification Framework for detecting cancer). The proposed framework utilizes feature selection via XGBoost (eXtreme Gradient Boosting), which captures feature interactions efficiently and takes care of the non-linear effects in the genomic data. The research progressed by training XGBoost on the full dataset, ranking the features based on the Gain measure (importance), followed by the classification phase, which employed support vector machines (SVM), logistic regression (LR), and random forest (RF) models for classifying cancer-diseased and non-diseased states. To ensure interpretability and transparency, we also applied SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME), enabling the identification of high-impact biomarkers contributing to risk stratification. Biomarker significance is discussed primarily via pathway enrichment and by studying survival analysis (Kaplan–Meier curves, Cox regression) for identified biomarkers to strengthen translational value. Our models achieved high predictive performance, with an accuracy of more than 90%, to classify and link genomic data into diseased (cancer) and non-diseased states. Furthermore, we evaluated the models using Cohen’s Kappa statistic, which confirmed strong agreement between predicted and actual risk categories, with Kappa scores ranging from 0.80 to 0.99. Our proposed framework also achieved strong predictions on the METABRIC dataset during external validation, attaining an AUC-ROC of 93%, accuracy of 0.79%, and Kappa of 74%. Through extensive experimentation, XGB-BIF identified the top biomarker genes for different cancer datasets (gastric, lung, and breast). CBX2, CLDN1, SDC2, PGF, FOXS1, ADAMTS18, POLR1B, and PYCR3 were identified as important biomarkers to identify diseased and non-diseased states of gastric cancer; CAVIN2, ADAMTS5, SCARA5, CD300LG, and GIPC2 were identified as important biomarkers for breast cancer; and CLDN18, MYBL2, ASPA, AQP4, FOLR1, and SLC39A8 were identified as important biomarkers for lung cancer. XGB-BIF could be utilized for identifying biomarkers of different cancer types using genetic data, which can further help clinicians in developing targeted therapies for cancer patients. Full article
Show Figures

Graphical abstract

14 pages, 1182 KiB  
Article
Direct Oral Anticoagulant-Related Bleeding in Atrial Fibrillation Patients Leads to ADAMTS7 Promoter Demethylation
by Georgia Ragia, Thomas Thomopoulos, Myria Pallikarou, Natalia Atzemian, Anthi Maslarinou, Georgios Chalikias, Athanasios Trikas, Dimitrios N. Tziakas and Vangelis G. Manolopoulos
Genes 2025, 16(6), 698; https://doi.org/10.3390/genes16060698 - 9 Jun 2025
Viewed by 628
Abstract
Background/Objectives: Among other substrates, the a disintegrin and metalloproteinase with thrombospondin motifs 7 (ADAMTS7) protease degrades thrombospondin-5 (the cartilage oligomeric protein, COMP), thrombospondin-1 (TSP-1) and the tissue inhibitor of metalloproteinases-1 (TIMP-1) indicating a potential role of ADAMTS7 expression on coagulation cascade, [...] Read more.
Background/Objectives: Among other substrates, the a disintegrin and metalloproteinase with thrombospondin motifs 7 (ADAMTS7) protease degrades thrombospondin-5 (the cartilage oligomeric protein, COMP), thrombospondin-1 (TSP-1) and the tissue inhibitor of metalloproteinases-1 (TIMP-1) indicating a potential role of ADAMTS7 expression on coagulation cascade, tissue remodeling and wound healing. We analyzed the potential effect of direct oral anticoagulant (DOAC) treatment on ADAMTS7 promoter methylation and followed it over time to assess whether DOACs epigenetically modulate ADAMTS7 and induce pathways associated with coagulation or endothelium repair machinery. Methods: Eighty-four DOAC-treated atrial fibrillation (AF) patients followed-up from baseline (t0) to 7 days (t1, n = 70) and 28 days of treatment (t2, n = 62) and 19 non-AF controls were included in the study. Genomic DNA was extracted from blood at all timepoints and was bisulfite-converted prior to methylation analysis. ADAMTS7 promoter DNA methylation was analyzed with MIP-qMSP-PCR. Results: A total of 16 minor bleeding events occurred. The baseline percentage of ADAMTS7 methylation did not differ between AF patients and controls (15.8% vs. 16.1%, p = 0.908). In the patient cohort, DOAC therapy marginally decreased ADAMTS7 methylation from t0 to t2 (15.2% vs. 14.0%, p = 0.044). This ADAMTS7 demethylation from t0 to t2 was statistically significant only in patients experiencing bleeding (17.1%. vs. 13.4%, p = 0.010 in bleedings, 14.5% vs. 14.2%, p = 0.561 in non-bleedings). No other differences were observed. Conclusions: ADAMTS7 is demethylated during DOAC-related bleedings, a mechanism potentially leading to COMP degradation and thus thrombin-induced platelet aggregation, as well as the induction of endothelium repair through different ADAMTS7-dependent pathways. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

14 pages, 971 KiB  
Article
Is COVID-19 Coagulopathy a Thrombotic Microangiopathy? A Prospective, Observational Study
by Mauro Silingardi, Fulvia Zappulo, Ada Dormi, Attilia Maria Pizzini, Chiara Donadei, Maria Cappuccilli, Chiara Fantoni, Stefania Zaccaroni, Valeria Pizzuti, Nicola Cilloni, Simona Tantillo, Antonella Guidi, Rita Mancini, Gaetano La Manna and Giorgia Comai
Int. J. Mol. Sci. 2025, 26(11), 5395; https://doi.org/10.3390/ijms26115395 - 4 Jun 2025
Viewed by 696
Abstract
Severe COVID-19 is often associated with coagulopathy and thrombotic complications. The underlying mechanisms are complex and multifactorial, involving platelet activation, dysregulation of the complement cascade, fibrinolytic imbalance, release of pro-inflammatory cytokines, immunothrombosis, antiphospholipid antibodies, and alterations in the von Willebrand factor (vWF)/ADAMTS13 axis. [...] Read more.
Severe COVID-19 is often associated with coagulopathy and thrombotic complications. The underlying mechanisms are complex and multifactorial, involving platelet activation, dysregulation of the complement cascade, fibrinolytic imbalance, release of pro-inflammatory cytokines, immunothrombosis, antiphospholipid antibodies, and alterations in the von Willebrand factor (vWF)/ADAMTS13 axis. These pathways are also implicated in thrombotic microangiopathies (TMAs), characterized by endothelial injury and widespread microvascular thrombosis. In this prospective monocentric observational study, we investigated whether COVID-19-associated coagulopathy meets the criteria for TMA and evaluated the roles of complement activation and vWF/ADAMTS13 imbalance in disease severity. Forty-three hospitalized COVID-19 patients were enrolled and stratified by disease severity. Blood samples collected at admission were analyzed for hematologic, coagulation, inflammatory, and complement parameters. A 30-day follow-up recorded survival and thrombotic events. All patients showed elevated vWF and factor VIII levels; however, only vWF collagen-binding activity (vWF-CBA) significantly correlated with disease severity. ADAMTS13 activity remained above 60% in all cases, and no schistocytes were detected, arguing against a diagnosis of classical TMA. Nevertheless, the vWF-CBA/ADAMTS13 ratio was significantly higher in severe cases, particularly in unvaccinated individuals, suggesting endothelial dysregulation. Complement analysis revealed increased C5a levels and decreased C3b/iC3b ratios in severe disease, consistent with complement activation and consumption. C2 levels were also lower in these patients. Although complement activation and vWF/ADAMTS13 imbalance did not directly correlate, both pathways showed a similar trend according to disease severity. Overall, our findings indicate that COVID-19-related coagulopathy does not fulfill the criteria for classical TMA but shows features of complement-mediated endothelial injury and vWF dysregulation. The vWF-CBA may serve as a rapid, standardized tool for assessing endothelial dysfunction. Activation of the complement system, particularly via the lectin and alternative pathways, appears central to the prothrombotic state in severe COVID-19. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

25 pages, 14782 KiB  
Article
Genome-Wide Identification and Expression Analysis of Zona Pellucida (ZP) Gene Family in Cynoglossus semilaevis
by Kaili Zhang, Zhangfan Chen, Chengbin Gao, Xihong Li, Na Wang, Min Zhang, Haipeng Yan, Zhenxia Sha and Songlin Chen
Int. J. Mol. Sci. 2025, 26(11), 5346; https://doi.org/10.3390/ijms26115346 - 2 Jun 2025
Viewed by 573
Abstract
The Chinese tongue sole (Cynoglossus semilaevis) is a commercially important mariculture species; however, its fertilization and hatching rates under artificial conditions remain relatively low. Zona pellucida proteins (ZPs), which mediate sperm–egg binding, were previously identified as differentially expressed genes between newly [...] Read more.
The Chinese tongue sole (Cynoglossus semilaevis) is a commercially important mariculture species; however, its fertilization and hatching rates under artificial conditions remain relatively low. Zona pellucida proteins (ZPs), which mediate sperm–egg binding, were previously identified as differentially expressed genes between newly differentiated ovaries and testes in C. semilaevis. In this study, we identified 25 ZPs of C. semilaevis through genomic analysis and classified them into five subfamilies. All genes possessed a conserved ZP domain, characteristic of the gene family from mammals to teleosts. Among them, nine genes were highly expressed in ovary cells, with the expression levels increasing during ovarian development, while another three genes were predominantly expressed in liver cells. Protein–protein interaction analysis predicted that 12 ZPs interacted with key reproductive regulators such as Gdf9, Arid4a, Arid4b, and Rbl, which were involved in steroidogenesis, sperm–egg recognition, and folliculogenesis. Functional analyses using RNA interference revealed that Cszpc7-1 knockdown in ovarian cells led to the downregulation of cyp19a, esr2, bmp15, and adamts-1, while the expression of rbl, gnas, adgrl1, and adgrl2 was upregulated. In contrast, Cszpax1 knockdown resulted in decreased expression of cyp19a, foxl2, arid4a, and zeb1, along with upregulation of arid4b, ogg1, and gdf9. These results suggested that ZP genes might contribute to ovarian homeostasis by regulating steroid hormone synthesis, follicular development, and ovulation. This study contributed to a deeper understanding of the reproductive mechanisms of C. semilaevis and provided evolutionary insights into the functional divergence of the ZP gene family across teleosts. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 3311 KiB  
Communication
Initial Screening of Extrachromosomal Circular DNA Candidates for Pork Meat Quality Traits Using Circle-Seq and RNA-Seq Analysis
by Liyao Bai, Jiahao Wu, Tengfei Dou, Donghui Chu, Xinjian Li, Xuelei Han, Ruimin Qiao, Kejun Wang, Feng Yang and Xiuling Li
Animals 2025, 15(11), 1590; https://doi.org/10.3390/ani15111590 - 29 May 2025
Viewed by 349
Abstract
Yunong Black (YN) pigs and Yunong Black × Landrace (YL) hybrid pigs exhibit significant differences in meat quality characteristics. Studies have suggested that extrachromosomal circular DNA (eccDNA) may play a regulatory role in muscle development. In order to study the differences in eccDNA [...] Read more.
Yunong Black (YN) pigs and Yunong Black × Landrace (YL) hybrid pigs exhibit significant differences in meat quality characteristics. Studies have suggested that extrachromosomal circular DNA (eccDNA) may play a regulatory role in muscle development. In order to study the differences in eccDNA between two groups with different meat quality traits and their potential biological significance, this study used the Circle-seq method to detect eccDNA in the longest dorsal muscle (LDM) of Yunong Black pigs (YN) (n = 3) and Yunong Black × Landrace hybrid pigs (YL) (n = 3). EccDNA-related differentially expressed genes (eccDEGs) were then analyzed in combination with RNA-seq to explore the mechanisms by which eccDNA affects meat quality. The results showed that 1325 and 1304 differentially expressed eccDNAs were identified in the YN and YL groups, varying in size and distributed across multiple genomic functional regions. These eccDNAs were also annotated according to several protein-coding genes. Combined analysis with RNA-seq results revealed 19 and 27 eccDEGs in the YN and YL groups. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis enriched many lipid-related pathways, such as chemokine signals and ADP metabolic processes. By constructing a regulatory network, several potential regulatory networks that might be related to pork quality, for example, ecc_sus_8665/ssc-miR-212/ADAMTS16, were identified. In summary, we identified several potential eccDNAs that may regulate pig muscle, offering insights into the regulation of pig muscle traits for breeding. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

14 pages, 1536 KiB  
Article
Secreted Protein Acidic and Rich in Cysteine (SPARC) Induced by the Renin–Angiotensin System Causes Endothelial Inflammation in the Early Stages of Hypertensive Vascular Injury
by Hiroe Toba, Mitsushi J. Ikemoto, Miyuki Kobara, Denan Jin, Shinji Takai and Tetsuo Nakata
Int. J. Mol. Sci. 2025, 26(9), 4414; https://doi.org/10.3390/ijms26094414 - 6 May 2025
Viewed by 556
Abstract
Secreted protein acidic rich in cysteine (SPARC), one of the extracellular matrix proteins, is highly induced during inflammation. We investigated the pathophysiological regulation and role of SPARC in vascular inflammation in a rat model of hypertension created using deoxycorticosterone acetate (DOCA, 40 mg/kg/week, [...] Read more.
Secreted protein acidic rich in cysteine (SPARC), one of the extracellular matrix proteins, is highly induced during inflammation. We investigated the pathophysiological regulation and role of SPARC in vascular inflammation in a rat model of hypertension created using deoxycorticosterone acetate (DOCA, 40 mg/kg/week, s.c.) and salt (1% in drinking water). DOCA–salt administration time-dependently increased systolic blood pressure during the 3-week treatment period, blunted endothelium-dependent vasodilation, and increased monocyte chemoattractant protein-1 (MCP-1) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) expression in the aorta. SPARC expression transiently increased until week 2 in the DOCA–salt rat aorta. Interestingly, aortic SPARC levels correlated with blood pressure and the levels of MCP-1 and LOX-1 during 0–2 weeks. The AT1 receptor blocker, losartan, suppressed the overexpression of SPARC, and in vitro treatment with angiotensin II enhanced the production of SPARC in rat aortic endothelial cells. Exposure to recombinant SPARC protein induced overexpression of MCP-1 and LOX-1 mRNA in endothelial cells. Bioactive forms of a disintegrin and metalloproteinase with thrombospondin type 1 motif (ADAMTS1), excessive activation of which contributes to pathological states and overexpression of which is reported to be induced by SPARC, were increased in the DOCA–salt rat aorta. These results suggest that SPARC is induced by the vascular renin–angiotensin system and causes inflammation in the early stages of hypertensive vascular injury, and that activation of ADAMTS1 might be related to the proinflammatory effects of SPARC. Full article
Show Figures

Figure 1

10 pages, 479 KiB  
Article
Evaluation of Coagulation Factors and Platelet Activation in Patients Undergoing Complex Endovascular Para-Renal and Thoraco-Abdominal Aneurysm Repair: The Protocol of a Prospective Observational Study
by Maria P. Ntalouka, Konstantinos Spanos, Paraskevi Kotsi, Aikaterini Bouzia, Georgios Kouvelos, Diamanto Aretha, Efthymia Petinaki, Athanasios Giannnoukas, Miltiadis Matsagkas and Eleni M. Arnaoutoglou
J. Clin. Med. 2025, 14(9), 3105; https://doi.org/10.3390/jcm14093105 - 30 Apr 2025
Cited by 1 | Viewed by 405
Abstract
Background/Objectives: Endovascular aneurysm repair (EVAR) of the aorta may trigger an inflammatory response that affects coagulation. In the EVAR of para-renal and thoraco-abdominal aortic aneurysms, the implants are more complex and the duration of surgery is longer. However, the exact pathophysiological mechanisms of [...] Read more.
Background/Objectives: Endovascular aneurysm repair (EVAR) of the aorta may trigger an inflammatory response that affects coagulation. In the EVAR of para-renal and thoraco-abdominal aortic aneurysms, the implants are more complex and the duration of surgery is longer. However, the exact pathophysiological mechanisms of coagulation activation are not yet well understood. The primary aim of this study is to investigate the effects of complex EVAR of para-renal and thoraco-abdominal aortic aneurysms on the coagulation status of patients. Methods: This prospective observational study (STROBE), approved and registered by the Ethics Committee of the University Hospital of Larissa (UHL) (NCT06432387), will enroll consecutive patients undergoing elective EVAR of para-renal and thoraco-abdominal aortic aneurysms. Exclusion criteria: Refusal to participate, previous surgery within 3 months, American Society of Anesthesiologists physical status (ASA PS) > 3, known history of thrombophilia or functional platelet dysfunction. Perioperative laboratory tests will be performed according to institutional guidelines. These include a complete blood count, conventional coagulation tests, and kidney and liver function tests. In addition, the following parameters will be determined: von Willebrand factor, factors VIII and XI, D-dimers, fibrinogen, Adamts-13, anti-Xa, platelet activation (multiplate), and high-sensitivity troponin. Blood samples will be taken pre-operatively before induction of anesthesia (01), on postoperative day 1 (02), and on postoperative day 3–4 (03). During hospitalization, myocardial injury after non-cardiac surgery (MINS), major adverse cardiovascular events after non-cardiac surgery (MACE), acute kidney injury (AKI), post-implantation syndrome (PIS), and death from any cause will be recorded. In addition, our patients will be reviewed at 30 days, 3, 6, and 12 months for MACE, implant failure, or death from any cause. All enrolled patients will be treated by the same medical team at UHL according to the indications. According to our power analysis, for a cohort of patients with three consecutive measurements, 58 patients should be included in the study. To compensate for possible dropouts, the sample size was increased to 65 patients. Conclusions: The results of the present study could help physicians to better understand the effects of complex EVAR of para-renal and thoraco-abdominal aortic aneurysms on blood coagulation and platelet activation. Full article
(This article belongs to the Section Anesthesiology)
Show Figures

Figure 1

Back to TopTop