Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = ADA-gelatin gels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7308 KiB  
Article
Dual-Self-Crosslinking Effect of Alginate-Di-Aldehyde with Natural and Synthetic Co-Polymers as Injectable In Situ-Forming Biodegradable Hydrogel
by Bushra Begum, Trideva Sastri Koduru, Syeda Noor Madni, Noor Fathima Anjum, Shanmuganathan Seetharaman, Balamuralidhara Veeranna and Vishal Kumar Gupta
Gels 2024, 10(10), 649; https://doi.org/10.3390/gels10100649 - 11 Oct 2024
Cited by 4 | Viewed by 2717
Abstract
Injectable, in situ-forming hydrogels, both biocompatible and biodegradable, have garnered significant attention in tissue engineering due to their potential for creating adaptable scaffolds. The adaptability of these hydrogels, made from natural proteins and polysaccharides, opens up a world of possibilities. In this study, [...] Read more.
Injectable, in situ-forming hydrogels, both biocompatible and biodegradable, have garnered significant attention in tissue engineering due to their potential for creating adaptable scaffolds. The adaptability of these hydrogels, made from natural proteins and polysaccharides, opens up a world of possibilities. In this study, sodium alginate was used to synthesize alginate di-aldehyde (ADA) through periodate oxidation, resulting in a lower molecular weight and reduced viscosity, with different degrees of oxidation (54% and 70%). The dual-crosslinking mechanism produced an injectable in situ hydrogel. Initially, physical crosslinking occurred between ADA and borax via borax complexation, followed by chemical crosslinking with gelatin through a Schiff’s base reaction, which takes place between the amino groups of gelatin and the aldehyde groups of ADA, without requiring an external crosslinking agent. The formation of Schiff’s base was confirmed by Fourier-transform infrared (FT-IR) spectroscopy. At the same time, the aldehyde groups in ADA were characterized using FT-IR, proton nuclear magnetic resonance (¹H NMR), and gel permeation chromatography (GPC), which determined its molecular weight. Furthermore, borax complexation was validated through boron-11 nuclear magnetic resonance (¹¹B NMR). The hydrogel formulation containing 70% ADA, polyethylene glycol (PEG), and 9% gelatin exhibited a decreased gelation time at physiological temperature, attributed to the increased gelatin content and higher degree of oxidation. Rheological analysis mirrored these findings, showing a correlation with gelation time. The swelling capacity was also enhanced due to the increased oxidation degree of PEG and the system’s elevated gelatin content and hydrophilicity. The hydrogel demonstrated an average pore size of 40–60 µm and a compressive strength of 376.80 kPa. The lower molecular weight and varied pH conditions influenced its degradation behavior. Notably, the hydrogel’s syringeability was deemed sufficient for practical applications, further enhancing its potential in tissue engineering. Given these properties, the 70% ADA/gelatin/PEG hydrogel is a promising candidate and a potential game-changer for injectable, self-crosslinking applications in tissue engineering. Its potential to revolutionize the field is inspiring and should motivate further exploration. Full article
Show Figures

Figure 1

14 pages, 2293 KiB  
Article
Investigating the Effect of Processing and Material Parameters of Alginate Dialdehyde-Gelatin (ADA-GEL)-Based Hydrogels on Stiffness by XGB Machine Learning Model
by Duygu Ege and Aldo R. Boccaccini
Bioengineering 2024, 11(5), 415; https://doi.org/10.3390/bioengineering11050415 - 24 Apr 2024
Cited by 5 | Viewed by 2483
Abstract
To address the limitations of alginate and gelatin as separate hydrogels, partially oxidized alginate, alginate dialdehyde (ADA), is usually combined with gelatin to prepare ADA-GEL hydrogels. These hydrogels offer tunable properties, controllable degradation, and suitable stiffness for 3D bioprinting and tissue engineering applications. [...] Read more.
To address the limitations of alginate and gelatin as separate hydrogels, partially oxidized alginate, alginate dialdehyde (ADA), is usually combined with gelatin to prepare ADA-GEL hydrogels. These hydrogels offer tunable properties, controllable degradation, and suitable stiffness for 3D bioprinting and tissue engineering applications. Several processing variables affect the final properties of the hydrogel, including degree of oxidation, gelatin content and type of crosslinking agent. In addition, in 3D-printed structures, pore size and the possible addition of a filler to make a hydrogel composite also affect the final physical and biological properties. This study utilized datasets from 13 research papers, encompassing 33 unique combinations of ADA concentration, gelatin concentration, CaCl2 and microbial transglutaminase (mTG) concentrations (as crosslinkers), pore size, bioactive glass (BG) filler content, and one identified target property of the hydrogels, stiffness, utilizing the Extreme Boost (XGB) machine learning algorithm to create a predictive model for understanding the combined influence of these parameters on hydrogel stiffness. The stiffness of ADA-GEL hydrogels is notably affected by the ADA to GEL ratio, and higher gelatin content for different ADA gel concentrations weakens the scaffold, likely due to the presence of unbound gelatin. Pore size and the inclusion of a BG particulate filler also have a significant impact on stiffness; smaller pore sizes and higher BG content lead to increased stiffness. The optimization of ADA-GEL composition and the inclusion of BG fillers are key determinants to tailor the stiffness of these 3D printed hydrogels, as found by the analysis of the available data. Full article
(This article belongs to the Section Regenerative Engineering)
Show Figures

Graphical abstract

25 pages, 9831 KiB  
Article
Comparison of the Behavior of 3D-Printed Endothelial Cells in Different Bioinks
by Jana Schulik, Sahar Salehi, Aldo R. Boccaccini, Stefan Schrüfer, Dirk W. Schubert, Andreas Arkudas, Annika Kengelbach-Weigand, Raymund E. Horch and Rafael Schmid
Bioengineering 2023, 10(7), 751; https://doi.org/10.3390/bioengineering10070751 - 23 Jun 2023
Cited by 10 | Viewed by 3780
Abstract
Biomaterials with characteristics similar to extracellular matrix and with suitable bioprinting properties are essential for vascular tissue engineering. In search for suitable biomaterials, this study investigated the three hydrogels alginate/hyaluronic acid/gelatin (Alg/HA/Gel), pre-crosslinked alginate di-aldehyde with gelatin (ADA-GEL), and gelatin methacryloyl (GelMA) with [...] Read more.
Biomaterials with characteristics similar to extracellular matrix and with suitable bioprinting properties are essential for vascular tissue engineering. In search for suitable biomaterials, this study investigated the three hydrogels alginate/hyaluronic acid/gelatin (Alg/HA/Gel), pre-crosslinked alginate di-aldehyde with gelatin (ADA-GEL), and gelatin methacryloyl (GelMA) with respect to their mechanical properties and to the survival, migration, and proliferation of human umbilical vein endothelial cells (HUVECs). In addition, the behavior of HUVECs was compared with their behavior in Matrigel. For this purpose, HUVECs were mixed with the inks both as single cells and as cell spheroids and printed using extrusion-based bioprinting. Good printability with shape fidelity was determined for all inks. The rheological measurements demonstrated the gelling consistency of the inks and shear-thinning behavior. Different Young’s moduli of the hydrogels were determined. However, all measured values where within the range defined in the literature, leading to migration and sprouting, as well as reconciling migration with adhesion. Cell survival and proliferation in ADA-GEL and GelMA hydrogels were demonstrated for 14 days. In the Alg/HA/Gel bioink, cell death occurred within 7 days for single cells. Sprouting and migration of the HUVEC spheroids were observed in ADA-GEL and GelMA. Similar behavior of the spheroids was seen in Matrigel. In contrast, the spheroids in the Alg/HA/Gel ink died over the time studied. It has been shown that Alg/HA/Gel does not provide a good environment for long-term survival of HUVECs. In conclusion, ADA-GEL and GelMA are promising inks for vascular tissue engineering. Full article
Show Figures

Figure 1

20 pages, 3466 KiB  
Article
Fabrication of Hydrogel-Based Composite Fibers and Computer Simulation of the Filler Dynamics in the Composite Flow
by Thomas Gruhn, Camilo Ortiz Monsalve, Claudia Müller, Susanne Heid, Aldo R. Boccaccini and Sahar Salehi
Bioengineering 2023, 10(4), 448; https://doi.org/10.3390/bioengineering10040448 - 6 Apr 2023
Cited by 4 | Viewed by 3309
Abstract
Fibrous structures with anisotropic fillers as composites have found increasing interest in the field of biofabrication since they can mimic the extracellular matrix of anisotropic tissues such as skeletal muscle or nerve tissue. In the present work, the inclusion of anisotropic fillers in [...] Read more.
Fibrous structures with anisotropic fillers as composites have found increasing interest in the field of biofabrication since they can mimic the extracellular matrix of anisotropic tissues such as skeletal muscle or nerve tissue. In the present work, the inclusion of anisotropic fillers in hydrogel-based filaments with an interpenetrating polymeric network (IPN) was evaluated and the dynamics of such fillers in the composite flow were analyzed using computational simulations. In the experimental part, microfabricated rods (200 and 400 μm length, 50 μm width) were used as anisotropic fillers in extrusion of composite filaments using two techniques of wet spinning and 3D printing. Hydrogels such as oxidized alginate (ADA) and methacrylated gelatin (GelMA) were used as matrices. In the computational simulation, a combination of computational fluid dynamics and coarse-grained molecular dynamics was used to study the dynamics of rod-like fillers in the flow field of a syringe. It showed that, during the extrusion process, microrods are far from being well aligned. Instead, many of them tumble on their way through the needle leading to a random orientation in the fiber which was confirmed experimentally. Full article
(This article belongs to the Special Issue 3D-Bioprinting in Bioengineering)
Show Figures

Figure 1

10 pages, 3558 KiB  
Article
Electroactive Oxidized Alginate/Gelatin/MXene (Ti3C2Tx) Composite Hydrogel with Improved Biocompatibility and Self-Healing Property
by Hui Zhu, Weitao Dai, Liming Wang, Cong Yao, Chenxi Wang, Bingsong Gu, Dichen Li and Jiankang He
Polymers 2022, 14(18), 3908; https://doi.org/10.3390/polym14183908 - 19 Sep 2022
Cited by 37 | Viewed by 4988 | Correction
Abstract
Conductive hydrogels (CHs) have shown promising potential applied as wearable or epidermal sensors owing to their mechanical adaptability and similarity to natural tissues. However, it remains a great challenge to develop an integrated hydrogel combining outstanding conductive, self-healing and biocompatible performances with simple [...] Read more.
Conductive hydrogels (CHs) have shown promising potential applied as wearable or epidermal sensors owing to their mechanical adaptability and similarity to natural tissues. However, it remains a great challenge to develop an integrated hydrogel combining outstanding conductive, self-healing and biocompatible performances with simple approaches. In this work, we propose a “one-pot” strategy to synthesize multifunctional CHs by incorporating two-dimensional (2D) transition metal carbides/nitrides (MXenes) multi-layer nano-flakes as nanofillers into oxidized alginate and gelatin hydrogels to form the composite CHs with various MXene contents. The presence of MXene with abundant surface groups and outstanding conductivity could improve the mechanical property and electroactivity of the composite hydrogels compared to pure oxidized alginate dialdehyde-gelatin (ADA-GEL). MXene-ADA-GELs kept good self-healing properties due to the dynamic imine linkage of the ADA-GEL network and have a promoting effect on mouse fibroblast (NH3T3s) attachment and spreading, which could be a result of the integration of MXenes with stimulating conductivity and hydrophily surface. This study suggests that the electroactive MXene-ADA-GELs can serve as an appealing candidate for skin wound healing and flexible bio-electronics. Full article
(This article belongs to the Special Issue Current Trends in Polymeric Hydrogels for Tissue Engineering)
Show Figures

Graphical abstract

18 pages, 3981 KiB  
Article
Gelatin Nanoparticles for Targeted Dual Drug Release out of Alginate-di-Aldehyde-Gelatin Gels
by Sophie Schrade, Lucas Ritschl, Regine Süss, Pia Schilling and Michael Seidenstuecker
Gels 2022, 8(6), 365; https://doi.org/10.3390/gels8060365 - 8 Jun 2022
Cited by 13 | Viewed by 3467
Abstract
The aim of the present work was to develop a dual staged drug release of an antibiotic (clindamycin) and a growth factor: bone morphogenetic protein-2 (BMP-2) from a biodegradable system consisting of hydrogel and gelatin nanoparticles (GNP). Two-step de-solvation allowed us to prepare [...] Read more.
The aim of the present work was to develop a dual staged drug release of an antibiotic (clindamycin) and a growth factor: bone morphogenetic protein-2 (BMP-2) from a biodegradable system consisting of hydrogel and gelatin nanoparticles (GNP). Two-step de-solvation allowed us to prepare GNPs (~100 nm) as drug carriers. Fluorescein isothiocyanate (FITC)-conjugated protein A was used as a model substance for BMP-2. A 28-day release experiment was performed to determine the release kinetics from GNP for both FITC-protein A and BMP-2, and for clindamycin (CLI) from the hydrogel. The size, structure, and overall morphology of GNP samples (empty, loaded with FITC-protein A and BMP-2) were examined using an environmental scanning electron microscope (ESEM). Cell culture assays (Live/dead; cell proliferation; cytotoxicity) were performed with MG-63 cells and BMP-2-loaded GNPs. Drug release experiments using clindamycin-loaded alginate-di-aldehyde (ADA) gelatin gels containing the drug-loaded GNPs were performed for 28 days. The resulting GNPs showed an empty size of 117 ± 29 nm, 176 ± 15 nm and 216 ± 36 nm when containing 2% FITC-protein A and 1% BMP-2, respectively. No negative effects of BMP-2-loaded GNPs on MG-63 cells were observed in live/dead staining. In the proliferation assay, an increase in cell proliferation was observed for both GNPs (GNP + BMP-2 and controls). The cytotoxicity assay continuously showed very low cytotoxicity for GNPs (empty; loaded). Clindamycin release showed a concentration of 25-fold higher than the minimum inhibitory concentration (MIC) against Staphylococcus aureus throughout the 28 day period. BMP-2 showed a reduced burst release and a steady release (~2 µg/mL) over a 28 day period. Full article
(This article belongs to the Special Issue Bioceramics, Bioglasses and Gels for Tissue Engineering)
Show Figures

Graphical abstract

18 pages, 6026 KiB  
Article
Mechanical Properties of the Composite Material consisting of β-TCP and Alginate-Di-Aldehyde-Gelatin Hydrogel and Its Degradation Behavior
by Michael Seidenstuecker, Thomas Schmeichel, Lucas Ritschl, Johannes Vinke, Pia Schilling, Hagen Schmal and Anke Bernstein
Materials 2021, 14(5), 1303; https://doi.org/10.3390/ma14051303 - 9 Mar 2021
Cited by 14 | Viewed by 3338
Abstract
This work aimed to determine the influence of two hydrogels (alginate, alginate-di-aldehyde (ADA)/gelatin) on the mechanical strength of microporous ceramics, which have been loaded with these hydrogels. For this purpose, the compressive strength was determined using a Zwick Z005 universal testing machine. In [...] Read more.
This work aimed to determine the influence of two hydrogels (alginate, alginate-di-aldehyde (ADA)/gelatin) on the mechanical strength of microporous ceramics, which have been loaded with these hydrogels. For this purpose, the compressive strength was determined using a Zwick Z005 universal testing machine. In addition, the degradation behavior according to ISO EN 10993-14 in TRIS buffer pH 5.0 and pH 7.4 over 60 days was determined, and its effects on the compressive strength were investigated. The loading was carried out by means of a flow-chamber. The weight of the samples (manufacturer: Robert Mathys Foundation (RMS) and Curasan) in TRIS solutions pH 5 and pH 7 increased within 4 h (mean 48 ± 32 mg) and then remained constant over the experimental period of 60 days. The determination surface roughness showed a decrease in the value for the ceramics incubated in TRIS compared to the untreated ceramics. In addition, an increase in protein concentration in solution was determined for ADA gelatin-loaded ceramics. The macroporous Curasan ceramic exhibited a maximum failure load of 29 ± 9.0 N, whereas the value for the microporous RMS ceramic was 931 ± 223 N. Filling the RMS ceramic with ADA gelatin increased the maximum failure load to 1114 ± 300 N. The Curasan ceramics were too fragile for loading. The maximum failure load decreased for the RMS ceramics to 686.55 ± 170 N by incubation in TRIS pH 7.4 and 651 ± 287 N at pH 5.0. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

17 pages, 4761 KiB  
Article
Neuronal Differentiation from Induced Pluripotent Stem Cell-Derived Neurospheres by the Application of Oxidized Alginate-Gelatin-Laminin Hydrogels
by Thomas Distler, Ines Lauria, Rainer Detsch, Clemens M. Sauter, Farina Bendt, Julia Kapr, Stephan Rütten, Aldo R. Boccaccini and Ellen Fritsche
Biomedicines 2021, 9(3), 261; https://doi.org/10.3390/biomedicines9030261 - 5 Mar 2021
Cited by 32 | Viewed by 6541
Abstract
Biodegradable hydrogels that promote stem cell differentiation into neurons in three dimensions (3D) are highly desired in biomedical research to study drug neurotoxicity or to yield cell-containing biomaterials for neuronal tissue repair. Here, we demonstrate that oxidized alginate-gelatin-laminin (ADA-GEL-LAM) hydrogels facilitate neuronal differentiation [...] Read more.
Biodegradable hydrogels that promote stem cell differentiation into neurons in three dimensions (3D) are highly desired in biomedical research to study drug neurotoxicity or to yield cell-containing biomaterials for neuronal tissue repair. Here, we demonstrate that oxidized alginate-gelatin-laminin (ADA-GEL-LAM) hydrogels facilitate neuronal differentiation and growth of embedded human induced pluripotent stem cell (hiPSC) derived neurospheres. ADA-GEL and ADA-GEL-LAM hydrogels exhibiting a stiffness close to ~5 kPa at initial cell culture conditions of 37 °C were prepared. Laminin supplemented ADA-GEL promoted an increase in neuronal differentiation in comparison to pristine ADA-GEL, with enhanced neuron migration from the neurospheres to the bulk 3D hydrogel matrix. The presence of laminin in ADA-GEL led to a more than two-fold increase in the number of neurospheres with migrated neurons. Our findings suggest that laminin addition to oxidized alginate—gelatin hydrogel matrices plays a crucial role to tailor oxidized alginate-gelatin hydrogels suitable for 3D neuronal cell culture applications. Full article
(This article belongs to the Special Issue Hydrogels for Biomedical Application)
Show Figures

Graphical abstract

20 pages, 2619 KiB  
Article
Differential Responses to Bioink-Induced Oxidative Stress in Endothelial Cells and Fibroblasts
by Hatice Genç, Jonas Hazur, Emine Karakaya, Barbara Dietel, Faina Bider, Jürgen Groll, Christoph Alexiou, Aldo R. Boccaccini, Rainer Detsch and Iwona Cicha
Int. J. Mol. Sci. 2021, 22(5), 2358; https://doi.org/10.3390/ijms22052358 - 26 Feb 2021
Cited by 19 | Viewed by 3857
Abstract
A hydrogel system based on oxidized alginate covalently crosslinked with gelatin (ADA-GEL) has been utilized for different biofabrication approaches to design constructs, in which cell growth, proliferation and migration have been observed. However, cell–bioink interactions are not completely understood and the potential effects [...] Read more.
A hydrogel system based on oxidized alginate covalently crosslinked with gelatin (ADA-GEL) has been utilized for different biofabrication approaches to design constructs, in which cell growth, proliferation and migration have been observed. However, cell–bioink interactions are not completely understood and the potential effects of free aldehyde groups on the living cells have not been investigated. In this study, alginate, ADA and ADA-GEL were characterized via FTIR and NMR, and their effect on cell viability was investigated. In the tested cell lines, there was a concentration-dependent effect of oxidation degree on cell viability, with the strongest cytotoxicity observed after 72 h of culture. Subsequently, primary human cells, namely fibroblasts and endothelial cells (ECs) were grown in ADA and ADA-GEL hydrogels to investigate the molecular effects of oxidized material. In ADA, an extremely strong ROS generation resulting in a rapid depletion of cellular thiols was observed in ECs, leading to rapid necrotic cell death. In contrast, less pronounced cytotoxic effects of ADA were noted on human fibroblasts. Human fibroblasts had higher cellular thiol content than primary ECs and entered apoptosis under strong oxidative stress. The presence of gelatin in the hydrogel improved the primary cell survival, likely by reducing the oxidative stress via binding to the CHO groups. Consequently, ADA-GEL was better tolerated than ADA alone. Fibroblasts were able to survive the oxidative stress in ADA-GEL and re-entered the proliferative phase. To the best of our knowledge, this is the first report that shows in detail the relationship between oxidative stress-induced intracellular processes and alginate di-aldehyde-based bioinks. Full article
(This article belongs to the Special Issue Interactions of Cells with Biomaterials for Regenerative Medicine 2.0)
Show Figures

Figure 1

21 pages, 8899 KiB  
Article
Comparison of Hydrogels for the Development of Well-Defined 3D Cancer Models of Breast Cancer and Melanoma
by Rafael Schmid, Sonja K. Schmidt, Jonas Hazur, Rainer Detsch, Evelyn Maurer, Aldo R. Boccaccini, Julia Hauptstein, Jörg Teßmar, Torsten Blunk, Stefan Schrüfer, Dirk W. Schubert, Raymund E. Horch, Anja K. Bosserhoff, Andreas Arkudas and Annika Kengelbach-Weigand
Cancers 2020, 12(8), 2320; https://doi.org/10.3390/cancers12082320 - 17 Aug 2020
Cited by 31 | Viewed by 6453
Abstract
Bioprinting offers the opportunity to fabricate precise 3D tumor models to study tumor pathophysiology and progression. However, the choice of the bioink used is important. In this study, cell behavior was studied in three mechanically and biologically different hydrogels (alginate, alginate dialdehyde crosslinked [...] Read more.
Bioprinting offers the opportunity to fabricate precise 3D tumor models to study tumor pathophysiology and progression. However, the choice of the bioink used is important. In this study, cell behavior was studied in three mechanically and biologically different hydrogels (alginate, alginate dialdehyde crosslinked with gelatin (ADA–GEL), and thiol-modified hyaluronan (HA-SH crosslinked with PEGDA)) with cells from breast cancer (MDA-MB-231 and MCF-7) and melanoma (Mel Im and MV3), by analyzing survival, growth, and the amount of metabolically active, living cells via WST-8 labeling. Material characteristics were analyzed by dynamic mechanical analysis. Cell lines revealed significantly increased cell numbers in low-percentage alginate and HA-SH from day 1 to 14, while only Mel Im also revealed an increase in ADA–GEL. MCF-7 showed a preference for 1% alginate. Melanoma cells tended to proliferate better in ADA–GEL and HA-SH than mammary carcinoma cells. In 1% alginate, breast cancer cells showed equally good proliferation compared to melanoma cell lines. A smaller area was colonized in high-percentage alginate-based hydrogels. Moreover, 3% alginate was the stiffest material, and 2.5% ADA–GEL was the softest material. The other hydrogels were in the same range in between. Therefore, cellular responses were not only stiffness-dependent. With 1% alginate and HA-SH, we identified matrices that enable proliferation of all tested tumor cell lines while maintaining expected tumor heterogeneity. By adapting hydrogels, differences could be accentuated. This opens up the possibility of understanding and analyzing tumor heterogeneity by biofabrication. Full article
(This article belongs to the Special Issue 3D Cell Culture Cancer Models: Development and Applications)
Show Figures

Graphical abstract

17 pages, 5457 KiB  
Article
Fabrication of Cell-Loaded Two-Phase 3D Constructs for Tissue Engineering
by Tobias Zehnder, Tim Freund, Merve Demir, Rainer Detsch and Aldo R. Boccaccini
Materials 2016, 9(11), 887; https://doi.org/10.3390/ma9110887 - 1 Nov 2016
Cited by 35 | Viewed by 9000
Abstract
Hydrogel optimisation for biofabrication considering shape stability/mechanical properties and cell response is challenging. One approach to tackle this issue is to combine different additive manufacturing techniques, e.g., hot-melt extruded thermoplastics together with bioplotted cell loaded hydrogels in a sequential plotting process. This method [...] Read more.
Hydrogel optimisation for biofabrication considering shape stability/mechanical properties and cell response is challenging. One approach to tackle this issue is to combine different additive manufacturing techniques, e.g., hot-melt extruded thermoplastics together with bioplotted cell loaded hydrogels in a sequential plotting process. This method enables the fabrication of 3D constructs mechanically supported by the thermoplastic structure and biologically functionalised by the hydrogel phase. In this study, polycaprolactone (PCL) and polyethylene glycol (PEG) blend (PCL-PEG) together with alginate dialdehyde gelatine hydrogel (ADA-GEL) loaded with stromal cell line (ST2) were investigated. PCL-PEG blends were evaluated concerning plotting properties to fabricate 3D scaffolds, namely miscibility, wetting behaviour and in terms of cell response. Scaffolds were characterised considering pore size, porosity, strut width, degradation behaviour and mechanical stability. Blends showed improved hydrophilicity and cell response with PEG blending increasing the degradation and decreasing the mechanical properties of the scaffolds. Hybrid constructs with PCL-PEG blend and ADA-GEL were fabricated. Cell viability, distribution, morphology and interaction of cells with the support structure were analysed. Increased degradation of the thermoplastic support structure and proliferation of the cells not only in the hydrogel, but also on the thermoplastic phase, indicates the potential of this novel material combination for biofabricating 3D tissue engineering scaffolds. Full article
(This article belongs to the Special Issue Smart Hydrogels for (Bio)printing Applications)
Show Figures

Graphical abstract

18 pages, 1507 KiB  
Article
In vitro and in vivo Biocompatibility of Alginate Dialdehyde/Gelatin Hydrogels with and without Nanoscaled Bioactive Glass for Bone Tissue Engineering Applications
by Ulrike Rottensteiner, Bapi Sarker, Dominik Heusinger, Diana Dafinova, Subha N. Rath, Justus P. Beier, Ulrich Kneser, Raymund E. Horch, Rainer Detsch, Aldo R. Boccaccini and Andreas Arkudas
Materials 2014, 7(3), 1957-1974; https://doi.org/10.3390/ma7031957 - 6 Mar 2014
Cited by 118 | Viewed by 12731
Abstract
In addition to good mechanical properties needed for three-dimensional tissue engineering, the combination of alginate dialdehyde, gelatin and nano-scaled bioactive glass (45S5) is supposed to combine excellent cellular adhesion, proliferation and differentiation properties, good biocompatibility and predictable degradation rates. The goal of this [...] Read more.
In addition to good mechanical properties needed for three-dimensional tissue engineering, the combination of alginate dialdehyde, gelatin and nano-scaled bioactive glass (45S5) is supposed to combine excellent cellular adhesion, proliferation and differentiation properties, good biocompatibility and predictable degradation rates. The goal of this study was to evaluate the in vitro and in vivo biocompatibility as a first step on the way to its use as a scaffold in bone tissue engineering. In vitro evaluation showed good cell adherence and proliferation of bone marrow derived mesenchymal stem cells seeded on covalently crosslinked alginate dialdehyde-gelatin (ADA-GEL) hydrogel films with and without 0.1% nano-Bioglass® (nBG). Lactate dehydrogenase (LDH)- and mitochondrial activity significantly increased in both ADA-GEL and ADA-GEL-nBG groups compared to alginate. However, addition of 0.1% nBG seemed to have slight cytotoxic effect compared to ADA-GEL. In vivo implantation did not produce a significant inflammatory reaction, and ongoing degradation could be seen after four weeks. Ongoing vascularization was detected after four weeks. The good biocompatibility encourages future studies using ADA-GEL and nBG for bone tissue engineering application. Full article
(This article belongs to the Special Issue Biocompatibility of Materials 2013)
Show Figures

Back to TopTop