Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (284)

Search Parameters:
Keywords = AB5 toxins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 14539 KiB  
Article
Immunoinformatics Design and Identification of B-Cell Epitopes from Vespa affinis PLA1 Allergen
by Sophida Sukprasert, Siriporn Nonkhwao, Thitijchaya Thanwiset, Walter Keller and Sakda Daduang
Toxins 2025, 17(8), 373; https://doi.org/10.3390/toxins17080373 - 28 Jul 2025
Viewed by 208
Abstract
Phospholipase A1 (Ves a 1), a major toxin from Vespa affinis venom, poses significant risks to allergic individuals. Nevertheless, the epitope determinants of Ves a 1 have not been characterized. Thus, identifying its linear B-cell epitopes is crucial for understanding envenomation mechanisms. In [...] Read more.
Phospholipase A1 (Ves a 1), a major toxin from Vespa affinis venom, poses significant risks to allergic individuals. Nevertheless, the epitope determinants of Ves a 1 have not been characterized. Thus, identifying its linear B-cell epitopes is crucial for understanding envenomation mechanisms. In this study, we predicted and identified B-cell epitopes EP5 and EP6 as potential candidates. EP5 formed an α-helix at the active site of Ves a 1, whereas EP6 adopted an extended loop conformation. Both synthetic peptides were synthesized and evaluated for their inhibitory effects using immune-inhibitory assays with polyclonal antibodies (pAbs) targeting both native (nVes a 1) and recombinant (rVes a 1) forms. The Ves a 1 polyclonal antibodies (pAb-nVes a 1 and pAb-Ves a 1) were produced, and their specificity binding to Ves a 1 was confirmed by Western blot. Next, ELISA inhibition assays showed that EP5 and EP6 significantly blocked pAb binding to both nVes a 1 and rVes a 1. Dot blot and Western blot assays supported these findings, particularly with stronger inhibition toward rVes a 1. Furthermore, enzymatic assays indicated that nVes a 1 and rVes a 1 retained phospholipase activity. Immunoinformatics docking showed that EP5 and EP6 specifically bind to a single-chain variable fragment antibody (scFv) targeting Naja naja PLA2. Molecular analysis revealed similar amino acid interactions to the template, suggesting effective paratope–epitope binding. These results support the potential of EP5 and EP6 for future diagnosis and therapy of V. affinis venom allergy. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

15 pages, 1416 KiB  
Article
High Prevalence of Virulence and blaOXA Genes Encoding Carbapenemases Among Acinetobacter baumannii Isolates from Hospitalised Patients in Three Regions of Poland
by Magdalena Szemraj, Małgorzata Piechota, Kamila Olszowiec, Jolanta Wicha, Agata Pruss, Monika Sienkiewicz, Małgorzata Witeska, Piotr Szweda and Barbara Kot
Pathogens 2025, 14(8), 731; https://doi.org/10.3390/pathogens14080731 - 24 Jul 2025
Viewed by 336
Abstract
Infections caused by Acinetobacter baumannii are increasing worldwide. We evaluated the antibiotic resistance profile, biofilm production, and the frequency of 12 genes encoding carbapenemases and 13 virulence factors in 90 isolates from patients of three hospitals in various regions of Poland. Antibiotic resistance [...] Read more.
Infections caused by Acinetobacter baumannii are increasing worldwide. We evaluated the antibiotic resistance profile, biofilm production, and the frequency of 12 genes encoding carbapenemases and 13 virulence factors in 90 isolates from patients of three hospitals in various regions of Poland. Antibiotic resistance survey was performed using the disc-diffusion method, genes encoding resistance to carbapenems and virulence factors were detected with PCR, and biofilm formation was tested using microtiter plates. A total of 52.2% of isolates were resistant to all tested antibiotic groups (penicillins with β-lactamase inhibitors, cephalosporins, carbapenems, aminoglycosides, fluoroquinolones, and trimethoprim plus sulfamethoxazole). Among the genes encoding carbapenem resistance, the blaOXA-23 (68.9%), blaOXA-40 (83.3%), and ISAba-blaOXA-51 (18.9%) were detected. The ompA, ata, and recA genes responsible for biofilm formation, adhesion, and stress response, respectively, occurred in all isolates. Genes responsible for the production of other adhesins (bap—94.4%, espA—4.4%, chop—37.7%), biofilm formation (pbpG—90.0%), production of siderophore (basD—97.7%), toxins (lipA—92.2%, cpaA—1.1%), glycoconjugates (bfmR—84.4%), and inducing host cell death (fhaB—71.1%, abeD—93.3%) were also found. A total of 68.8% of isolates produced biofilm. The isolates from Masovia had more virulence genes than isolates from the other regions; moreover, all isolates from Masovia and West Pomerania were multidrug-resistant (MDR), including resistance to carbapenems. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

14 pages, 1987 KiB  
Article
The Characterization of a Gonococcal HicAB Toxin–Antitoxin System Capable of Causing Bacteriostatic Growth Arrest
by Salwa S. Bagabas, Jorge Trujillo-Mendoza, Michael J. Stocks, David P. J. Turner and Neil J. Oldfield
Microorganisms 2025, 13(7), 1619; https://doi.org/10.3390/microorganisms13071619 - 9 Jul 2025
Viewed by 483
Abstract
Neisseria gonorrhoeae is the causative agent of the sexually transmitted infection gonorrhea. Preventative vaccines or novel treatments based on a better understanding of the molecular basis of N. gonorrhoeae infection are required as resistance to current antibiotics is widespread. Toxin–antitoxin (TA) systems modulate [...] Read more.
Neisseria gonorrhoeae is the causative agent of the sexually transmitted infection gonorrhea. Preventative vaccines or novel treatments based on a better understanding of the molecular basis of N. gonorrhoeae infection are required as resistance to current antibiotics is widespread. Toxin–antitoxin (TA) systems modulate bacterial physiology by interfering with vital cellular processes; type II TA systems, where both toxin and antitoxin are proteins, are the best-studied. Bioinformatics analysis revealed genes encoding an uncharacterized type II HicAB TA system in the N. gonorrhoeae strain FA1090 chromosome, which were also present in >83% of the other gonococcal genome sequences examined. Gonococcal HicA overproduction inhibited bacterial growth in Escherichia coli, an effect that could be counteracted by the co-expression of HicB. Kill/rescue assays showed that this effect was bacteriostatic rather than bactericidal. The site-directed mutagenesis of key histidine and glycine residues (Gly22, His24, His29) abolished HicA-mediated growth arrest. N. gonorrhoeae FA1090∆hicAB and complemented derivatives that expressed IPTG-inducible hicA, hicB, or hicAB, respectively, grew as wild type, except for IPTG-induced FA1090∆hicAB::hicA. RT-PCR demonstrated that hicAB are transcribed in vitro under the culture conditions used. The deletion of hicAB had no effect on biofilm formation. Our study describes the first characterization of a HicAB TA system in N. gonorrhoeae. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

15 pages, 1763 KiB  
Article
Single Tri-Epitopic Antibodies (TeAbs) to Botulinum Neurotoxin Serotypes B, E, and F Recapitulate the Full Potency of a Combination of Three Monoclonal Antibodies in Toxin Neutralization
by Jianlong Lou, Wei Hua Wen, Fraser Conrad, Christina C. Tam, Consuelo Garcia-Rodriguez, Shauna Farr-Jones and James D. Marks
Toxins 2025, 17(6), 281; https://doi.org/10.3390/toxins17060281 - 4 Jun 2025
Viewed by 526
Abstract
Recombinant monoclonal antibody (mAb) botulinum neurotoxin (BoNT) antitoxins, consisting of three mAbs that bind non-overlapping epitopes, are highly potent. However, the three-mAb mixtures pose unique development and manufacturing challenges. Combining even more mAbs to create multivalent antitoxin drugs multiplies those challenges. We previously [...] Read more.
Recombinant monoclonal antibody (mAb) botulinum neurotoxin (BoNT) antitoxins, consisting of three mAbs that bind non-overlapping epitopes, are highly potent. However, the three-mAb mixtures pose unique development and manufacturing challenges. Combining even more mAbs to create multivalent antitoxin drugs multiplies those challenges. We previously reported that a single tri-epitopic IgG1-based mAb (TeAb) containing the variable domains of the three parental BoNT/A mAbs and an Fc was as potent as the combination of three IgGs in the mouse neutralization assay (MNA). Here, we extended the tri-epitopic strategy to three other BoNT serotypes. Each TeAb (TeAb-B for BoNT/B, TeAb-E for BoNT/E, and TeAb-F for BoNT/F) binding was measured using fluorescence-activated cell sorting and flow fluorimetry, and the potency was tested in the MNA. The three TeAbs displayed binding affinities that were the same within error of the parental IgGs for each epitope, and all had higher avidity to each serotype of BoNT than that of the parental mAbs. The potency of the BoNT/B, BoNT/E, and BoNT/F TeAbs was similar to the combinations of the three parental IgGs binding BoNT/B, BoNT/E, and BoNT/F in the MNA. We now have four examples of a single TeAb recapitulating the affinity and in vivo potency of a three-mAb antitoxin. The tri-epitopic strategy could be applied to streamline the production and bioanalytics of antibody drugs where three-mAb binding is required for activity. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

15 pages, 5037 KiB  
Article
Unraveling Botulinum Neurotoxin A Light-Chain-Induced Signaling Pathways: A Phosphoproteomic Analysis in a Controlled Cellular Model
by Chensi Zhu, Liangyan Zhang, Wenjing Yu, Yeqing Tu, Xiaolan Yang, Deyu Li, Hui Wang and Tao Li
Int. J. Mol. Sci. 2025, 26(11), 5168; https://doi.org/10.3390/ijms26115168 - 28 May 2025
Viewed by 523
Abstract
Botulinum neurotoxin type A (BoNT/A), among the most potent known toxins, is widely used in cosmetic medicine. However, its toxicity mechanisms remain poorly understood due to a lack of suitable models. Here, we generated a doxycycline (DOX)-inducible Neuro-2a cell line stably expressing the [...] Read more.
Botulinum neurotoxin type A (BoNT/A), among the most potent known toxins, is widely used in cosmetic medicine. However, its toxicity mechanisms remain poorly understood due to a lack of suitable models. Here, we generated a doxycycline (DOX)-inducible Neuro-2a cell line stably expressing the BoNT/A light chain (ALC). ALC expression was confirmed by GFP and FLAG tag antibodies, and its activity was validated through cleavage of the substrate SNAP-25. Using this model, combined with natural toxin infection of cells, phospho-antibody microarray analysis revealed significant alterations in host phosphorylation networks in both ALC-expressing and toxin-infected cells. Among the shared phosphorylation changes, 75 proteins showed upregulation, while 27 were downregulated. Upregulated phosphorylation events were enriched in pathways such as PI3K-AKT signaling, EGFR tyrosine kinase inhibitor resistance, and Ras signaling, whereas downregulated events were associated with the ERBB and thyroid hormone signaling pathways. Key alterations were observed in AKT signaling, with protein–protein interaction analysis identifying Hsp90ab1 and Map2k1 as central hub molecules for upregulated and downregulated proteins, respectively. This study establishes a robust Neuro-2a-based model system to study BoNT/A toxicity and provides insights into toxin-induced phosphorylation network changes, offering a valuable platform for therapeutic screening and mechanistic exploration. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

33 pages, 1948 KiB  
Article
Highly Sensitive Suspension Immunoassay for Multiplex Detection, Differentiation, and Quantification of Eight Staphylococcus aureus Enterotoxins (SEA to SEI)
by Paulin Dettmann, Martin Skiba, Daniel Stern, Jasmin Weisemann, Hans Werner Mages, Nadja Krez, Martin B. Dorner, Sara Schaarschmidt, Marc A. Avondet, Marcus Fulde, Andreas Rummel, Birgit Strommenger, Sven Maurischat and Brigitte G. Dorner
Toxins 2025, 17(6), 265; https://doi.org/10.3390/toxins17060265 - 24 May 2025
Viewed by 1008
Abstract
Staphylococcal enterotoxins (SEs) are major contributors to foodborne intoxications. Reliable detection methods for SEs are essential to maintain food safety and protect public health. Since the heat-stable toxins also exert their toxic effect in the absence of the bacterium, reliance on DNA detection [...] Read more.
Staphylococcal enterotoxins (SEs) are major contributors to foodborne intoxications. Reliable detection methods for SEs are essential to maintain food safety and protect public health. Since the heat-stable toxins also exert their toxic effect in the absence of the bacterium, reliance on DNA detection alone can be misleading: it does not allow for determining which specific toxins encoded by a given strain are produced and epidemiologically linked with a given outbreak. Commercially available diagnostic assays for SE detection are so far limited in sensitivity and specificity as well as in the range of targeted toxins (SEA–SEE), thus non-targeted SEs linked to foodborne illness remain undetected at the protein level. This study aimed to develop a highly sensitive and specific multiplex suspension immunoassay (SIA) for SEA to SEI. To this end, high-affinity monoclonal antibodies (mAbs) for the specific detection of the individual SEs were generated. When implemented in sandwich ELISAs and multiplex SIA, these mAbs demonstrated exceptional sensitivity with detection limits in the low picogram per millilitre range. When applied for the analysis of SE production in liquid cultures of a panel of 145 whole-genome sequenced strains of Staphylococcus spp. and Enterococcus faecalis, the novel multiplex SIA detected and differentiated the eight SEs with assay accuracies of 86.9–100%. Notably, the multiplex SIA covered one to four sequence variants for each of the individual SEs. Validation confirmed high recovery rates and reliable performance in three representative complex food matrices. The implementation of the novel mAbs in a multiplex SIA enabled, for the first time, simultaneous detection, differentiation, and quantification of multiple SEs from minimal sample volumes using Luminex® technology. As a result, the multiplex SIA will help strengthen food safety protocols and public health response capabilities. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Graphical abstract

10 pages, 1307 KiB  
Article
Differential Characterization of Midgut Microbiota Between Bt-Resistant and Bt-Susceptible Populations of Ostrinia furnacalis
by Juntao Zhang, Ziwen Zhou, Xiaobei Liu, Yongjun Zhang and Tiantao Zhang
Insects 2025, 16(5), 532; https://doi.org/10.3390/insects16050532 - 18 May 2025
Viewed by 607
Abstract
Bacillus thuringiensis (Bt) is an efficacious biocontrol bacterium known for producing various toxins, such as crystal toxins, which disrupt the midgut epithelium of pest larvae, leading to larval mortality. However, the development of resistance to Bacillus thuringiensis in pests poses a significant threat [...] Read more.
Bacillus thuringiensis (Bt) is an efficacious biocontrol bacterium known for producing various toxins, such as crystal toxins, which disrupt the midgut epithelium of pest larvae, leading to larval mortality. However, the development of resistance to Bacillus thuringiensis in pests poses a significant threat to the widespread application of Bt corn. Consequently, we employed high-throughput sequencing of the midgut bacterial 16S ribosomal RNA to characterize the midgut bacteria in four Bt-resistant strains. Specifically, Bt-resistant strains (ACB-FR and ACB-AcR) exhibited lower bacterial diversity compared to ACB-AbR and ACB-IeR. Multivariate analyses and statistical evaluations further demonstrated that the microbiota communities in Bt-resistant pests (AbR, AcR, IeR, and FR) were distinct from those in Bt-susceptible strains. Notably, the genus Klebsiella predominated in BtS, whereas Enterococcus was the genus with peak enrichment in AbR, AcR, IeR, and FR. Bioassays subsequently revealed that Enterococcus enhances the Cry1Ab resistance of ACB larvae. Our investigations indicate that treatment with Bt protein alters the midgut microbiota community of O. furnacalis, and these microbiota differences may potentially modulate the Bt-induced lethality mechanism. Full article
(This article belongs to the Special Issue Corn Insect Pests: From Biology to Control Technology)
Show Figures

Graphical abstract

15 pages, 1501 KiB  
Article
Curcumin Reverses Antibiotic Resistance and Downregulates Shiga Toxin Expression in Enterohemorrhagic E. coli
by Martin Zermeño-Ruiz, Mirian Cobos-Vargas, Mauro Donaldo Saucedo-Plascencia, Rafael Cortés-Zárate, Leonardo Hernandez-Hernandez, Teresa Arcelia Garcia-Cobian, Teresa Estrada-Garcia and Araceli Castillo-Romero
Diseases 2025, 13(5), 154; https://doi.org/10.3390/diseases13050154 - 17 May 2025
Viewed by 557
Abstract
Background: Enterohemorrhagic Escherichia coli (EHEC) is a considerable public health concern associated with several foodborne outbreaks of bloody diarrhea (BD) and the potentially lethal hemolytic uremic syndrome (HUS), the pathophysiology of which is attributable to the Shiga toxin (Stx) produced by this bacterium. [...] Read more.
Background: Enterohemorrhagic Escherichia coli (EHEC) is a considerable public health concern associated with several foodborne outbreaks of bloody diarrhea (BD) and the potentially lethal hemolytic uremic syndrome (HUS), the pathophysiology of which is attributable to the Shiga toxin (Stx) produced by this bacterium. In most patients, supportive treatment will be sufficient; however, in some cases, antibiotic treatment may be necessary. Most antibiotics are not recommended for EHEC infection treatment, particularly those that kill the bacteria, since this triggers the release of Stx in the body, inducing or worsening HUS. Azithromycin, which prevents the release of Stx and is a weaker inducer of the SOS system, has been successfully used to reduce EHEC shedding. It is necessary to identify compounds that eliminate EHEC without inducing Stx release. The use of natural compounds such as curcumin (CUR), a polyphenol derived from turmeric, has been highlighted as an alternative bactericidal treatment approach. Objective: The objective of this study was to establish the effect of CUR and its interactions with selected antibiotics on resistant EHEC O157/H7/EDL933. Methods: Bacterial cultures were exposed to CUR at three different concentrations (110, 220, and 330 µg/mL) and 1.2% DMSO, and the antimicrobial activity of CUR was assessed by measuring the optical density at 600 nm (OD600). The synergy of CUR and the antibiotics was determined with the FIC method. RT-PCR was performed to determine the expression levels of the blaCTX-M-15, catA1, acrAB-tolC stx2A, and stx2B genes. Results: Our data indicate that CUR did not affect the growth of EHEC, but when combined with the antibiotics, it acted as a bacterial resistance breaker. Synergistic combinations of CUR and cefotaxime or chloramphenicol significantly reduced colony counts. Conclusions: Our findings support the potential of CUR as a sensitizer or in combination therapy against EHEC. Full article
(This article belongs to the Section Infectious Disease)
Show Figures

Figure 1

15 pages, 3125 KiB  
Article
Mutagenesis Targeting the S153 Residue Within the Transmembrane β-Hairpin of Mosquito-Larvicidal Mpp46Ab Affects Its Toxicity and the Synergistic Toxicity with Cry4Aa
by Tohru Hayakawa, Syun Yamaoka, Mami Asakura, Minako Hirano and Toru Ide
Biology 2025, 14(5), 489; https://doi.org/10.3390/biology14050489 - 30 Apr 2025
Viewed by 303
Abstract
We constructed a library of Mpp46Ab mutants, in which S153 within the transmembrane β-hairpin was randomly replaced by other amino acids. Mutagenesis and subsequent primary screening yielded 10 different Mpp46Ab mutants in addition to the wild type. Remarkably, S153 was replaced [...] Read more.
We constructed a library of Mpp46Ab mutants, in which S153 within the transmembrane β-hairpin was randomly replaced by other amino acids. Mutagenesis and subsequent primary screening yielded 10 different Mpp46Ab mutants in addition to the wild type. Remarkably, S153 was replaced with a more hydrophobic amino acid in most of the mutants, and the S153I mutant in particular exhibited significantly increased toxicity. Electrophysiologic analysis using artificial lipid bilayers revealed that the single-channel conductance and PK/PCl permeability ratio were significantly increased for S153I pores. This suggests that the formation of highly ion-permeable and highly cation-selective toxin pores increases the influx of cations and water into cells, thereby facilitating osmotic shock. In addition, the S153F, S153L, and S153I mutants exhibited significantly reduced synergistic toxicity with Cry4Aa. Electrophysiologic analysis showed that the S153F, S153L, and S153I mutants form toxin pores with a significantly reduced PK/PNa permeability ratio and a significantly increased PK/PCa permeability ratio compared to wild-type pores. Thus, our results suggest that pore formation is central to the insecticidal activity of Mpp46Ab and that the ion permeability of toxin pores is a potential indicator correlated with both toxicity and synergistic toxicity with other toxins. Full article
(This article belongs to the Section Toxicology)
Show Figures

Graphical abstract

15 pages, 1632 KiB  
Article
Evaluation of the Potency of the First Commercial Vaccine for Clostridioides difficile Infection in Piglets and Comparison with the Humoral Response in Rabbits
by Victor Santos do Amarante, João Victor Ferreira Campos, Thayanne Gabryelle Viana de Souza, Yasmin Gonçalves de Castro, Kelly Mara Gomes Godoy and Rodrigo Otávio Silveira Silva
Vaccines 2025, 13(5), 438; https://doi.org/10.3390/vaccines13050438 - 22 Apr 2025
Viewed by 858
Abstract
Clostridioides difficile is an anaerobic bacterium that causes disease in both animals and humans. Despite the known significance of this agent, there are no commercial vaccines available for humans, and only one immunogen is marketed for swine. However, no studies have evaluated this [...] Read more.
Clostridioides difficile is an anaerobic bacterium that causes disease in both animals and humans. Despite the known significance of this agent, there are no commercial vaccines available for humans, and only one immunogen is marketed for swine. However, no studies have evaluated this vaccine. Background/Objectives: Therefore, the aim of this study was to assess the potency of the first commercial vaccine for C. difficile infection in piglets and to compare the humoral response in rabbits and sows. Methods: Pregnant sows were divided into two groups: a vaccinated group (n = 12), receiving two doses before farrowing, according to the manufacturer’s recommendation, and an unvaccinated control group (n = 6). Blood samples were taken from sows and also from piglets up to two days after birth. In addition, two groups of New Zealand rabbits (Oryctolagus cuniculus) received either a half-dose (G1) or a full-dose (G2) of the vaccine, with a control group receiving sterile saline (0.85%). Rabbits were vaccinated twice, 21 days apart, with blood samples collected before each dose and 14 days after the final dose. A serum neutralization assay in Vero cells was performed to evaluate the titers of neutralizing antibodies. Results: The vaccine demonstrated immunogenicity by stimulating the production of neutralizing antibodies in both rabbits and sows. Additionally, these antibodies were passively transferred to piglets through colostrum, reaching levels comparable to those found in sows. Furthermore, vaccinated rabbits developed antibody titers that do not significantly differ from those obtained in sows and piglets. Conclusions: The tested vaccine can induce a humoral immune response against C. difficile A/B toxins in sows and these antibodies are passively transferred to neonatal piglets through colostrum. Also, the vaccination of rabbits might be a useful alternative for evaluating the potency of vaccines against C. difficile. Full article
(This article belongs to the Special Issue Vaccine and Vaccination in Veterinary Medicine)
Show Figures

Figure 1

18 pages, 3872 KiB  
Article
Prevalence, Molecular Characterization, and Antimicrobial Resistance Profile of Enterotoxigenic Escherichia coli Isolates from Pig Farms in China
by Jiajia Zhu, Zewen Liu, Siyi Wang, Ting Gao, Wei Liu, Keli Yang, Fangyan Yuan, Qiong Wu, Chang Li, Rui Guo, Yongxiang Tian and Danna Zhou
Foods 2025, 14(7), 1188; https://doi.org/10.3390/foods14071188 - 28 Mar 2025
Cited by 1 | Viewed by 631
Abstract
Enterotoxigenic Escherichia coli (ETEC) poses a critical threat to livestock health and food safety, particularly in regard to misuse of antimicrobial agents, which have accelerated the evolution of multidrug-resistant (MDR) ETEC strains, reshaping their virulence landscapes and epidemiological trajectories. In this study, 24 [...] Read more.
Enterotoxigenic Escherichia coli (ETEC) poses a critical threat to livestock health and food safety, particularly in regard to misuse of antimicrobial agents, which have accelerated the evolution of multidrug-resistant (MDR) ETEC strains, reshaping their virulence landscapes and epidemiological trajectories. In this study, 24 ETEC isolates from porcine diarrheal samples undergo genomic and phenotypic profiling, including virulence genotyping, bacterial adhesion, and antimicrobial resistance (AMR) analysis. Results show that multi-locus sequence typing (MLST) outputs (ST88, ST100) and serotypes (O9:H19, O116:H11, O149:H10) exhibited enhanced virulence, with F18ab-fimbriated strains carrying Shiga toxin genes (stx2A) demonstrating higher cytotoxicity than non-stx strains. There exists a significant negative correlation between bacterial growth rates and intestinal epithelial adhesion, with the expression of ETEC adhesion and virulence genes being growth-time-dependent. These relationships suggest evolutionary trade-offs favoring either rapid proliferation or virulence. Among these isolates, 95.8% were MDR, with alarming resistance to quinolones and aminoglycosides. Geospatial analysis identified region-specific AMR gene clusters, notably oqxB-aac(3) co-occurrence networks in 79% of ETEC isolates. These results highlight the urgent need for precision interventions, including vaccines targeting epidemic serotypes and AMR monitoring systems to disrupt resistance propagation across swine production networks. By underscoring the importance of current virulence and AMR profiles, this study provides actionable strategies to mitigate ETEC-associated threats to both animal welfare and meat safety ecosystems. Full article
Show Figures

Figure 1

20 pages, 2972 KiB  
Article
Postlarval Shrimp-Associated Microbiota and Underlying Ecological Processes over AHPND Progression
by Zhongjiang Zhou, Jiaqi Lu, Pingping Zhan and Jinbo Xiong
Microorganisms 2025, 13(4), 720; https://doi.org/10.3390/microorganisms13040720 - 24 Mar 2025
Viewed by 701
Abstract
Postlarval shrimp frequently face threats from acute hepatopancreatic necrosis disease (AHPND). Although AHPND affects both postlarval and adult shrimp, abiotic and biotic factors are distinct between life stages, such as rearing water nutrient levels and host life stage-dependent microbiota. The response of postlarvae-associated [...] Read more.
Postlarval shrimp frequently face threats from acute hepatopancreatic necrosis disease (AHPND). Although AHPND affects both postlarval and adult shrimp, abiotic and biotic factors are distinct between life stages, such as rearing water nutrient levels and host life stage-dependent microbiota. The response of postlarvae-associated microbiota to AHPND, however, remains largely unexplored compared with its effects on juvenile and adult shrimp. To address this knowledge gap, a comparative analysis of postlarvae-associated microbiota and the ecological processes underlying AHPND progression was performed by sequencing the bacterial V3–V4 hypervariable region of the 16S rRNA gene. AHPND infection was validated by high copies of pirAB genes (Toxin 1) in diseased shrimp hepatopancreas. Advanced AHPND significantly altered the structure of the postlarvae-associated microbiota, with significant enrichment of Bacilli and Bdellovibrionia species in healthy larvae compared with matched AHPND-infected cohorts, although gut microbiota recovery was observed at the late disease stage, corresponding with the cessation of postlarval mortality. AHPND infection explained 11.0% (p < 0.001) of the variance in community structures, whereas postlarvae days post hatching also significantly influenced bacterial communities (7.1% variance, p < 0.001). AHPND-infected shrimp exhibited reduced homogeneous selection and increased dispersal limitation and drift governing their microbiota. These changes were primarily driven by specific microbial lineages, including enriched Bin36 Rhodobacteraceae and Bin11 Flavobacteriaceae, and suppressed Bin63 Vibrio and Bin9 Bacillus in AHPND-infected shrimp. After excluding shrimp age effect, 13 AHPND-discriminatory taxa were identified, accurately distinguishing infected shrimp from healthy individuals with 100% precision. Furthermore, AHPND outbreak weakened the network complexity and stability, which was driven by the suppressed keystone taxa that were positively associated with network robustness. Collectively, our findings deepen the understanding of the inextricable interplay between postlarval shrimp health, microbiota dynamics, and survival, as well as the underlying ecological mechanisms over AHPND progression. Full article
(This article belongs to the Special Issue Research on Diseases of Aquatic Organisms)
Show Figures

Figure 1

13 pages, 2309 KiB  
Article
An Effective Prophylactic and Therapeutic Protection Against Botulinum Type A Intoxication in Mice and Rabbits Using a Humanized Monoclonal Antibody
by Chi Ho Yu, Young-Jo Song, Dong Hyun Song, Hae Eun Joe, Chang-Hwan Kim, Hyungseok Yun, Na Young Kim, Euni Sim, Seong Tae Jeong and Gyeung Haeng Hur
Toxins 2025, 17(3), 138; https://doi.org/10.3390/toxins17030138 - 14 Mar 2025
Viewed by 840
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxins on Earth and are classified as Category A biological agents. BoNTs lead to paralysis in humans and cause botulism. Antibody therapeutics can effectively treat toxin-mediated infectious diseases. In this study, we generated a pharmaceutical humanized [...] Read more.
Botulinum neurotoxins (BoNTs) are the most potent toxins on Earth and are classified as Category A biological agents. BoNTs lead to paralysis in humans and cause botulism. Antibody therapeutics can effectively treat toxin-mediated infectious diseases. In this study, we generated a pharmaceutical humanized monoclonal antibody (HZ45 mAb) to prevent or treat botulism. HZ45 binds to the heavy chain receptor (HCR) domain of the toxin, preventing the toxin from entering the cell. The mAb was produced using hybridoma technology and phage display. We evaluated HZ45 mAb for the neutralization of BoNT serotype A (BoNT/A) in mice and rabbits. The survival results showed that pretreatment with HZ45 mAb provided 100% protection at a dose of 0.1 mg per mouse against a maximum of 100 LD50 of BoNT/A. To assess the therapeutic efficacy of HZ45 mAb in New Zealand white rabbits (NZWs), a 5 mg dose was administered 4 or 8 h after challenge with 10 LD50. The results indicated that 5 mg of HZ45 could treat the NZWs within 8 h after exposure to 10 LD50 botulinum. Consequently, in an in vivo context, including mice and rabbits, HZ45 mAb could protect against botulinum type A intoxication. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

22 pages, 912 KiB  
Review
Botulinum Neurotoxins as Two-Faced Janus Proteins
by Silvia Chimienti, Maria Di Spirito, Filippo Molinari, Orr Rozov, Florigio Lista, Raffaele D’Amelio, Simonetta Salemi and Silvia Fillo
Biomedicines 2025, 13(2), 411; https://doi.org/10.3390/biomedicines13020411 - 8 Feb 2025
Viewed by 1543
Abstract
Botulinum neurotoxins are synthetized by anaerobic, spore-forming bacteria that inhibit acetylcholine release at the level of the neuromuscular and autonomic cholinergic junctions, thus inducing a series of symptoms, the most relevant of which is flaccid paralysis. At least seven serotypes and over 40 [...] Read more.
Botulinum neurotoxins are synthetized by anaerobic, spore-forming bacteria that inhibit acetylcholine release at the level of the neuromuscular and autonomic cholinergic junctions, thus inducing a series of symptoms, the most relevant of which is flaccid paralysis. At least seven serotypes and over 40 subtypes are known, and they are among the most poisonous natural substances. There are different forms of botulism according to the route of contamination, but the clinical manifestation of descending symmetric flaccid paralysis is consistent, regardless of the route of contamination. It is very severe and potentially lethal. The induced paralysis lasts as long as the toxin is active, with variable length, according to the serotype of the toxin. This transient activity, as well as the precise mechanism of action, are the basis for the rationale behind use of the toxin in therapy for several clinical conditions, particularly, spastic conditions, as well as chronic migraine and axillary hyperhidrosis. The toxin has also been approved for the reduction in facial wrinkles; all these clinical applications, coupled with the toxin’s risks, have earned botulinum the title of a two-faced Janus protein. No approved vaccines are currently available, andthe only approved antidotes are the human specific intravenous immunoglobulins for infant botulism and the heptavalent equine immunoglobulins/(F(ab’)2 for adults. Nanobodies, which show great promise, may penetrate neuronal cells to inactivate the toxin within the cytoplasm, and Ebselen, a non-toxic, economic, small-molecule inhibitor, has the characteristic of inhibiting the toxin irrespective of the serotype. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

29 pages, 12411 KiB  
Article
Advanced Pathogen Monitoring in Penaeus vannamei from Three Latin American Regions: Passive Surveillance Part 2
by Pablo Intriago, Bolivar Montiel, Mauricio Valarezo, Jennifer Gallardo and Yamilis Cataño
Viruses 2025, 17(2), 187; https://doi.org/10.3390/v17020187 - 28 Jan 2025
Cited by 2 | Viewed by 1033
Abstract
This study presents the second phase of a year-long investigation comparing multiple PCR analyses and histological examinations to confirm the presence of characteristic lesions of each pathogen in three different regions of Latin America. More than 20 agents, including DNA and RNA viruses, [...] Read more.
This study presents the second phase of a year-long investigation comparing multiple PCR analyses and histological examinations to confirm the presence of characteristic lesions of each pathogen in three different regions of Latin America. More than 20 agents, including DNA and RNA viruses, bacteria and microsporidia, have been targeted. In addition to wild Penaeus vannamei, which was studied previously, samples of wild P. stylirostris and P. monodon were included. Notably, a positive PCR test result alone does not confirm the presence of a viable pathogen or a disease state. Similarly, positive PCR results do not necessarily correlate with the presence of histological lesions characteristic of the targeted pathogen. Wenzhou shrimp virus 8 (WzSV8) was found to be widespread among shrimp in all regions, including both farm-raised and wild populations. Histopathological analysis indicated that shrimp typically presented coinfections, such as WzSV8, Decapod hepanhamaparvovirus (DHPV), chronic midgut inflammation, and tubule distension/epithelial atrophy, consistent with the toxicity of Pir A/B or another bacterial toxin. Bacterial muscle necrosis was also found in some regions. In general, bacterial infection was the dominant pathology in all three regions during the year. We also postulate that both WzSV8 and DHPV can infect not only hepatopancreatic cells but also cells in the ceca and intestine. Full article
(This article belongs to the Special Issue Viruses in Mass-Reared Invertebrates, 2nd Edition)
Show Figures

Figure 1

Back to TopTop